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Abstract: This paper proposes design guidelines to enhance energy efficiency and energy generation
potential in active solar buildings. Additionally, it presents a variety of optimized urban forms
characterized by attributes such as shape, layout, and number of buildings on the plot. These urban
configurations are classified into solar species, each associated with a distinct range of high passive
and active solar potential. These results were achieved by developing and applying a simulation-
driven, multi-objective optimization technique for the early-stage design of a residential building
cluster in a temperate climate. This method leverages both passive and active energy indicators,
employing a genetic algorithm to identify optimal forms that maximize active solar potential while
also minimizing operational energy demand. The approach utilizes a parametric modelling routine
that relies on vertical cores and horizontal connections to produce design iterations featuring irregular
geometry, while ensuring structural continuity and means of egress. The findings reveal a significant
variability in onsite energy generation, with optimized solutions differing by a factor of 2.5 solely
based on shape, underscoring the critical role of active solar potential. Taken together, these results
hint at the descriptive and predictive capabilities of these solar species, making them a promising
heuristic model for characterizing urban form in relation to energy performance.

Keywords: active energy buildings; early-stage design; energy form-finding; genetic algorithms;
multi-objective optimization

1. Introduction
1.1. Context

For centuries, architects have relied on heuristic design methods, such as building
typologies, aesthetic canons, or rules of thumb, to ensure adequate levels of comfort and
safety in buildings. More recently, countless design manuals have promoted a normative
design practice based on codes and regulations, starting with standardization efforts by
Ernst Neufert [1]. Over the same period, the building sector has witnessed a continuous
increase in energy consumption, particularly following the widespread adoption of electric-
ity and fossil fuels for heating, cooling, and lighting in the early 20th century [2]. Despite
the design profession’s growing interest in passive design principles and renewable energy
sources, spurred by the energy crisis in the 1970s, energy consumption in buildings has
continued to grow [3].

Today, the architecture, engineering, and construction (AEC) sector is accountable for
40% of energy consumption and nearly 36% of CO2 emissions in the EU [4], with half of
the building energy usage related to heating, ventilation, and air conditioning (HVAC)
systems [5]. AEC is considered one of the most cost-effective sectors for climate action [6]
and the European Union has set ambitious targets for retrofits and new construction, with
the aim of achieving a “highly efficient and decarbonized building stock by 2050” [7].
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In response to new and more stringent regulations, architects are gradually embracing
a growing range of building simulation tools to meet increasingly demanding energy and
emission targets [8,9]. Automated design methods, developed over the past two decades,
present opportunities to generate, simulate, and optimize design solutions aimed at reduc-
ing energy consumption, GHG emissions, and environmental impact [10].

1.2. Need

Despite recent advances, these digital design tools and methods remain too complex and
time-consuming to use, particularly at the conceptual phase of design. Additionally, existing
computational design methods driven by energy-related goals often overlook critical structural
and safety considerations. Consequently, many architects continue to rely on design guidelines,
experience, and intuition to make decisions that potentially compromise the energy-saving
potential of their projects [11]. Energy calculations typically occur late in the design process as a
way of generating reports for compliance with mandatory energy regulation requirements [12].
Similarly, mechanical systems and insulation materials are often retroactively applied to
mitigate the adverse effects of poorly informed design decisions made by traditional means
earlier in the process [13]. Paradoxically, stricter standards aimed at reducing operational
energy use can inadvertently increase the embodied energy in construction, maintenance,
and decommissioning [14]. By and large, the vast glass surfaces, paper-thin enclosures,
and prominent structural forms of the modernist aesthetic—plus the convoluted geometries
facilitated by computational design tools—remain a prevailing style in architecture today.
Without implementing additional measures to bolster energy efficiency and decarbonize
energy supply, the building sector will not be able to meet the zero-carbon objective by 2050,
nor the interim milestone set for 2030 [15].

1.3. Task

This paper aims at identifying optimal forms and layouts for a residential building
cluster situated in a temperate climate, deploying a simulation-driven, multi-objective
optimization method based on passive and active energy indicators. The primary objective
is to minimize operational energy consumption while simultaneously maximizing onsite
energy generation potential. This research underscores the significance of early-stage
design as the “low-hanging-fruit” of optimization in buildings when decisions carry the
greatest potential for energy savings. Moreover, during this phase, design variables hold the
most relevance for architects, focusing predominantly on geometry rather than materials or
building systems. This study tackles current limitations in automated design methods by
enhancing three key aspects of the optimization process:

1. Core key objectives: We optimize towards only two objectives, intended to encapsulate
the dual mandates of EU energy legislation—low energy consumption and a high
onsite energy fraction.

2. Easy-to-compute indicators: our approach relies on computationally friendly yet
reliable metrics to streamline and broaden the search during the initial optimization
phase. Subsequent full-climate simulation, conducted on the best-performing solu-
tions identified by this method, largely validate the selected indicators as dependable
proxies for energy production and savings potential in buildings.

3. Viable design variants: the optimization process focuses on geometric variables
related to building massing that are easy to iterate yet are central to a conceptual
design process in architecture. The resulting parametric modelling routine generates a
diverse range of irregular building shapes, all structurally viable and compliant with
egress requirements.

1.4. Outcomes

The research outcomes are poised to advance knowledge in three areas of energy-
driven design practice, offering potential applications in the immediate, short, and medium
term, respectively:
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1. Design Guidelines: This paper identifies patterns of causal relationship between
geometrical forms and energy performance in buildings; it also arrives at a final
ranking of optimal solutions based on total energy use, including passive and active
contributions. The results should provide useful design guidelines in the early phase
of design, at least until automated design methods become more accessible to a wider
range of architects.

2. Optimization Workflow: The design process outlined in this paper can be tailored
to project-specific requirements such as program, context, or climate. Our proposed
workflow offers practitioners a viable method of algorithm-based design, particularly
as processing times are expected to decrease with the advent of parallel or cloud
computing in the near future.

3. Training Dataset: A synthetic dataset encompassing environmental performance data
for over 20,000 buildings can serve as a valuable resource for training neural networks
in the next phase of the project, eventually leading to a new generation of automated
design tools.

Ultimately, this research aims to complement traditional heuristic methods of architec-
tural design with the blind yet powerful creative mechanisms of biological natural selection.
The use of genetic algorithms should help architects moving beyond the energy-intensive
forms of modernism and toward the yet-unexplored, low-carbon forms of solar species
that are needed for reversing the current trajectory of energy use in buildings.

