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A B S T R A C T

Optimisation of factories, a cornerstone of production engineering for the past half century, relies on formu-
lating the challenges with limited degrees of freedom. In this paper, technological advances are reviewed to
propose a “daydreaming” framework for factories that use their cognitive capacity for looking into the future
or “foresighting”. Assessing and learning from the possible eventualities enable breakthroughs with many
degrees of freedom and make daydreaming factories antifragile. In these factories with augmented and recip-
rocal learning and foresighting processes, revolutionary reactions to external and internal stimuli are unnec-
essary and industrial co-evolution of people, processes and products will replace industrial revolutions.
© 2022 The Author(s). Published by Elsevier Ltd on behalf of CIRP. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/)
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Fig. 1. The key breakthrough dimension in each industrial revolution.hi).
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1. Introduction

This paper aims to present an implementable framework for
production systems to achieve breakthroughs. It attempts to for-
malise the process based on advances in multiple areas of
manufacturing systems research to outline a future roadmap for
similar advances. Although defining what constitutes a “break-
through” is challenging, if not impossible, the term is used to
denote when the system undergoes a significant change that affects
its core processes and, perhaps, even its structure. Improvements
that can result from adjustments in parameters are thus largely
excluded from the scope of this paper.

Consideration of such improvements is critical under the current
context of manufacturing and a system that is not capable of this
type of change would be fragile. The fragility may manifest in
response to internal inertia or external stimuli from disruptions.

The core principle of this paper is that, in a breakthrough, the pro-
duction system uses its spare learning capability, notwithstanding
the identity of the learning agent, to consider possible future eventu-
alities and act based on the learning that is achieved because of imag-
ining such scenarios. As this process is, ideally, taking place
concurrently with core value generating processes of the system as
well as gradual improvements resulting from reflection on historical
data and prognostics, the term “Daydreaming” is used to capture the
semantics [136].

Where, habitually, factories cannot risk to experiment with hypo-
thetical futures, daydreaming aims to explore and learn from scenar-
ios without hampering primary processes. Daydreaming traverses
exploration spaces to identify unexposed opportunities for
optimisation, advancement and exploitation of the factory’s organisa-
tion and technology, leading to coherent sets of envisaged improve-
ments.

The paper starts by presenting the overall framework of a day-
dreaming factory, identifies the constituent elements and demon-
strates that substantial ongoing research fits in parts of this
framework and corresponds to the overall aims of capturing the pro-
cess of industrial breakthroughs.

In the remainder of this section, a historical review gives a narra-
tive of the most significant industrial breakthroughs in the past in the
form of Industrial Revolutions. Considering that breakthroughs are
results of learning, the concepts associated with learning and their
use in the production system context are then introduced and the
motivation for developing the daydreaming framework is presented.

Sections 2 to 5 outline the four key elements of the daydreaming
framework: scenario generation, learning from simulations, learning
from analytics and the implementation of the learning in the produc-
tion system. The paper concludes with the prospect of future AI-
assisted foresighting factories that predict and plan for industrial
breakthroughs and the roadmap to realise such factories. The term
foresight is used in contrast to insight [46] to emphasise that fore-
sights are based on possible futures [161].
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1.1. Optimisation, breakthroughs and reflection in consecutive industrial
revolutions

There are many papers that provide an overview of industrial rev-
olutions and their effect on production systems. The best of these
papers extrapolate and offer predictions for future breakthroughs
and outline prototypes for future manufacturing systems. With a
focus on identifying the process of a breakthrough and how it was
achieved, it is worth investigating the past industrial revolutions [34]
as shown in Fig. 1.

The hypothesis is that reflection was a key enabler. However, not
all of this reflection was on what had happened in the past �
although that was certainly an important aspect in identifying the
problems � but partly it was on what could be the future. Once this
notion of future was crystalised into a foresight, it created the drive
for the technology to enable the breakthrough.

