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Abstract

We propose an L2-based penalization algorithm for functional linear
regression models, where the coefficient function is shrunk towards a data-
driven shape template γ, which is constrained to belong to a class of
piecewise functions by restricting its basis expansion. In particular, we
focus on the case where γ can be expressed as a sum of q rectangles that
are adaptively positioned with respect to the regression error. As the
problem of finding the optimal knot placement of a piecewise function is
nonconvex, the proposed parametrization allows to reduce the number of
variables in the global optimization scheme, resulting in a fitting algorithm
that alternates between approximating a suitable template and solving a
convex ridge-like problem. The predictive power and interpretability of
our method is shown on multiple simulations and two real world case
studies.

1 Introduction

As the the dimensionality of data sets kept increasing in the last decades, it
is no surprise that variable selection in linear models is still a major topic of
discussion between statistical and machine learning researchers. The main ob-
jective of these methods is to reduce prediction error by decreasing the variance
of the predictions, at the expense of an increase in bias, while at the same time
allowing for an interpretable model by discarding and/or shrinking the least rel-
evant variables. Arguably the most intuitive approach is best subset selection,
where between the p variables, we retain only the subset of size k < p that
minimizes the error. Despite that, the combinatorial nature of these techniques
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is prone to higher variability and computational cost if compared to the shrink-
age approach (Hastie et al., 2009), which is usually based on a penalized least
squares formulation. The fact that ridge regression (Hoerl and Kennard, 1970)
uniformly shrinks all the regression coefficients often leads to nonsparse solu-
tions that do not have a clear interpretation, even when the prediction error is
low. By penalizing the `1 norm of the coefficients’ vector, the lasso (Tibshirani,
1996) can be seen as a convex relaxation of best subset selection, and is able
to produce sparse models often without sacrificing the predictive performance.
There is a vast literature that encompasses multiple aspects of these types of
methods, including nonconvex penalties like the SCAD (Fan and Li, 2001) and
MCP (Zhao et al., 2010), refer to Hastie et al. (2015) for an extensive view on
sparsity in multivariate linear models.

In the context of functional data analysis (FDA) (Ramsay and Silverman,
2005; Ferraty and Vieu, 2006), the concept of sparsity has multiple connotations
(James, 2011) and here we will refer to the sparsity of the regression function β,
which selects the subsets of the domain where the predictors have no effect on
the response. From the theoretical point of view, the scalar on function linear
model is ill-posed and there is the need to introduce some form of regularization
as an identifiability constraint. The the two main approaches involve either
restricting the number of basis functions for the expansion of β, like in the case
of designer bases and functional principal components (Cai and Hall, 2006), or
fixing a rich enough basis while applying a suitable penalization on β, usually
an L2 penalty on its m-th derivative to impose smoothness (Cardot et al., 2003,
2007; Crambes et al., 2009; Yuan and Cai, 2010) as well as sparsity inducing ones
like the group SCAD (Matsui and Konishi, 2011). Hybrid approaches have also
been proposed, where the number of basis functions is adaptively chosen while
an additional penalty is included (Marx and Eilers, 1999; Lee and Park, 2012),
or sparsity is imposed on the m-th derivatives of β (James et al., 2009). In this
work we will adopt the penalization approach and in particular we express β as
a finite expansion on a simple grid basis with p dense and equispaced knots on
the input data:

β(t) =

p∑
j=1

βjbj(t) bj(t) =

{
1 if j−1

p < t ≤ j
p

0 otherwise

which is a common choice that allows to use any multivariate method to
compute the coefficients βj of the expansion and consequently recover β. While
at glance this may seem a very constrained setting, as the functional covariates
could have been sampled on different grids with noise and missing values, a
standard practice is to estimate the true functions individually by means of
interpolation or smoothing, which are then evaluated on the same dense and
equispaced grid to obtain the actual discrete data set. This estimation process is
adequate when the raw data has been collected with high resolution techniques,
as in chemometrics, environmental or electrical engineering applications. If
however the raw data contains few and exceptionally sparse observations over t,
as in the case of longitudinal studies, the previous estimation approach fails as
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there is not enough information to recover the single function individually. A
solution to this problem is to use functional principal components with mixed
effects (Brumback and Rice, 1998; James et al., 2000) or local smoothing (Yao
et al., 2005) in order to jointly leverage the information of the full raw data set
for the estimation of each functional covariate.