2. Background
2.1. Building Performance Simulation (BPS)

Shape and orientation [16], along with thermal properties and storage capacity of
the envelope [17], play pivotal roles in the energy performance of buildings. Factors
such as shading and fenestration [18], including window type, location, and size [19],
and occupants’ behavior and lifestyle further influence the availability of daylighting,
natural ventilation, direct and indirect solar heat gains, while also affecting heat loss [20].
Latitude and climate introduce additional variability to this intricate balance. Consequently,
these elements collectively impact the demand for artificial lighting and the heating and
cooling loads in buildings. In addition to passive design strategies, the integration of
active systems such as solar thermal and photovoltaic technology to produce hot water
and electricity, sometimes integrated with solar shading to reduce heat gains and to control
glare, can significantly alter the overall energy balance of the building. Due to the intricate
and sometimes conflicting effects of countless design variables on energy performance
objectives, architects increasingly turn to building performance simulation (BPS) tools to
anticipate and assess the energy consequences of various design alternatives [21]. Dynamic
simulation tools for complex thermal modeling and energy behavior, for example, offer a
detailed evaluation of different end-uses, such as heating, cooling, and lighting, and allow
architects to identify areas of potential improvement.

Today, the seamless integration of performance assessment tools throughout the
design process is considered a key factor for improving the energy efficiency and the life
cycle emissions in buildings [22]. While a plethora of building energy simulation engines
exist for design professionals, with TRNSYS and EnergyPlus among the most common
simulators [23], supported by over 200 interfaces and applications for EnergyPlus alone [24],
their utilization remains laborious and demands specialized expertise. Moreover, most tools
operate as “black boxes” with limited user engagement [25] and do not provide actionable
insights on how energy performance relates to specific building geometry, components,
or materials. As a result, BPS tools primarily serve to evaluate and compare a few design
options, often relying on a limited number of variables or simplified indicators in a trial-and-
error process, rather than to pro-actively guide toward optimal design solutions. The use
of energy modeling tools, for example, is often limited to simulating the thermal energy
demand of the building [26]. Alternatively, BPS tools have been utilized for sensitivity
analysis of individual design parameters and components, such as insulation material
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type and thickness [27], or size and orientation of sun-shading devices [28]. Sensitivity
analyses, however, typically optimize parameters in isolation, neglecting the intricate
interplay between variables and the potential energy savings resulting from exploring
these interactions. The complex behavior of buildings, influenced by shape and orientation,
size, angle and location of windows and related shading components, as well as reflectivity
and thermal properties of the envelope, transcends the sum of individual components
considered in isolation [29]. On the other hand, tools that attempt to capture the complex
behavior of interrelated factors such as building geometry, materials, and systems, while
producing reliable and readily available outcomes, can only operate on a single or a limited
number of design options.

2.2. Architectural Design Optimization (ADO)

The complexity and computational cost associated to evaluating myriad variables,
which can result in a vast number of valid design variants, requires the use of optimiza-
tion methods to explore the solution space more efficiently and faster. In architectural
design optimization (ADO), building performance simulation tools like EnergyPlus are cou-
pled with automated optimization routines to assess a broader spectrum of options, often
generated by parametric modelling facilitated by tools like Grasshopper [30] and related
plug-ins. In this approach, the simulation program computes the objective function, while
an optimization algorithm manipulates the design variables iteratively, generating a pool
of alternatives with the aim of identifying optimal solutions that meet all constraints [23].
The purpose of using optimization algorithms is to reduce the number of simulations by
searching for progressively better approximations to a solution. The concept of employing
mathematical models for design optimization dates back to Gupta’s work in 1970, which
focused on enhancing thermal comfort and reducing heating and cooling loads in build-
ings [31]. The field has expanded dramatically since the early 2000s [23], for example with
research by Caldas and Norford [32] on optimizing window location and sizing in office
buildings to minimize lighting, heating, and cooling loads.

Recent advances in optimization theory and increasing the availability of cloud com-
puting make the use of algorithmic optimization a highly promising method in designing
high-performance buildings, with genetic algorithms (GAs) and particle swarm optimiza-
tion emerging as the most utilized in architecture [33]. A GA is a population-based al-
gorithm that emulates the iterative process of biological evolution by selecting the fittest
individuals from each generation to produce subsequent generations, gradually converging
on optimal solutions [34]. The foundation of machine learning rooted in evolutionary
mechanisms, including mutation and recombination, was laid by John Holland in 1975 [35].
In this process, recombination typically generates new individuals from existing genetic
material with high fitness, while mutation extends the search to unexplored regions of the
fitness landscape. A GA proves particularly effective in navigating large and discontinuous
search spaces, where identifying the best solution incurs substantial costs, and near-optimal
solutions suffice. Today, genetic optimization techniques find routine application across
a diverse spectrum of objective functions in architecture [36], including energy consump-
tion [37], thermal and visual comfort [38], economic considerations [39], air quality, carbon
emissions [40], and even aesthetics [41], leading to optimized urban layout [42], building
shapes [43], and energy systems [44], with facades as the most frequent optimization tar-
get [45]. Despite its widespread adoption in design optimization, GA still presents notable
challenges. For instance, it requires evaluating a sizable pool of iterations that may not
yield near-optimal solutions [46]. Further, detailed evaluation of individual solutions can
prove computationally intensive, especially when dealing with simulations employing
ray-tracing methods.

2.3. Parametric Modelling

Parametric modelling of design variants is another area of research witnessing rapid
progress. These variants are typically obtained by iterating geometric parameters such as
height, width, and length of a base volume, using step intervals related to typical floor-
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to-floor distance and structural modules. When dealing with multiple buildings, some
methods may also incorporate considerations like minimum distances between volumes,
setbacks from plot edges, and courtyard widths. The starting volume is often a regular
building with a rectangular footprint: for instance, Giostra, Masera, and Monteiro [47]
explored three base typologies (bar, tower, and courtyard) generating 312 building shapes
for a sensitivity analysis of form and orientation in relation to active and passive solar
potential indicators.