Traditional research in manufacturing systems is often focused on
“optimisation”. This is an attempt to find the best possible set of oper-
ating parameters to achieve the best possible output in a system and
is fundamentally different to a breakthrough [119].

The first industrial revolution was one based on mechanisation.
The core principle was replacing the biological agents of mechanical
work with mechanical replacements [130]. The breakthrough, in this
case, was enabled, along with other factors, through a better under-
standing of physics (or to use the term that would have been utilised
at the time, the natural philosophy), a desire to increase the scale of
operations and imagining what the next generation of factories
would be like. The second industrial revolution was enabled by a
more thorough understand of issues pertaining to increasing the
scale of operations. It became evident that systematic methods of
organisation of resources were necessary to make sure that the com-
plex array of mechanical and human resources could be coordinated
to achieve the desired production rates. Around this time, the imagi-
nation of many elements working together in harmony was a major
factor in development in the industry. Optimisation of parameters
became an important factor in achieving performance targets and
operations research was born.

With the advent of computers, for the first time, there was a viable
replacement available for not only the mechanical aspects of what a
human could do but also the mental aspects. Imagining how calcula-
tions and control hitherto carried out by the human brain could be
replace by the work done by machines in the industrial context was a
major factor in the third industrial revolution where many of the
repetitive cerebral tasks that required a high level of human skill
were offloaded to computers. The importance of optimisation and
operations research increased as the result of the ability to numeri-
cally control the parameters much better at the optimum point. In
the last ten years, the fourth industrial revolution has been heralded
based on connectivity. Visionaries such as Merchant identified the
positive effect of connectivity in manufacturing many years ago
[126]: “. . . the manufacturing system, developed as a unified, coordi-
nated and automated whole, will produce a revolution in the field of
manufacturing as we know it . . .”. The latest industrial revolution is
framed around gathering information from every corner of a well-
controlled, computer-enabled mechanical factory, network of facto-
ries and global production networks [90] with well-informed human
operators, imagining the additional gains that could be achieved
through realisation of cyberphysical systems (using the connectivity
to make hybrid software-hardware systems), digital twins (using the
connectivity to make software entities that mimic and control their
hardware counterparts) and big data analytic (using the connectivity
to consider internal and external data to achieve more globally opti-
mally tuned systems).

1.2. Cognition, learning and knowledge models

In these revolutions - as well as in many of the less pronounced
developments in production systems - a pattern can be observed: a
set of enabling technologies give rise to new engineering potentials
that after testing become new production knowledge models. These
models are then imagined in a number of new scenarios and the
effects are predicted to create foresight about what could happen.
Changes are then carried out in the physical systems to implement
the most promising scenarios to realise the aims of a strategy that
underpins the mission and values of the value generating enterprise.

The consolidation of potential effects of imaginary scenarios and
capturing such reflections in a coherent foresight can only take place
in the presence of cognition. In production systems, traditionally, this
level of cognition has been solely available as a human trait. In more
recent times, there has been significant research in characterising the
cognitive ability of system and both artificial and blended systems
that combine human and machine abilities have been explored [211].
[34] define cognitive adaptability as exhibiting attributes such as
self-planning, self-healing and other knowledge-based adaptive
responsiveness. [82] recognised this transition between human-
based cognition through to what they termed as cognitive robots and
proposed a cyber-physical framework based on it. [33] enumerated
the related definitions for a “learning organization” to underpin the
collective cognition that would take place in this setting of connected
people and machines. Cognitive digital twins were identified as one
possible solution to achieving such amalgamation of machine and
human resources [42]. The role of cognitive machines in emerging
manufacturing systems is to extend the human boundaries of compu-
tational capacity together with the ability to manage knowledge and
uncertainty [146]. Organisations that employ cognitive machines and
structures extend their intelligence and autonomy in dealing with
uncertainty and can employ reciprocal learning [8].