In this work, we are interested in those penalization approaches that be-
yond pure sparsity, allow to impose some degree of structure to the regression
coefficients/function, like joint sparsity and smoothness as in the case of the
elastic net (Zou and Hastie, 2005) and other `1/`2 combined approaches (Hebiri
and van de Geer, 2011), imposing an order between the coefficients (Tibshirani
and Suo, 2016) and especially the fused lasso (Tibshirani et al., 2005), which
allows to recover a piecewise constant regression function. Although not in the
scope of our investigation, starting from the group lasso (Yuan and Lin, 2006),
multiple works have dealt with the assumption of a known grouping structure
between the covariates, including sparsity and competing variables within the
groups (Simon et al., 2013; Breheny, 2015; Zhou et al., 2010; Campbell and
Allen, 2017), overlapping groups (Zhao et al., 2009; Jacob et al., 2009) and su-
pervised clustering-based groups (She, 2010). In principle, our method could
be used as a preprocessing step to estimate such grouping structure. It is also
worth to note that other non penalty-based approaches force β to be convex by
selecting the maximum between K hyperplanes, where each hyperplane is ob-
tained by fitting a linear model using only a subset of the observations (Magnani
and Boyd, 2009; Hannah and Dunson, 2013).

From a practical standpoint, the type of penalty can be seen as an hy-
perparameter that has to be selected, either by cross-validation or by domain
knowledge, and the availability of different options allows researchers and engi-
neers to tackle a multitude of p >> N scenarios. However, current methods are
not flawless, as in the case of the lasso where the number of non-zero coefficients
that can be recovered is at most N , which can be a limiting factor and may
exclude important variables, especially in the presence of highly collinear func-
tional data, where the irrepresentable condition is often violated and selection
consistency is not guaranteed (Meinshausen and Bühlmann, 2006; Zhao and
Yu, 2006). Therefore, the design of new penalties is still an open problem, and
our proposal aims to add further modeling flexibility to the user, by allowing
a parsimonious and yet adaptive formulation of the shape γ that we want to
impose on β, by expressing γ as a finite sum of a few user-defined piecewise basis
functions like a rectangular pulse. In particular, our method is based on the
nonzero centered L2 penalty (Swindel, 1976; Price et al., 2015; van Wieringen,
2019; Bilgrau et al., 2020) and uses a global optimization scheme in order to
adaptively find a suitable and possibly sparse shape template that will be the
target of the shrinkage, with the objective to reduce bias.

The article is organized as follows: in Section 2 we explain our method
together with the optimization details, Section 3 contains multiple simulation
studies and two real world applications, with concluding remarks in Section 4.
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2 Adaptive additive piecewise functional tem-
plates

Let D = {(xi, yi)}Ni=1 be the training set with random i.i.d. functions xi ∈ L2(I)
and responses yi ∈ R, we study the scalar on function regression model:

yi = β0 +

∫
I

xi(t)β(t)dt+ εi (1)

where β0 ∈ R is the intercept and εi ∼ N (0, σ2) random i.i.d. errors. Without
loss of generality, we will assume that the regressors have been standardized and
that I = [−1, 1]. For a given template function γ : [−1, 1]→ R, we estimate the
linear model by solving the following problem:

min
β0,β

N∑
i=1

[
yi − β0 −

∫
I

xi(t)β(t)dt

]2
+ λ

∫
I

[
β(t)− γ(t)

]2
dt (2)

which is an L2-penalized least squares with β shrunk towards γ instead of zero,
and λ > 0 the hyperparameter that controls the amount of shrinkage. While
the template function γ can be directly provided by the user, in this work we
propose an adaptive global optimization approach for the choice of γ, which we
restrict to belong to the following class of functions Γ:

Γ =

γ : [−1, 1]→ R

∣∣∣∣∣ γ(t) =

q∑
j=1

Ajgj (t, t0j , Tj)


q ∈ N+

Aj ∈ R
t0j ∈ [−1, 1]

Tj ∈ (0, 2]

where each of the gj (t0j , Tj) : [−1, 1] → R can be an arbitrary but known
piecewise function such that the knots that define the intervals depend on t0j
and Tj . This means that γ can be expressed as a finite expansion with piecewise
basis functions that are chosen adaptively. In fact, gj could be any user-defined
function parametrized by t0j and Tj , but we will focus on the case where gj = gi
for j 6= i, dropping the subscript for ease of notation, with g being a rectangular
function:
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g (t, t0, T ) =

{
1 if

∣∣ t−t0
T

∣∣ ≤ 1
2

0 otherwise

-1 -0.5 0 t0 0.5 1
t

0.0

0.2

0.4

0.6

0.8

1.0

g(
t)