Some studies introduce additional typologies with L-shape, T-shape, H-shape, and
U-shape footprints, using shape parameters [48], such as aspect ratio, window-to-wall
ratio, or area-to-volume ratio [49] to generate design variants. In these and other cases, the
formal and organizational traits of the originating typology guarantee viable models while
also limiting the range of variants explorable by the optimization process to predictable
building forms [50]. Some researchers attempt to mitigate these limitations by introducing
additional parameters, such as varying the angles between walls [51]. Adding geometric
variables, however, significantly increases the pool of potential design variants, prompting
the introduction of further constraints, for example by restricting the footprint of the build-
ing to a four-sided courtyard in the previous study, for a total of only 256 forms. Conversely,
an increasing number of parametric modeling methods and tools can generate higher
topological variability, producing ‘out-of-the-box’ solutions. However, these solutions
often suffer from practical limitations such as structural integrity, horizontal and vertical
accessibility, or compliance with minimum daylight and natural ventilation requirements,
rendering them impractical or unbuildable.

The Grasshopper plugin EvoMass [52], for instance, generates building massing
options through an early-stage, performance-based single objective design optimization
algorithm, employing either subtractive or additive generation principles [53]. This method
emulates manual building massing techniques traditionally utilized in the conceptual
phase of design, such as incorporating building blocks or carving voids into physical
models, thus offering a more intuitive process for architects. A broader range of geometric
variability, however, comes at the cost of limiting the search to a single objective function.
The parametric modeling also overlooks structural continuity and the minimum distance
between volumes, potentially yielding solutions that do not adhere to building codes
or gravitational constraints. Additionally, built-in design rules and constraints, such as
requirements for a minimum lot coverage or a single building volume, may prove arbitrary.

The aggregation of discreet elements, often called voxels, serves as the basis for various
design tools and methodologies. Luca and Sepúlveda [54], for instance, develop a workflow
based on the solar envelope principle [55] to mitigate the impact of new construction on
existing buildings, especially in dense urban areas. Their study subdivides the maximum
allowable building volume into ‘space voxels’, which are then analyzed for their effect on
the solar access of neighboring buildings. The new building form is generated by removing
voxels that obstruct the windows of neighboring facades, while voxels with neutral or
positive effects remain in place.

These voxel-based tools using aggregative or subtractive methods, however, often
overlook the adverse effects of mutual obstruction among voxels, as well as performance
targets related to building interiors, in order to reduce computational costs. Voxel aggre-
gations are also inherently prone to structural discontinuity and a significant increase in
building envelope area, potentially leading to higher heating and cooling loads.

2.4. Multi-Objective Optimization (MOO)

The interrelated and often conflicting effects of design variables on various perfor-
mance targets prompt the adoption of multi-objective optimization (MOO) algorithms,
enabling the consideration of multiple performance targets simultaneously [56]. This ap-
proach proves particularly effective when facing conflicting objectives that must be mini-
mized or maximized concurrently. Large glazing can positively affect daylighting and heat
gains in winter, for example, while also increasing the risk of glare and cooling loads in
summer. MOO generates a set of solutions displayed in an n-dimensional space, depending
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on the number of objectives, with optimal outcomes approximating trade-off curves known
as Pareto fronts, for which an objective cannot be improved without compromising others.
While early optimization efforts were primarily focused on single objectives, an increasing
number of building optimization studies now address two or more objectives [56], with
over 40% of papers included in a recent review employing MOO [45].

Numerous studies explore multi-objective optimization with the use of GA. For in-
stance, Gagne and Andersen [57] investigate optimal facade configurations for improved
illuminance and glare during the early design phase, while Carlucci et al. [58] focused
on multi-objective optimization towards nearly zero-energy buildings, and Jafari and
Valentin [59] on the selection of objective functions in energy retrofits. More recently,
Ascione et al. [60] introduced Harlequin, a comprehensive framework for the MOO of
building energy design, while Gou et al. [61] examined multi-family apartment buildings in
China. Today, MOO methods prove best suited to address the escalating demands of energy
regulations and certification schemes such as LEED [62], requiring the concurrent evalua-
tion of up to 100 design objectives. Yet, despite the potential of multi-objective, performance-
driven building optimization, its integration into architectural practice remains limited [63].
Various authors cite barriers including time-consuming computations [64], particularly
with high-dimensional optimization problems [46], and the challenges optimization al-
gorithms face in handling uncertainties [56]. MOO requires specialized knowledge in
properly defining the design problem, selecting, and running the software, and integrating
optimization tools with simulation engines.

Among practitioners using visual programming platforms for optimizing the building
geometry based on energy indicators, a majority identify speed of convergence, formulating
the optimization problem, and understanding the results as primary challenges in a survey
of 186 users [65]. These findings align with earlier observations by Nault et al. [50] while
conducting a workshop on their “UrbanSOLVE” optimization tool. As a result, there are
few, if any, tools that enable designers to compare and rank a meaningful number of design
variants based on multiple performance targets, with speed and usability required by a
typical building design process [66].

2.5. Early Design Phase

The challenges in usability are particularly critical in the early design phase, when
the substantial computational time required to assess numerous design variables clashes
with the need for rapid exploration of ideas at the conceptual stage [67]. In fact, recent
surveys [68] indicate that only a small fraction of the 400 building simulation tools listed
by the U.S. Department of Energy are tailored for early design deployment.

Yet, the potential for energy savings during the concept design stage is extensively
documented in the literature [33]. For instance, studies by Baker and Steemers [69] demon-
strate that early design considerations could lead to variations in energy demand by a
factor of 2.5, while optimizing building shape and orientation could reduce energy demand
by up to 40% at comparable costs [70]. Conversely, adverse decisions made in the early
design phase can have a disproportionate impact on final performance [13], effectively
setting a ceiling on the active and passive solar potential of subsequent design choices.
Factors such as shape and orientation, for example, significantly influence daylighting,
solar radiation intake, and the potential for energy generation using photovoltaic and solar
thermal systems [71]. Moreover, early decisions can severely constrain the design space,
making it more challenging or expensive to achieve energy targets later in the process.
Hence, the current study focuses on building massing as the phase of design with the most
significant impact on building energy use—an arena ripe with “low hanging fruit” for
optimization efforts in architecture.