One approach to achieve such cognitive abilities would be to con-
sider hypothetical scenarios - even unlikely ones - learn from the pre-
dicted outcomes and then learn from the aggregate of these learnings.
The related concept of “meta-learning” in cyber-physical systemswhere
a deeper level of cognition is achieved as a result of learning from learn-
ing is demonstrated in [158�160]. The word ‘reverie’ has been used in
this paper to denote aggregate learning from what is learned from
many explorations regardless of how likely they are to occur.

1.3. The framework of a Daydreaming factory

Formalising the process of learning from the past and present in
an organisation has been studied in different domains including “The
Learning Organisation” [143] but a new framework is necessary to
formalise learning from potential futures in factories. Daydreaming is
consequently defined as using an innovative understanding of the
world in the form of a digitised representation of a system based on
engineering models, conducting reveries by generating multiple sce-
narios and gathering insights from the potential outcomes. This is fol-
lowed by implementation of changes in line with the strategy of the
enterprise. It is proposed that daydreaming forms the basis of the
framework that embodies major breakthroughs in value generating
organisations. Fig. 2 shows the articulation of such a framework for
the specific cases where the system is in an industrial value-generat-
ing entity (a factory).

The framework has the digital representation of the factory at its
centre with information coming to it from the enterprise strategy
(left of the diagram) and engineering models (top of the diagram).
The reverie function investigates the exploration space (as depicted
on the right side of the diagram) and learning from the exploration
closes the loop.

The digital representation of the physical factory is generated by
twinning the physical elements of factory in cyberspace and keeping
them up to date based on the operational data that is obtained from
physical sensors embedded in the system [128,138]. The digital
representation may be used as the basis to control and intervene in
the operations of the physical factory.

The formation of the digital representation is reliant on the defini-
tion of the context based on the strategy of the enterprise, as well as
the best abstract understanding of the engineering principles avail-
able at the time (henceforth referred to as engineering models).

Examples of engineering models at different fidelities are
Newton’s laws of motion, Navier-Stokes equations for motion of



Fig. 2. Overall framework of daydreaming factories.
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viscous fluids, Merchant’s model of orthogonal cutting, Hooke’s law
and Little’s law.

In a daydreaming factory, the will to explore different strategies
or consideration of new engineering models leads to the application
of scenario generation based on structured randomisation of
variables within the active domain to generate many different poten-
tial futures in a form that is suitable for study either using analytic
techniques (parameterised analytic representations) or simulation
(parametrised digital representations).

The result of applying simulation or analytic techniques to these
representations yields outcomes that in presence of human, artificial
or blended cognitive ability is transformed into foresights about
what could happen in the future of the factory if the new technology
is employed, the new understanding of the engineering model is cor-
rect, or the new strategy is adopted.

Cogitation on the foresights yields practical measures that are
adopted by (1) modifying the strategy of the firm; (2) updating the
engineering models with the improved understanding; and/or, (3)
updating the digital representations.

The intervention in the physical system that then follows com-
pletes the framework. The intervention could be as minimal as
changing parameters on physical devices or as fundamental as intro-
ducing new technologies or business models.

In this paper, with a focus on the latter, the disparate research
efforts being carried out around the world are presented in the day-
dreaming framework with the relevant sections of the paper for each
aspect of the framework highlighted in Fig. 2 to show how they
underpin parts of this framework and can be brought together to pro-
vide a blueprint for future industrial breakthroughs without unex-
pected disruptive revolutions.
2. Scenario generation to initiate reveries

Daydreaming is habitually related to potential futures
[26,104,105] that envisage advantages over the current situation. In
this, daydreaming goes well beyond operational issues and short-
term forethoughts. It explores potential futures while the primary
processes in the factory remain uninfluenced until underpinned deci-
sion-making leads to the implementation of the daydreaming out-
comes. With that, daydreaming probes scenarios, where learnings
can originate from positive as well as from negative prospects. The
feedback loop of modification of parameters, prognostics based on
artificial intelligence and big data analytics and optimization of the
system as articulated in [48] is not the principle topic of discourse in
this paper. The focus is instead on applying a constructivist approach
to giving voice to a company’s strategy, contextualised by technologi-
cal and organizational developments. The constructivist perspective
aims to explore possibilities, without a-priori giving in to
impediments or circumspections related to limitations, feasibility,
risks, uncertainty, etc.