T

The choice of the rectangular shape allows correlated parts of the domain to be
equally included in the model and has a straightforward interpretation. While
this template based approach could appear to be too rigid, expressing γ as a
sum of q adaptively positioned rectangles seems to provide the flexibility needed
to avoid sacrificing prediction error, maintaining at the same time a sound reg-
ularization effect. Moreover, once the expansion of γ is optimized, the impact
on β is further controlled by selecting λ by cross-validation, as the regression
function is not expanded with respect to the same restricted basis, but instead
uses the rich enough grid basis. This is an important aspect of our method,
as optimizing γ is equivalent to the problem of selecting the optimal number
and position of the knots in free-knot splines, which is known to be nonconvex
(de Boor, 1973) even for univariate functions. Multiple heuristics have been
proposed to tackle this problem, including nonlinear optimization (Jupp, 1978;
Lindstrom, 1999), using the lasso to determine the knots (Osborne et al., 1998)
or fixing a large number of equidistant knots while penalizing the squared fi-
nite differences of the coefficients of adjacent B-splines (Eilers and Marx, 1996).
Many successful approaches are built on algorithmic stepwise addition/removal
of knots (Friedman and Silverman, 1989; Breiman, 1991; Friedman, 1991), with
locally adaptive splines (Mammen and van de Geer, 1997) that are based on to-
tal variation penalization on derivatives and enjoy optimal rates of convergence
in bounded variation function classes, also for linear splines that saturate (are
constant) outside the data range (Boyd et al., 2018). The stepwise addition
approach has also been used in FDA for the estimation of the mean and the co-
variance function of a set of curves (Gervini, 2006). In the case of trend filtering
(Kim et al., 2009) the positions of the knots are adaptively chosen by specifying
a suitable discrete difference operator of some order and solving a generalized
lasso problem. In fact, for first order differences/constant trend, this reduces
to the fused lasso with univariate inputs and pure fusion penalty. Moreover,
the trend filtering estimate in the constant or piecewise-linear case is shown to
be equal to the adaptive spline estimate (Tibshirani, 2014). Our approach is
instead based on derivative-free optimization, which has already been used to
select the knot vector for B-splines (Pittman, 2002), for density-based approxi-
mation of univariate piecewise linear functions (Pittman and Murthy, 2000) and
in supervised dimensionality reduction for classification problems with a func-
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tional regressor (Tian and James, 2013), where the basis for the expansion of the
input functions is chosen between a set of simple shapes, through a stochastic
search algorithmic procedure that exploits the class membership. Altough in a
different context, this last work is similar in spirit to ours, as it leverages both
interpretable shapes and derivative-free optimization to select them. In particu-
lar, both approaches avoid working at the full knot level and allow to define any
number of black-box basis shapes, but we provide a different parametrization
for the shapes and a different algorithm for the optimization. As previously
mentioned, while the types of basis gj could be considered as hyperparameters,
we will focus on rectangular shapes only. The number of basis functions q is
fixed before the optimization but is instead selected by cross-validation, usually
between Q = {1, 2, 3} to aid interpretability, as higher values of q would lead
to a less restricted γ, while at the same time increasing the computational cost.
This results in a total of 3q variables in the global optimization problem, which
are Aj , t0j and Tj for j=1, . . . , q. In fact, we will show that the variables Aj that
control the heights of the rectangles can be optimized in closed form, further
reducing the number of variables to 2q, where for the j-th rectangle, t0j controls
the horizontal shift with respect to the origin and Tj determines the support.

2.1 Fitting algorithm

In order to fit the model, we propose a two step iterative algorithm that is based
both on global optimization and L2-penalized least squares. The iterative part
of the algorithm aims to mitigate the fact that the heuristic steps could provide
inadequate values for γ, allowing for some degree of correction.

Given the number of shapes q, which is fixed a priori and chosen with grid
search, let A=(A1, . . . , Aq)

>
, t0=(t01, . . . , t0q)

>
and T=(T1, . . . , Tq)

>
, the first

step consists in solving the following problem:

min
A,t0,T

N∑
i=1

yi − ȳ − ∫
I

xi(t)

q∑
j=1

Ajg (t, t0j , Tj) dt

2

(3)

where ȳ = N−1
∑N
i=1 yi and N is the size of the training set. This is a least

squares formulation in which the regressor function is hard-constrained to belong
to Γ. The objective function of Problem 3 is nonconvex but marginally convex
in A, therefore we approximate the solution with a heuristic approach that will
be described in the next subsection. The resulting shape template γinit is now
recovered from (A∗, t∗0, T

∗) and Problem 2 is solved with γ = γinit and a given
λ, obtaining β̃. With the intention of improving on the current solution β̃,
which depends on the initial approximation of γ, we can iterate the process by
reshaping γ towards β̃, through the following problem:
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min
A,t0,T