3. Methodology
3.1. Overview: Objectives, Indicators, Design Variables

The research presented here aims to uncover optimal forms and layouts for a res-
idential building cluster with a floor-area ratio (FAR) of 3 in a temperate climate, us-
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ing a simulation-based, multi-objective algorithmic optimization method. In a previous
study [47], design variants were manually generated from three base typologies—bar, tower,
and courtyard—yielding regular shapes with a four-sided footprint. The present study
expands the exploration to encompass a significantly larger pool of over 20,000 design
variants. This broader scope includes buildings with irregular footprints, with the goal of
discovering unconventional new solar species.

The method employed endeavors to enable the exploration of a wide design space,
while overcoming several limitations associated to parametric modelling and multi-objective
optimization (MOO), as highlighted in the previous section:

• Objectives: We adopt a balanced approach to multi-objective optimization by iden-
tifying two goal functions that well reflect the two primary strategies outlined by
European energy legislation [72]: reducing the use of energy in buildings, while also
increasing onsite energy generation potential. Focusing on just two performance
targets enables us to visualize results on a two-dimensional graph, facilitating easy
interpretation and visual exploration of emerging patterns and Pareto front solutions
that optimize the objective functions simultaneously.

• Indicators: This study employs computationally friendly indicators as objective func-
tions to streamline the optimization process. In temperate climates, and specifically
for residential buildings, the effects of abundant annual radiation on the envelope
(kWh/m2) are generally positive for energy balance, as solar heating, daylighting, and
renewable energy production are known to largely outweigh potential glare risk and
overheating in the warm season. Compactness (S/V ratio) provides a second reliable
yet easy-to-compute indicator as a proxy for detrimental heat gains and losses through
the envelope.

• Design variables: The optimization process is based on geometric variables related
to building massing, rather than considering factors such as fenestration layout or
materials. This approach reflects a well-established sequence in design practice [73]
and acknowledges a hierarchical relationship among decision variables [74]. Addi-
tionally, we employ a parametric modelling strategy, based on a number of cores and
corridors, that generates only viable design variants, meeting structural and egress
requirements. The research explores a “middle ground” of formal complexity, bridging
the gap between the rectangular four-sided prisms that are typically mandated by
urban planning regulations and the deeply articulated, voxelated, sculpted volumes
of much contemporary architecture.

3.2. Workflow

The method presented here combines two alternative strategies traditionally employed
in the performance evaluation of design variants—namely, a larger sample size versus
higher simulation accuracy—into a two-step process.

Stage 1—Optimization process and correlation studies:

1. Stage 1 employs easy-to-compute indicators to explore a large pool of over 20,000 iterations,
grouped in 20 sub-domains based on the number of vertical cores and horizontal connections.
Design variants are generated by parametric modelling and optimized using a GA to reduce
computing time, while also increasing the number of individuals and generations.

2. The results for each sub-domain are plotted on a two-dimensional graph for prelimi-
nary evaluation of emerging trends and correlations between geometric variables and
energy indicators. Pareto front solutions are also documented through tri-dimensional
illustrations and planimetric views of radiation and daylighting analysis, providing
further insights into the optimization outcomes.

Stage 2—Detailed analysis and final ranking of Pareto front solutions:

3. Stage 2 evaluates 151 selected Pareto front solutions resulting from Stage 1, using
full-climate analyses that are more accurate, but computationally expensive. Detailed
graphs identify individual contributions for energy use (lighting, heating, cooling,
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DHW) and energy production (from photovoltaic and solar thermal systems) for each
variant, on both monthly and yearly bases.

4. The results are plotted on a bar graph based on total energy use, including positive
and negative contributions, to determine a final ranking of the best performing solar
species. Additionally, all 151 Pareto front cases are plotted on a graph illustrating
energy demand versus energy production potential, also in relation to the Nearly
Zero Energy Building (nZEB) target.

A scheme of the workflow is presented in Figure 1:

Figure 1. Scheme of the workflow.

3.3. Design Constants

The research primarily focuses on the formal and spatial attributes of buildings,
distinct from materials, components, or systems. Consequently, all variables unrelated to
building and urban form—such as the insulation values of walls and windows, climatic
conditions, and heating and cooling systems—are held constant.

The simulated cases are situated within New York City, characterized by its mixed-
humid climate classified as “Cfa” (cool and wet winters and hot and humid summers)
according to the Köppen–Geiger climate classification system. The weather data are
from ‘La Guardia’ station (New.York-LaGuardia.AP.725030: 40.779, −73.88) with Dry Bulb
Temperature ranging between −10 and 35 ◦C, indicating a heating-dominated climate.

A building density of FAR 3 (floor-area ratio) is consistently applied across all design
variants, aligning with the average density observed in urban residential areas of New
York City. This value is also informed by previous studies, such as those by March and
Trace [75], which identify a maximum FAR of 4 to ensure unobstructed daylighting pene-
tration, and a minimum of approximately FAR 1.5 to maintain heat energy demand below
100 kWh/m2y [76]. Moreover, compact urban forms resulting from a relatively high FAR
offer additional ecological benefits, including reduced urbanized land use, transportation
needs, and associated fuel consumption [77]. The building is simulated on a 100 × 100 m
plot, surrounded by eight blocks separated by a 20 m wide street, with the same shape
as the design iteration under evaluation. This arrangement is designed to account for the
shading effect of the surrounding context (Figure 2).
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Figure 2. 100 × 100 m plot (left) and simulation setup (right).

3.4. Simulation Settings

Building performance analyses have been modeled using the climatic conditions of
New York, defined by ASHRAE as Climate Zone 4A [78] and were conducted with Climate
Studio, an environmental analysis plugin for Grasshopper [79].

Radiation and daylighting analyses are based on a progressive path-tracing version of the
Radiance raytracer to calculate annual direct and indirect irradiation levels. The simulation
uses sun and sky radiances from the local weather data file for New York City. The daylighting
analysis grid was set at the work plane height of 0.76 m with a spacing of 1 m [80]. The grid
spacing was chosen to strike a balance between simulation accuracy and computational
efficiency, thereby optimizing simulation time. Building elements like ceiling, floor, and walls
were segregated to assign relevant reflectance values. The glazing ratio was set at 0.3, a typical
value for residential buildings, while thermal characteristics adhere to Energy Modelling
Standards, based on recommendations outlined in ASHRAE 90.1-2004 [81] and tailored to
climate zone, building program (residential), and surface type.