In this sense, daydreaming can be seen as divergently establish-
ing a so-called exploration space and ultimately converging it into a
solution space [79] � without a problem space necessarily being
present. The exploration space does not only represent all potential
outcomes, but it also defines a set of orthogonal dimensions that
construct it. The set of dimensions is instrumental in analysing,
evaluating, and assessing solutions and enables convergence into
relevant solution candidates. Hence, in the convergence the viability
and optimization of the solutions are addressed in a structured and
purposeful manner.

In considering the exploration space as being representative of a
potential future reality for a factory, two parallel perspectives can be
discerned:

1) The structure that underlies the factory and allows it to display

any behaviour. This structure acts as the foundation in which all
processes and initiatives find their backbone.

2) The ‘behaviour’ of the factory that is driven by the way in which
the product-portfolio, the available assets/resources, the
manufacturing strategies and the ability to change any of these is
converted into real life demeanour and performance.

In terms of the exploration space, the two perspectives men-
tioned above, align with the dimensions of the exploration space
and the content of that exploration space respectively. In a day-
dreaming factory, both perspectives amalgamate, which allows for
a factory impression in which the planning, control and evolve-
ment can be more than merely mechanistic and deterministic.
Here, daydreaming exceeds the potential of individual simulations,
by using scenarios in which the value of parameters, but also the
parameters themselves are subject of exploration. Moreover, the
scenarios are not necessarily completely connected to existing
realities, rendering the outcomes of daydreaming suitable as seeds
for potential futures.

Consequently, probing potential futures for a factory can be based
more on deliberate exploration, postulation, and hypothesizing
rather than on stepwise and pre-defined acts and optimizations. The
main risk of such a daydreaming approach is that the attempts
become open-ended and divergent; consequently, an effective and
efficient framework for governing the evolvements is required, hence
the need for the daydreaming framework in Fig. 2.

2.1. Conducting realistic reveries � context definition

The framework that underlies purposeful reveries combines two
essential functions: adequately capturing the current situation as
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well as representing envisaged or future factories in realistic states.
Realistic states are those that are potentially possible in the physical
world as determined after the scenario is generated. It is especially
the relation between the current and potential situation that is
instrumental in daydreaming as it drives both the exploration and all
converging processes.

Moreover, in any reverie, it is important to distinguish the as-is
from the to-be situations as well as establishing a feasible route
between the two. For open environments like factories that typically
have myriad and extensive interfaces [190], no depiction of the as-is
situation can ever be complete, conclusive, or certain. Moreover,
merely the dynamics of the context, e.g. related to technological devel-
opments, would enforce an volatility and agility on the as-is model
that is impossible to achieve or to maintain. This renders a digital
representation (see Fig. 3) where the daydreaming factory exists
alongside its digital system reference. The daydreaming factory is the
physical reality, and the digital system reference captures the as-is and
to-be models of that reality with the required/possible accuracy, at the
appropriate level of detail and apt time horizon and predictability.
Fig. 4. Fragility of systems (adapted from [187]).

Fig. 3. The internal structure of the digital representation and links with the day-
dreaming factory (adapted from [104,196]).
The interfaces of the factory environment that are not modelled in
the digital system reference are referred to as external stressors. Such
stressors can have favourable and unfavourable impacts at varying
scales/magnitudes, with varying frequencies, and more importantly,
with various levels of predictability. The more predictable a stressor,
the more feasible it is to model it and its probable consequences.
However, especially in complex, emergent systems like factory envi-
ronments, unforeseeable stressors will often have the biggest impact.
Such ‘black swan’ events [186] can not only undermine the estab-
lished understanding of the as-is situation, but they [26,104] can
also eliminate the added value of any to-be prospect.