N∑
i=1

yi − ȳ − ∫
I

xi(t)

q∑
j=1

Ajg (t, t0j , Tj) dt

2

+λ

∫
I

[
β̃(t)−

q∑
j=1

Ajg (t, t0j , Tj)
]2
dt

(4)
where β̃ is fixed from the previous step. As in the case of Problem 3, the
objective function of Problem 4 is also nonconvex but marginally convex in
A, and the optimization details will also be discussed in the next subsection.
Once the new shape template γ is recovered, we can solve again Problem 2
(with the same λ) to obtain a refined β̃. These last two steps can be repeated
for any number of iterations, with a small reduction of the training loss as the
termination condition, and/or a maximum number of iterations. While it is clear
that there is no guarantee to find a good shape template, if γ is not suitable for
the regression task at hand, the chosen λ will be small so as to avoid shrinking β
towards a shape that would result in a poor fit, as λ is selected with grid search
after the initialization step, regardless of the number of iterations that we run.
Beyond visual inspection of β̃, this allows to use the resulting value of λ as a
further indicator of the reasonableness of the shape γ for the current problem.
To summarize, let Q be the maximum number of shapes from which q is to be
selected and let M be the length of the grid of values from which λ is selected,
we fit the linear regression model by running Algorithm 1 on the data set D,

obtaining the fitted values β̃∗ and β̃0
∗
.

2.2 Optimization and computational details

Finding the global optimum of a nonconvex function is in general NP-hard and
multiple approaches have been proposed to compute approximate solutions in
different contexts. When the objective function is of real variables, smooth,
and cheap to evaluate, derivative-based methods can leverage gradients to find
local minima. A more general approach, which is also suitable for combinatorial
problems, is the derivative-free one, where black-box evaluations of the objective
function are used in conjunction with different stochastic selection and/or sam-
pling schemes. In practice, the two approaches are often implemented jointly,
where derivative-free techniques are used for an initial search of the solution
space and identification of prospect points, followed by local gradient-based op-
timization (Locatelli and Schoen, 2016). Another distinction that is often made
is the one between single point methods, where a single solution is refined during
the iterations, and population-based methods, where the selection schemes rely
on a pool of candidate solutions. In this work we propose a hybrid approach
based on differential evolution (DE) (Storn and Price, 1997) with a closed form
solution for a subset of the variables. DE is a derivative-free population-based
algorithm that generates new points by perturbation of existing solutions, which
is suitable for problems with real variables. In particular, at each iteration three
distinct points with indexes i, j, k are randomly selected from the population,
and a new candidate is computed by adding to point k the scaled difference
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Algorithm 1
Ridge Regression with Adaptive Additive Functional Templates

1: for q = 1, . . . , Q do
2: Solve Problem 3 with xi ∈ D
3: end for
4: → γinit1 , . . . , γinitQ

5: K-fold split D in Dk−train and Dk−val:
6: for q = 1, . . . , Q do
7: for m = 1, . . . ,M do
8: Solve Problem 2 with γ=γinitq , λ=λm, xi ∈ Dk−train
9: → β̃qm, β̃0qm

10: while Error on Dk−train decreases do
11: Solve Problem 4 with β̃=β̃qm
12: → γqm
13: Solve Problem 2 with with γ=γqm, λ=λm, xi ∈ Dk−train
14: → β̃qm, β̃0qm
15: end while
16: Test β̃qm, β̃0qm on Dk−val
17: end for
18: end for
19: → q∗, m∗

20: Refit on the full training set D:
21: Solve Problem 2 with γ=γinitq∗ , λ=λm∗ , xi ∈ D
22: → β̃∗, β̃0

∗

23: while Error on D decreases do
24: Solve Problem 4 with β̃=β̃∗

25: → γ∗

26: Solve Problem 2 with with γ=γ∗, λ=λm∗ , xi ∈ D
27: → β̃∗, β̃0

∗

28: end while
29: return β̃∗, β̃0

∗
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between points i and j. There are multiple variants of this base scheme, and for
an in depth analysis refer to Price et al. (2005). The choice of DE was motivated
by its success in multiple areas, including clustering (Paterlini and Krink, 2006)
and global plus local search (Locatelli et al., 2014).

Regarding our method, we already mentioned that the objectives in Problem
3 and 4 are nonconvex, as they try to optimize the knot placement of a piecewise
function. Restricting γ in Γ reduces the number of variables to Aj , t0j and
Tj for j=1, . . . , q, instead of directly optimizing the full knot vector, which is
often high dimensional. Recall the following simplified definitions of marginal
convexity and marginally optimum coordinate:

Definition 2.1 (Marginal convexity). A function of two variables J(x, y) : Rp×
Rq → R is marginally convex in x ∈ Rp if ∀y ∈ Rq, the function Jy(x) : Rp → R
is convex.