Energy demand simulations were conducted using EnergyPlus, with parameters
modeled in accordance with the adaptive comfort normative (ISO 17772:2017) [82], utilizing
a setpoint temperature of 20 ◦C for heating and 26 ◦C for cooling. The occupancy schedule
reflects typical active usage period, and a separate artificial lighting schedule was deployed
with a target illuminance level of 400 Lux throughout the regular occupied hours of 7:00 a.m.
to 11:00 p.m. Energy-efficient LED fixtures (lighting power density of 7.5 W/m2) with a
dynamic dimming control have been used to ensure that the lighting load adapts to the
natural light entering the occupied spaces. Material properties were defined according to
a standard concrete construction assembly, with a U value of 0.2 W/m2K for the external
roofs and walls. The double-glazed windows have a solar heat gain coefficient of 0.33,
visual light transmittance of 0.58, and a U-value of 1.44 W/m2K.

Electricity requirements for heating and cooling are calculated by approximating the
behavior of a realistic HVAC system with high-efficiency characteristics, defined as a heat
pump operating for heating and cooling with a coefficient of performance COP = 3.

Domestic hot water demand is calculated based on the annual consumption for activi-
ties such as showering, hand washing, and laundry for the occupancy of one person every
30 m2 and 48 L/person/day, following the method from Yao and Steemers [83]. It should
be noted that solar thermal (ST) collectors are exclusively allocated to fulfil the demand
for domestic hot water (DHW), thereby diminishing the required purchased energy for
its production. Any DHW demand not met by solar thermal collectors is addressed by
a heat pump, with the energy consumption converted into electricity using a value of
COPDHW = 2.4, based on a high-performing product available on the market at the time
of the research.
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3.5. Parametric Form Generation

Our study takes an innovative approach to parametric form generation by acknowledging
a fundamental requirement for means of egress in residential buildings, mandated by virtually
every legislative framework worldwide, including The International Building Code [84] and
the EN Eurocodes. This requirement entails vertical continuity of emergency stairs and limits
the travel distance for the safe evacuation of building occupants. While structural necessities
may still allow for inefficient or extravagant solutions—as much contemporary architecture
clearly shows—safety requirements can be hardly evaded. Incidentally, these requirements
often introduce a degree of rationality to both structure and internal layout, since egress
stairs and elevator shafts, placed at regular intervals, usually double as load-bearing cores.
Similarly, horizontal egress circulation confines residential units to three primary layouts:
single- or double-loaded corridor and point load distribution (where stair cores reach every
unit), with rare exceptions like a “skip-stop” solution found in some buildings with duplex
apartments. Accordingly, our parametric modelling approach utilizes vertical cores and
horizontal corridors as the base components to generate the layout of the floorplan and,
consequently, the overall shape of the building (Figure 3).

Figure 3. Parametric Modelling Steps.

The project site is subdivided into a 4 × 4 m grid (step 1), with each cell approximately
the size of a typical vertical core in a mid-rise apartment building, for a total of 625 cells
where a variable number of vertical cores can potentially be located by the algorithm
(step 2) at a distance ranging between 20 m and 60 m. These cores are connected by a
variable number of lines (step 3), which are then transformed into orthogonal corridors
corresponding to the underlying grid (step 4), following a shortest-path logic. Residential
units are subsequently added on each side of the corridors (double-loaded corridor) and
around cores, with a depth of either one or two modules, resulting in a total floor depth
of either 12 m or 20 m (step 5). Finally, the floor layout is extruded vertically to meet the
maximum allowable built area of FAR 3, with all floors set at a height of 4 m (step 6).

Additional constraints have been imposed to narrow down the pool of variants to
solutions with a better prospect of meeting the chosen objectives, ultimately reducing
computational costs. The single-loaded corridor was excluded, as it is an inherently
less compact circulation model compared to a double-loaded corridor; similarly, dead-
end corridors were also excluded. Following the “passive zone” concept by Baker and
Steemers [69], the depth of residential units is limited to two modules for a total of 8 m,
or approximately twice the floor-to-ceiling height, so as to ensure sufficient daylighting
over the entire floor area. For courtyard buildings, the study also sets a minimum distance
between external walls to exclude solutions with a high probability of failing daylighting
requirements. Volumetric continuity is guaranteed in all cases by extruding the building
footprints to prevent excessive heat transfer and overshading associated with setbacks and
cantilevers. Rather than generating extravagant yet unfeasible forms as seen in existing
parametric design tools, the presented method ultimately produces a comprehensive set of
design variants that would likely meet safety approval in most countries. The approach
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retains all the advantages of using base typologies, such as structure and circulation
coherence, without the drawbacks, such as precluding irregular layouts or unusual shapes.

3.6. Stage 1: Optimization Process and Correlation Studies
3.6.1. Performance Assessment

Stage 1 uses solar radiation intake as a reliable indicator for active energy potential
and a key objective function for the optimization process:

• Total radiation (TR-400) is calculated as the total annual radiation falling over the
envelope, both vertical and horizontal, on surfaces receiving annual mean radiation
greater than 400 kWh/m2. The metric is a well-established indicator for potential
energy production by active solar systems (PVs).

At the same time, larger solar potential may result from arbitrarily increasing the
envelope area of the building, at the expense of increasing total heat transfer and the related
heating and cooling loads needed to maintain indoor comfort. Consequently, the study
adopts building envelope area as an easy-to-compute geometric indicator of adverse heat
gains and losses, serving as a second objective in the optimization process:

• Compactness (S/V ratio) is calculated as the ratio between envelope surface area and
volume of the building; the metric is used as a proxy for heating and cooling energy
demand, which tends to increase when a larger external envelope is used to enclose a
given amount of volume.

Daylight factor (DF) is an easy-to-compute indicator for assessing visual comfort and
the associated demand for electric lighting. A criterion of DF > 2% for the ground floor is
utilized as a filtering measure, ensuring that only solutions meeting this threshold are con-
sidered. This requirement aligns with regulations and labels concerning energy efficiency,
including those outlined in Italian legislation pertaining to Directive 2009/28/EC [85].

• Daylight Factor (%) is defined as the ratio between indoor illuminance at a point in
the building and the outdoor horizontal illuminance under a CIE overcast sky.

3.6.2. Optimization Process

The optimization process by GAs employs the two main indicators (TR-400 and
S/V ratio) as targets, through an iterative process based on the breeding of a ‘successful’
parent to converge towards improved solutions. In this case, the genetic code is the
location of vertical cores from parent solutions. This process is facilitated by Octopus [86],
a Grasshopper-based optimization tool utilizing the multi-objective evolutionary algorithm
SPEA-2. Octopus generates trade-off solutions based on Pareto dominance [87], enabling
the simultaneous optimization of all objectives. The two targets are diverging, given
that active solar potential is inversely correlated with the envelope area. Consequently,
the optimization process aims to identify trade-off solutions with minimal surface area
intercepting maximum solar radiation.

Parametric modelling facilitates exhaustive exploration of the entire design space
defined by the variables, while the selected geometry- and radiation-based indicators
allow for swift computation (approximately 30 s per simulation) compared to full-climate
simulations, resulting in the rapid sampling of over 20,000 design variants. The design space
is divided into 20 sub-domains, each featuring a distinct number of cores and corridors,
in part to alleviate the computational cost of the search, but also to analyze each group
separately, so as to identify emerging patterns specific to each building sub-domain.

3.6.3. Evaluation of Results

Approximately 1000 viable solutions for each sub-domain are plotted on a matrix to
facilitate the assessment of trends and correlations between energy indicators and geometric
variables (Figure 4). Horizontal transects (e.g., line A in the figure) are extracted from the
scatterplot to observe the evolution of building forms with identical S/V ratios, adapting
to maximize solar availability. Additionally, detailed radiation and daylighting maps of up
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to eight Pareto front solutions are presented using three-dimensional models in isometric
view to showcase distribution patterns across each building cluster. The challenge lies
in identifying qualitative formal traits that may not align with established typologies
or morphology parameters. This study identifies specific geometric features, such as
orientation, form factor, distance between buildings, and footprint articulation, which are
most often associated with optimal solutions. These insights serve as tentative guidelines
in the early-phase design of active energy buildings.

Figure 4. Example of first-stage output for sub-domain 4.2 (four vertical cores and two corridors).

3.7. Stage 2: Detailed Analysis and Final Ranking
3.7.1. Performance Assessment

Stage 2 evaluates and compares 151 Pareto front solutions resulting from Stage 1, using
full-climate analysis to arrive to Annual Energy Production and Annual Energy Demand
(Figure 5), defined as follows:

• Annual Energy Production (kWh/m2) is determined by estimating the energy pro-
duced by photovoltaic (PV) panels and solar thermal (ST) collectors, using efficiency
values of 0.2 and 0.7, respectively. These panels and collectors are mounted parallel
to the surface of façades (vertical) and roofs (horizontal), based on the envelope area
receiving an irradiation level from 300 to 400 kWh/m2 for ST collectors and over
400 kWh/m2 for PV panels. Among the eligible regions for PV, a coverage factor of
50% for roof and 80% for the opaque facade surfaces was applied.

• Annual Energy Demand (kWh/m2) includes heating and cooling, appliances (4 W/m2),
domestic hot water (DHW), and artificial lighting based on case-specific daylighting
conditions, calculated on an hourly basis. It was assumed that all these services
would use electricity as a source, which would make the relative figures comparable.
The energy for operating elevators was not included in the calculation.
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Figure 5. Example of second-stage output for sub-domain 3.1 (three vertical cores and one corridor).
Cases 1 to 8 are Pareto front solutions, case A achieved highest mean daylight factor while case B
received highest mean annual radiation during stage 1 evaluations.

3.7.2. Final Ranking

Finally, all Pareto front solutions are ranked on a bar graph based on Final Electricity
Demand, including positive and negative contributions:

Final Electricity Demand (kWh) includes the electricity demand for heating and
cooling, electric lighting and appliances, plus any electricity required to produce DHW
not covered by ST collectors, minus the electricity produced by PV panels. It quantifies
the energy purchased from the grid after accounting for the offset provided by onsite
renewables. In addition to the comprehensive annual balance, a monthly balance analysis
was also conducted. This analysis accounts for surplus electricity generated in one month
separately from the demand in another month.
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4. Findings
4.1. Stage 1: Optimization Process and Correlation Studies

In the initial stage, over 20,000 cases evaluated by the optimization algorithm are
plotted on a graph (Figure 6) and assessed for their causal relationship between geomet-
ric variables and energy indicators. The scatterplot displays a well-established linear
correlation between the two chosen indicators, as documented in the existing literature.

Figure 6. Stage 1 results from all sub-domains, with sample cases highlighted on the right.

It indicates that more compact buildings are typically linked to lower heating and
cooling loads, but also associated to reduced radiation availability. Conversely, less compact
buildings, generally taller and with a shallower footprint, may result in increased energy
demand, but also display greater solar energy potential. This supposed equivalence in
energy balance among Pareto front solutions with very different compactness (S/V ratio)
is resolved through full-climate simulations conducted in the subsequent research phase.
At the same time, the scatterplot underscores a significant degree of variability—up to a
factor 1.8—in the amount of solar radiation falling on the envelope among solutions with
an equivalent S/V ratio, as illustrated by the funnel shape of the plot. This means that
solutions with comparable heat transfer and associated thermal loads can present very
different levels of radiation exposure and potential energy production. The range in solar
potential that cannot be fully captured by a single geometric indicator, hinges on precisely
the kind of formal features that the paper attempts to uncover.

In this sense, horizontal transects extracted from scatterplots for each building sub-
domain provide valuable insights into the sequence of optimization steps taken by the
GA, as related to variables such as distance between buildings, their aspect ratio, and
orientation. In a way, transects offer a sectional view of the black-box evolutionary process,
where each step of the sequence (left to right in Figures 7–15) unveils a gradual increase in
solar radiation intake. As noted earlier, these transects intercept solutions with a constant
S/V ratio, so that building geometry and layout are the only variables at play and formal
traits associated with higher solar potential can emerge. Selected transects, illustrating clear
optimization patterns resulting in higher active energy potential, are showcased below,
arranged by the number of corridors connecting vertical cores.
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Figure 7. Transects for sub-domains 2.0, 3.0, and 4.0.

Figure 8. Transects for sub-domains 5.0.
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Figure 9. Transects for sub-domains 2.1, 3.1, 4.1, and 5.1.

Figure 10. Transect for sub-domain 3.2.
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Figure 11. Transects for sub-domains 4.2 and 5.2.

Figure 12. Transect for sub-domain 3.3.

Figure 13. Transect for sub-domain 5.3.

Figure 14. Transect 4.4.
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Figure 15. Transect 5.4.