Definition 2.2 (Marginally optimum coordinate). We say that x̃ ∈ Rp is
marginally optimal with respect to ỹ ∈ Rq if ∀x ∈ Rp, J(x̃, ỹ) ≤ J(x, ỹ).

The property of marginal convexity lays the foundation for the alternating min-
imization principle, which is often used in nonconvex optimization problems
where the objective function is marginally convex with respect to the single
variables, but not jointly convex with respect to all variables (Jain and Kar,
2017). Unfortunately our setting is quite different, as the objective functions
of Problem 3 and 4 are not marginally convex in t0 and T but only in A. In
fact, the variables Aj for j=1, . . . , q do not control the position of the knots, but
only the height of the q shape templates gj , and in particular both problems
are quadratic in A, allowing us to optimize T and t0 with DE while recovering
the marginally optimal A in closed form, as shown in A.1 and A.2. From the
asymptotical standpoint, running Algorithm 1 involves solving Problem 2 and
computing the marginally optimal A, which can both be done in O(p3). In
practice however, it is arduous to provide a formal analysis, as the total cost
is vastly dominated by the global optimization part, which overall depends on
the total number of DE iterations. In particular, while the initialization of γ
is done only Q times, Problem 4 is instead solved multiple times to select the
optimal values for λ and q. For this reason, we allocate the major part of the
DE computational budget to the initalization of γ, as the following alternating
iterations depend on a suitable initial value. Finally, it is worth to note that all
the for loops in Algorithm 1 can be executed in parallel, as the problems are
separable with respect to q and λ. As for the implementation, our global opti-
mization scheme heavily relies on the Nevergrad library by Facebook Research
(Rapin and Teytaud, 2018).

3 Applications

In this section we show the performance of our proposed method (AATR as
adaptive additive template ridge) in multiple simulation studies and two real
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world applications. We compare AATR with other functional linear models with
known penalties like the lasso, fused lasso, ridge, roughness penalty, elastic net,
elastic SCAD, elastic MCP, and we also include the minimum norm least squares
solution (mnlstsq) as a reference. Besides AATR and the roughness penalized
model, for which we provide our own code, all the other implementations are
from scikit-learn (Pedregosa et al., 2011) except for the fused lasso which is
available in the CRAN package genlasso (Arnold and Tibshirani, 2020) and the
elastic SCAD and elastic MCP that are available in the CRAN package ncvreg
(Breheny, 2020).

3.1 Simulation studies

The objective of the simulations is to show the behaviour of our method in
different scenarios, where the true coefficient function β is either a mixture of
q=1/2/3 rectangles or a smooth shape that in principle is not compatible with
a rectangle-based penalization, resulting in four different shapes tested. All the
simulations share the same base model for the input data, which is a cubic
B-spline with 40 inner knots equispaced between [−2, 2], while the spline coef-
ficients are sampled from a multivariate normal for each of the N observations.
In particular, we repeat the analysis with two different settings, one with inde-
pendent spline coefficients, and the other with highly dependent ones, for a total
of eight configurations. Once the coefficients are generated and the functional
model is determined for the single experiment, the regressors xi are obtained
by evaluating the functions in p=200 equispaced points in [−1, 1], while the re-
sponses yi are computed according to Equation 1 with β0=0 and εi ∼ N (0, 1).
The sample size is fixed at N=100 for all the experiments. Figures 1, 2 and 3
portray the input curves and the fitted coefficient functions for the configura-
tions with q=1, while Figures 4, 5 and 6 show the case q=2, Figures 7, 8 and
9 show the case q=3 and finally Figures 10, 11 and 12 illustrate the smooth
scenario. The results for all the simulations are presented together in Table
1, which reports the mean regression error on the test set obtained by 3-fold
cross-validation of the N samples. The hyperparameters are selected with grid
search by 3-fold cross-validation on the current split. It is worth noting that for
a given configuration, the method with the lowest error is not always the one
that is closer to recovering the correct shape, and overall the fused lasso and
AATR are the ones that are able to better approximate the true pattern. While
the L1 norm allows the fused lasso to find nonsmooth coefficient functions, with
the fusion penalty in particular that imposes the piecewise constant behaviour,
AATR achieves similar results by smooth L2 shrinkage towards a nonsmooth
shape. This is clear by looking at Figure 3 for instance, where AATR recovers
a shape that is a rectified version of the one resulting from the roughness pe-
nalized model or the ridge, keeping a smooth behaviour in the artifacts outside
of the rectangular part, where instead the fused lasso produces the same arti-
facts, but in a piecewise constant fashion. A similar argument can be held for
the case in which the true β is smooth and not sparse, where as expected the
roughness penalty performs best. Moreover, similarly to the ”elastic” methods
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that are able to produce both smooth and sparse solutions, AATR will produce
sparse solutions only if the shape γ itself is sparse. On the downside, the main
limitation of AATR is its high reliance on the heuristic approximation of γ, for
both the initialization and the subsequent iterations. While finding a suitable
initial value can drastically reduce the number of alternating iterations, often to
a single one as we empirically observed in our experiments, it is also true that
the number of variables in the global optimization problem grows (linearly) with
the number of basis q, making our approach viable only for small values of q.

Figure 1
Simulated data with independent and highly dependent spline coefficients,

true β with q=1
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Figure 2
Independent spline coefficients: fitted coefficient functions β̃ by penalty type
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Figure 3
Highly dependent spline coefficients: fitted coefficient functions β̃ by penalty

type

-1 -0.5 0 0.5 1
t

0.5

0.0

0.5

1.0

1.5

2.0

(t)

lasso

-1 -0.5 0 0.5 1
t

0.2

0.0

0.2

0.4

0.6

0.8

(t)
elastic net

-1 -0.5 0 0.5 1
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(t)

elastic SCAD

-1 -0.5 0 0.5 1
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(t)

elastic MCP

-1 -0.5 0 0.5 1
t

0.0

0.2

0.4

0.6

0.8

(t)

roughness

-1 -0.5 0 0.5 1
t

0.2

0.0

0.2

0.4

0.6

0.8

(t)

ridge

-1 -0.5 0 0.5 1
t

0.0

0.2

0.4

0.6

0.8

(t)
AATR

-1 -0.5 0 0.5 1
t

0.0

0.2

0.4

0.6

0.8

(t)

fused lasso

Figure 4
Simulated data with independent and highly dependent spline coefficients,

true β with q=2
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Figure 5
Independent spline coefficients: fitted coefficient functions β̃ by penalty type
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Figure 6
Highly dependent spline coefficients: fitted coefficient functions β̃ by penalty

type
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Figure 7
Simulated data with independent and highly dependent spline coefficients,

true β with q=3
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Figure 8
Independent spline coefficients: fitted coefficient functions β̃ by penalty type
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Figure 9
Highly dependent spline coefficients: fitted coefficient functions β̃ by penalty

type
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Figure 10
Simulated data with independent and highly dependent spline coefficients,

true β as a smooth shape

-1 -0.5 0 0.5 1
t

2

1

0

1

2

x(
t)

 (scaled) 30

20

10

0

10

20

30

xi - independent

-1 -0.5 0 0.5 1
t

3

2

1

0

1

2

3

x(
t)

 (scaled)
30

20

10

0

10

20

30

xi - dependent

-1 -0.5 0 0.5 1
t

1.0

0.5

0.0

0.5

1.0

(t)

true β

15



Figure 11
Independent spline coefficients: fitted coefficient functions β̃ by penalty type
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Figure 12
Highly dependent spline coefficients: fitted coefficient functions β̃ by penalty

type
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Table 1: Regression results for all the simulations: mean-square error

independent spline coefficients dependent spline coefficients

q=1 q=2 q=3 smooth q=1 q=2 q=3 smooth

mnlstsq 1.857± .81 1.833± .78 1.567± .54 1.848± .80 1.483± .62 1.483± .62 1.483± .62 1.483± .62
ridge 1.343± .45 1.309± .38 1.338± .46 1.308± .34 1.063± .11 1.132± .20 1.141± .23 1.083± .17
roughness 1.235± .35 1.399± .21 1.335± .27 1.183± .33 1.036± .03 1.145± .14 1.115± .16 0.948± .01
lasso 0.999± .31 1.225± .49 1.435± .50 1.307± .36 1.029± .02 1.093± .16 1.196± .18 1.140± .21
elastic net 0.999± .31 1.222± .49 1.327± .48 1.244± .30 1.028± .02 1.087± .15 1.119± .11 1.070± .14
elastic SCAD 1.317± .14 2.867± .72 4.678± 1.4 6.598± 1.4 2.552± .59 7.938± .38 15.51± 3.8 5.295± 1.1
elastic MCP 1.282± .51 1.993± .67 3.721± 1.3 3.662± 1.2 1.923± .43 5.957± .42 14.27± 3.4 5.634± 1.7
fused lasso 0.967± .28 1.041± .19 1.278± .23 1.275± .33 1.017± .05 0.940± .04 1.048± .08 1.040± .05
AATR 1.019± .24 1.052± .29 1.253± .28 1.344± .43 0.975± .05 0.960± .08 1.012± .01 1.011± .06
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3.2 Solar radiation