4.1.1. Zero Corridors

One to four cores (Figure 7): Cases with no corridors and a variable number of cores
result in clusters of skyscrapers exceeding 50 stories in height. Optimized layouts with
one to four towers maintain a regular arrangement, with each tower occupying a corner of
the plot. Three towers positioned diagonally (e.g., case #547 from Transect 4.0) emerge as
an additional optimal layout in some cases. The optimization sequence shows a clear trend:
towers positioned farthest from each other experience reduced overshadowing, thereby
maximizing solar intake. For the same reason, setbacks from the plot’s edge ensure that the
closest distance between towers within the plot equals the closest distance between towers
on adjacent plots.

Five cores (Figure 8): Five towers on the plot reveal a different pattern from cases with
fewer towers, with no preferred configuration or evident trend. Optimization sequence
shows that towers move away from each other, but do not settle into any stable arrangement,
aside from a vaguely circular layout. Notably, four cores per hectare mark a clear threshold
between grid-like alignment and more dynamic configurations.

4.1.2. One Corridor

One to five cores (Figure 9): Various combinations of one slab and up to three towers
show similar trends as observed in groups of towers: buildings separate from each other
and settle along the perimeter, with slabs invariably oriented along the north–south axis.

4.1.3. Two Corridors

Three cores (Figure 10): Two corridors produce volumes with a pronounced horizontal
development that highlight a remarkable trend: out of approximately 1000 configurations
with intricate footprints, Pareto front solutions consistently manifest as straight bars ori-
ented in a north–south direction. This observation suggests that the linear volumes often
favored by modernist architects would prove beneficial from an energy standpoint as well,
but only if integrated by active energy systems, a technology that did not exist at the time.

Four to five cores (Figure 11): Additional elevators result in clusters with one to two tow-
ers competing with the slab for solar exposure. As already observed in cases involving
multiple towers, optimal configurations for these clusters exhibit similar traits: buildings
occupy the edges of the plot, with straight slabs oriented in a north–south direction.

4.1.4. Three Corridors

Three cores (Figure 12): The optimization process for compact courtyards is driven by
at least two competing pressures: the first sets back the boundary of the building from the
plot perimeter to mitigate overshadowing from neighboring structures. Conversely, the
second one tends to widen the interior courtyard to increase solar exposure on the internal
facades. The result is a courtyard elongated along the north–south axis.

Five cores (Figure 13): In line with configurations with five towers, this sub-domain
produces flexible layouts with two L- or U-shaped bar buildings facing each other, posi-
tioned at the maximum distance allowed by the lot. These solutions are all comparable
in terms of solar radiation intake, while offering a diverse range of configurations at the
ground level that holds promise in characterizing open spaces within the plot.
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4.1.5. Four Corridors

Four cores (Figure 14): Transect 4.4 reaffirms a prevailing trend toward regular-shaped
courtyard buildings, while also introducing a potentially novel hybrid species: courtyards
featuring a wing extension towards south.

Five cores (Figure 15): Transect 5.4 explores a wide range of irregular low-rise building
configurations, but invariably produces Pareto front solutions that are wide courtyards
open to the south. Once again, the recurrent trend toward regular footprints with minimal
articulation is in full display.

4.2. Stage 2: Detailed Analysis and Final Ranking

In Stage 2, 151 Pareto front solutions obtained from Stage 1 are evaluated and com-
pared, using full-climate analysis to establish a ranking based on net electricity demand
(Figure 16), including positive and negative contributions to the energy balance. Vertical
development characterized by any number of cores and fewer corridors notably produces
a substantial majority of the top-performing cases. Conversely, horizontal development,
resulting from two or more corridors, consistently exhibits lower performances. The first
35 cases in the ranking have one or no corridors, while the first building with more than
two corridors (54.1), a courtyard open toward the south, appears in position 68; spanning
just six floors, this is also the highest-ranking mid-rise building. A parallel trend emerges
with slenderness: slim volumes with a single 4 m module on each side of the corridor (12 m
total thickness) consistently outperform buildings with a deeper footprint. While a few
thicker towers appear in well-performing configurations, the first slab building with an
8 m module on each side (20 m total thickness) ranks at position 62 (41.6).

Three broad groups of buildings emerge from the final ranking, identified by a color
gradient band, underscoring the significance of vertical development and slenderness in
optimizing urban form:

• Group 1—Skyscrapers (over 40 stories): A first subset of approximately 20 clusters,
including one to four exceptionally tall and slender buildings, mostly without corri-
dors, contributes the bulk of positive and nearly zero energy solutions. Final electricity
demand: below 0 kWh/m2/year.

• Group 2—High-rises (15 to 40 stories): The subsequent section comprises approxi-
mately 60 clusters with three to five towers and slabs arranged in diverse configura-
tions, with a gradually deeper footprint and only one or two corridors. Final electricity
demand: between 0 and 10 kWh/m2/year.

• Group 3—Mid-rises (6 to 15 stories): The final group encompasses roughly 70 clusters
of distinctly lower buildings showcasing accentuated horizontal development and
three to six corridors each. Final electricity demand: between 10 and 35 kWh/m2/year.

These findings confirm the validity of the chosen indicators from phase 1, while
also highlighting the outsized role that radiation intake plays in determining the overall
outcome, as vividly illustrated by comparing positive and negative energy contributions
for each optimized solution (Figure 17).
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Figure 16. Final ranking of 151 Pareto front solutions based on final electricity demand.
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Figure 17. Positive and negative energy contributions for each optimized solution. The vertical axis
represents the total annual electricity demand, while the horizontal axis represents the total annual
electricity production from PV panels.

The 45◦ slope indicates cases for which, over the course of a year, electricity generated
from PV panels matches the demand. Cases falling to the right of this line indicate instances
where electricity production exceeds demand. It is intriguing to note that while the annual
electricity demand fluctuates within a relatively narrow range across these cases, spanning
from 57 to 75 kWh/m2/year, the range of active solar potential significantly widens,
ranging from 37 to 110 kWh/m2/year, once the annual electricity production is accurately
calculated. It can be inferred that the impact of building shape on annual electricity demand
diminishes once artificial lighting is factored in the energy balance. Buildings that are less
compact use less artificial lighting, mitigating the effects of higher heating and cooling
loads typically associated to greater envelope area, while still producing a larger amount of
electricity. What initially appeared as a conflict between competing objectives—low energy
use versus high onsite energy fraction—requiring trade-off solutions, turns into a clear
dominance of active solar potential in Phase 2.