The first real world application that we present belongs to the renewable en-
ergy/smart grid field, and is about predicting the mean daily solar radiation by
looking at the daily temperature curves. The full data set is available on kaggle
at https://www.kaggle.com/dronio/SolarEnergy and was originally pro-
vided by NASA through the Space Apps challenge. As the raw measurements
are irregularly sampled during the day, with roughly one measurement every
five minutes, we estimate the underlying daily temperature functions by using
penalized free-knot cubic splines (Dierckx, 1993), which are then evaluated on
an equispaced grid of length p=300, while the raw solar radiation measurements
are instead averaged over the day. The sample size is N=39 days and is ob-
tained after removing some outliers that had constant temperature values over
most of the day. The daily temperature profiles are shown with the fitted coef-
ficient functions in Figure 13, where all methods seem to highlight some type of
contrast between the temperature during the afternoon and the evening hours.
Figure 14 depicts the behaviour of β in Problem 2 for increasing values of λ,
where as expected, higher values of λ shrink β towards the current γ, while
Figure 15 instead shows the progression of the different shapes γ resulting from
Problem 4 with λ and q fixed, where the algorithm stops after one iteration,
as the initial value obtained from Problem 3 is already the one with the lowest
train error. Table 2 reports the mean regression error on the test set obtained
by 5-fold cross-validation, with nested grid search by 3-fold cross-validation on
the current split for hyperparameter selection.
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Figure 13
Solar radiation: comparison of the fitted coefficient functions β̃ scaled with
respect to the temperature curves, the black dashed line represents the zero

level for β̃
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Figure 14
Solar radiation: fitted β̃ obtained by solving Problem 2 for increasing values of

λ
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Figure 15
Solar radiation: initial γ resulting from Problem 3 and subsequent values

obtained by solving Problem 4
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3.3 London bike sharing

The second real world application is about one of London’s bike sharing sys-
tems, and the full dataset is also available on kaggle at https://www.kaggle.c
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Table 2: Solar radiation: regression results, mean-square error

mnlstsq 3701± 1987
ridge 1445± 625
roughness 1521± 389
lasso 1626± 670
elastic net 1513± 568
elastic SCAD 1383± 578
elastic MCP 1378± 567
fused lasso 1326± 383
AATR 958± 231

om/hmavrodiev/london-bike-sharing-dataset. We focus on predicting the
average daily (log) count of bikes by looking at the daily (feels like) temperature
curves. The data is measured every hour and therefore each day has at most
24 points. As the sample size of the original dataset is large, we select only
the weekend days where all the measurements are available, which results in
N=195 days. Note that weekend and midweek days typically have very distinct
renting patterns and therefore it makes sense to separate the data for this kind
of analysis. The underlying temperature functions are estimated by cubic in-
terpolating B-splines, which are then evaluated on the same equispaced grid of
length p=200. As in the previous case study, the daily temperature profiles are
shown with the scaled coefficient functions in Figure 16, while Figure 17 illus-
trates the behaviour of β in Problem 2 for increasing values of λ, and Figure 18
depicts the progression of γ with λ and q fixed. The results are also obtained
by 5-fold cross-validation with the same grid search scheme for hyperparameter
selection and are reported in Table 3. It is worth to note that the two best per-
forming methods, AATR and the roughness penalized model, are the ones that
also show a coherent behaviour in their respective coefficient functions, despite
the obvious difference in smoothness.
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Figure 16
London bike sharing: comparison of the fitted coefficient functions β̃ scaled
with respect to the temperature curves, the black dashed line represents the

zero level for β̃
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Figure 17
London bike sharing: fitted β̃ obtained by solving Problem 2 for increasing

values of λ
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Figure 18
London bike sharing: initial γ resulting from Problem 3 and subsequent values

obtained by solving Problem 4
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Table 3: London bike sharing: regression results, mean-square error

mnlstsq .0931± .0397
ridge .0506± .0213
roughness .0488± .0194
lasso .0523± .0236
elastic net .0514± .0218
elastic SCAD .0543± .0222
elastic MCP .0529± .0228
fused lasso .0496± .0207
AATR .0486± .0187

4 Conclusions

Shrinkage methods are widely used in high dimensional linear models in order
to induce sparsity and perform variable selection between the the many regres-
sors. In this work we proposed an L2-based penalization algorithm for scalar
on function linear regression models, where the coefficient function is shrunk
towards a data-driven shape template γ. In particular, we focused on the case
where γ is the sum of q rectangles, which results in a sparse and nonsmooth
piecewise defined shape that is interpretable and well suited in the presence of
dense and highly correlated variables. Finding the optimal knot placement of a
piecewise function is a nonconvex problem, and to mitigate the computational
burden, we proposed a parametrization that does not rely directly on the knot
vector, reducing the number of variables in the global optimization problem,
with the variables that control the height of the rectangles that are obtained in
closed form. Our algorithm alternates between solving a convex L2-based prob-
lem and finding an appropriate shape γ with a differential evolution scheme,
which is the main factor in determining the computational cost. While a sparse
and nonsmooth β is usually enforced through an L1-based penalty, we suggest
that if the shape γ has those properties, the L2 norm is also able to recover
an adequate solution, as shown in multiple simulations and two real world case
studies.
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A

A.1. Let q ∈ N+. For any fixed t0=(t01, . . . , t0q)
> ∈ [0, 1]q and T=(T1, . . . , Tq)

> ∈
(0, 2]q, consider the objective function of Problem 3 as a function of A=(A1, . . . , Aq)

> ∈
Rq:

J(A) =

N∑
i=1

yi − ȳ − ∫
I

xi(t)

q∑
j=1

Ajg (t, t0j , Tj) dt

2

=

N∑
i=1

(yi − ȳ)2 +

 q∑
j=1

Aj

∫
I

xi(t)g (t, t0j , Tj) dt

2

− 2(yi − ȳ)

q∑
j=1

Aj

∫
I

xi(t)g (t, t0j , Tj) dt



let Si =


∫
I
xi(t)g (t, t01, T1) dt

...∫
I
xi(t)g (t, t0q, Tq) dt

 ∈ Rq for i = 1, . . . , N , then:

J(A) =

N∑
i=1

[
(yi − ȳ)2 +A>SiS

>
i A− 2(yi − ȳ)A>Si

]

differentiating with respect to A and setting the first derivative to zero results
in:

∂J

∂A
=

N∑
i=1

[
2SiS

>
i A− 2(yi − ȳ)Si

]
= 0

let ΣSS=
∑N
i=1 SiS

>
i ∈ Rq×q , ΣyS=

∑N
i=1(yi − ȳ)Si ∈ Rq, we finally obtain:

ΣSSA = ΣyS

A = Σ†SSΣyS
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A.2. Let q ∈ N+, λ ∈ R+ and β̃ the solution of Problem 2 from the previous step.
For any fixed t0=(t01, . . . , t0q)

> ∈ [0, 1]q and T=(T1, . . . , Tq)
> ∈ (0, 2]q, consider

the objective function of Problem 4 as a function of A=(A1, . . . , Aq)
> ∈ Rq:

J(A) =

N∑
i=1

yi − ȳ − ∫
I

xi(t)

q∑
j=1

Ajg (t, t0j , Tj) dt

2

+ λ

∫
I

[
β̃(t)−

q∑
j=1

Ajg (t, t0j , Tj)
]2
dt

=

N∑
i=1

(yi − ȳ)2 +

 q∑
j=1

Aj

∫
I

xi(t)g (t, t0j , Tj) dt

2

− 2(yi − ȳ)

q∑
j=1

Aj

∫
I

xi(t)g (t, t0j , Tj) dt


+ λ

∫
I

[
β̃ 2(t) +

 q∑
j=1

Ajg (t, t0j , Tj)

2

− 2β̃(t)

q∑
j=1

Ajg (t, t0j , Tj)
]
dt

let Si =


∫
I
xi(t)g (t, t01, T1) dt

...∫
I
xi(t)g (t, t0q, Tq) dt

 ∈ Rq for i = 1, . . . , N

let G: [−1, 1]→ Rq such that G(t) =

 g (t, t01, T1)
...

g (t, t0q, Tq)

 , then:

J(A) =

N∑
i=1

[
(yi − ȳ)2 +A>SiS

>
i A− 2(yi − ȳ)A>Si

]
+ λ

∫
I

[
β̃ 2(t) +A>G(t)G(t)

>
A− 2β̃(t)A>G(t)

]
dt

differentiating with respect to A and setting the first derivative to zero results
in:

∂J

∂A
=

N∑
i=1

[
2SiS

>
i A− 2(yi − ȳ)Si

]
+ λ

∫
I

[
2G(t)G(t)

>
A− 2β̃(t)G(t)

]
dt = 0
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let ΣSS=
∑N
i=1 SiS

>
i ∈ Rq×q, ΣyS=

∑N
i=1(yi−ȳ)Si ∈ Rq, ΣGG=

∫
I
G(t)G(t)

>
dt ∈

Rq×q , ΣβG=
∫
I
β̃(t)G(t)dt ∈ Rq, we finally obtain:

[ΣSS + λΣGG]A = ΣyS + λΣβG

A = [ΣSS + λΣGG]
†

[ΣyS + λΣβG]
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