5. Discussion

At the conclusion of Phase 1, the optimization outcomes reveal consistent trends across
a diverse range of typologies toward regular shapes with minimal footprint articulation,
maximum distance between buildings, a prevalent orientation along the north–south axis,
and an open front facing towards the south. These discernible traits offer architects and
urban planners a tentative set of guidelines for designing active energy buildings in the
early stages of the design process (Figure 18). The results show the importance of reducing
overshading caused by articulated footprints and tightly packed buildings that exacerbate
heating and cooling demand, with only a marginal improvement in useful daylighting or
radiation on the envelope.
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Figure 18. Set of guidelines for designing active energy buildings in the early stages of the design process.

Furthermore, the study suggests that vertical cores and horizontal connections may
offer a novel and effective approach to characterize urban morphology in relation to onsite
energy fraction and nZEB potential. Taller buildings with fewer corridors consistently
outperform lower horizontal buildings, offering higher on-site energy potential without
increasing energy demand. If we were to extrapolate these outcomes as planning guidelines,
for example, configurations with up to four vertical cores (without horizontal connections)
per hectare would yield a regular grid of very tall towers with significant solar potential
and a positive energy balance. Conversely, the addition of one more core would lead to a
markedly different outcome, resulting in an irregular layout and increased energy demand.

The research shows that these guidelines facilitate an increase in active solar potential
and subsequent energy production, without increasing envelope area, thereby maintaining
energy demand at a relatively constant level. While the current focus of the research centers
on operational energy, it is evident that minimizing envelope area would yield higher
embodied energy and carbon emissions as well.

At the same time, the shapes optimized by these routines in Phase 1 yield a broad
range of energy performance outcomes by the conclusion of Phase 2. Once all energy
inputs are calculated, including heating and cooling, artificial lighting, equipment, and
domestic hot water, a clear hierarchy emerges among sub-domains. These results indicate
that each sub-domain correlates with a specific range of solar potential, suggesting that the
number of vertical and horizontal connections could serve as an effective new metric for
characterizing urban form in terms of energy potential.

The “genetic code” of cores and corridors, subjected to environmental pressures aimed
at maximizing solar exposure while minimizing energy consumption, generates veritable
solar species with recognizable traits, in terms of number and orientation, shape, and layout
of buildings on the plot (Figure 19). Crucially, these species exhibit a unique ‘metabolic’ rate
of energy use resulting from their specific formal traits. Collectively, these findings suggest
the descriptive and predictive power of solar species as a promising heuristic model for
characterizing urban form in relation to both passive and active solar potential.
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Figure 19. Taxonomy of Urban Solar Species.

6. Conclusions

The results of this research show that active solar potential should be a first-order priority
in the design of energy-efficient buildings, particularly when solely operational energy is
taken into account, as the variation in the potential for electricity generation is approximately
three times as large as any concurrent variation in energy demand, due to shape alone. Rapid
progress in BIPV and HVAC technology, as well as the use of additional methods of on-site
energy harvesting not considered in this study, would of course result in different outcomes.
Consequently, a larger number of massing configurations may result in scenarios where the
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onsite energy production matches or even surpasses the annual energy requirement. It should
be noted that these results were obtained under the assumption of a well-insulated envelope.
Future research should explore the implications of incorporating embodied energy and carbon
emissions related to building structure and envelope into the calculations.

The nearly-zero energy urban model that emerges from these analyses points to a
predominantly vertical city, reminiscent of the recent proliferation of super-tall buildings
in metropolitan centers worldwide. Moreover, this research offers a range of low-energy
formal solutions for groups of more conventional high rises and for mid-rises with an
articulated footprint. These solutions can be tailored to support pedestrian traffic, ac-
commodate a mixed-use ground floor, meet building height restrictions, and maintain
street-wall continuity.

Perhaps the most notable revelation of the study, however, is that given the opportunity
to manifest in any of 20,000 different configurations, virtually all the best-performing
buildings are utterly regular and somewhat aligned with conventional wisdom. In fact,
these high-performing champions bear a striking resemblance to ordinary buildings found
in our cities.

This circumstance suggests that today’s architects and city planners may not be too far
removed from realizing a sustainable future in construction—and that common sense could
ultimately prevail in addressing our energy crisis. Interestingly, the results also testify to
the ability of a purely automated process to produce outcomes that closely mimic human
design logic. However, this apparent simplicity and familiarity of solar species can be
deceptive. While their traits may seem reassuringly familiar, they adhere to a set of subtle
rules that can be easily overlooked. It is the rigorous application of these elementary yet
specific guidelines that ultimately determines their success.

Another lesson is abundantly clear—and not as subtle: much extravagant architecture
today appears to suggest that geometric complexity may be the key to efficient buildings.
This study concludes that extreme sobriety of form can also lead to significant energy
efficiency gains.

On the other hand, the broad formal diversity observed among optimized solutions
with comparable energy performance also challenges a common misconception that auto-
mated design methods are overly deterministic and tend to produce too narrow a range of
solutions. Just as nature offers millions of different organic species as solutions to the same
problem of survival and reproduction, the genetic algorithm-based search presented in
this study yields hundreds of formal solutions with comparable performance to the same
challenge of achieving energy efficiency. Within this range of optimal shapes, other key
parameters such as program, spatial quality, or aesthetic preference of architect and client
should naturally play a central role in determining the final outcome.

Architectural design has often been perceived as a process of trade-offs, where im-
provements in one aspect—such as natural daylight or ventilation by increasing envelop
area—can only be achieved at the expense of others, like detrimental heat transfers or glare
risk. Indeed, conflicting objectives serve as the primary mechanism for generating variation
in design, akin to the range of competing demands driving natural selection and evolution
in organisms. As a result, multi-objective optimization is likely to remain a fundamental
strategy in the design of buildings. On the other hand, the utilization of automated design
methods, soon to include the deployment of neural networks, will continue to address
these conflicting targets, streamlining the search for enhanced building forms. As part
of this quest, the present study resolves a trade-off between active and passive energy
potential in favor of solutions that excel in achieving both targets, at least until technology
innovation will bring new parameters to bear on the form of buildings, thereby expanding,
once again, the search for optimal solar species.
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