Hence, the digital system reference should exhibit a system
response that is tolerant to unanticipated stressors. This does not
only imply that it can aid in envisaging an adequate response of the
physical reality, but also that the conditions for daydreaming may be
enabled: every stressor (either internal or external) may extend the
exploration space in terms of content or number of dimensions. With
that, the digital system reference (and consequently, the
daydreaming factory itself) would no longer be fragile and would go
beyond being merely robust [184].

With sufficient exploration, it should at least be resilient [132], if
not antifragile [1],[228]. A comparison between the expected
responses of a fragile, a resilient, a robust and an antifragile system
are shown in Fig. 4. It is notable that this is a simplified visualisation
with a single performance measure in pursuit of diagrammatic clar-
ity, whereas in most systems multi-criteria decision support is a key
attribute of the divergent exploration space that characterises day-
dreaming.
Where a fragile system may break as a result of external stressors
(i.e. technology disruptions, global events, etc.), a robust system can
continue functioning at a reduced rate, perhaps recovering eventually
and a resilient system can recover relatively quickly.

An antifragile system, on the other hand, takes advantage of the
possible opportunities brought on by the external stressor to attain a
higher rate of success than the previous state. The breakthrough
required to achieve this higher rate of success is one that can be
enabled by daydreaming factories. So while precisely defining a
breakthrough is challenging as mentioned in Section 1, the attribute
of a system that enables breakthroughs, which is the ultimate goal of
daydreaming factories can be defined as seen in Section 6.2.

It should be noted that antifragility here implies that the digital
system reference assimilates stressors and responses and consequen-
tially increases the predictability and predictive capability, by pro-
cessing feedback and learning. In other words, if the physical reality
(by means of the as-is model) gives rise to improved interpretations,
the as-is model will evolve with the physical reality, also leading to
more delineated to-be models.

2.2. Digital twinning as the basis of reveries � digital representation

The digital system reference employs a digital twin as the desig-
nated approach for capturing the as-is model. Whereas many defini-
tions of the notion digital twin exist (see e.g. [181]), for daydreaming
factories the precise definition is less significant, as long as the digital
twin is seen as a ‘digital representation of an active unique product
(real device, object, machine, service, or intangible asset) or unique
product-service system (a system consisting of a product and a
related service) that comprises its selected characteristics, properties,
conditions, and behaviours by means of models, information, and
data within a single or even across multiple life cycle phases [180].

Yet, for daydreaming factories, a representation of the as-is is
sheerly the basis for exploration [124]. After all, potential futures
have to be captured as well, and they might be formulated in terms
that the as-is digital twin cannot digest. Moreover, as the distinction
between the as-is and to-be models is the main driving force in fore-
seeing as well as evaluating and assessing reveries, next to the digital
twin, a digital master is used [196]. This digital master captures the
blueprint of the to-be model, thus representing a possibly desired
future state for the physical factory.

As daydreaming inherently focuses on prospecting potential
futures and their consequences, there is a clear need to additionally
model the different states that might exist between as-is and to-be.
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In other words, an intermediate could-be model, or digital prototype,
is required that connects reality to envisaged futures.

This connection can be established at different levels of aggrega-
tion between the digital twin and the digital master model. Interme-
diately, the digital prototype allows for what-if analyses that allow
for variations in both the ‘as-is’ (e.g. what if the portfolio was differ-
ent?, the sensor data were different, and there were three of these
machines?) and the ‘to-be’ (what if the strategic goal was different?,
what if products were modularised, or what if the scheduling was
done differently?).

A compartmentalised digital representation as shown in Fig. 3 sig-
nifies that multiple instances of each sub-element can exist and dis-
tinguished based on unique identifiers. As many digital prototypes
can exist simultaneously, and the differences/variance between them
can be parameterised, these prototypes allow for concurrent simula-
tions or evaluations and are thus instrumental in effectively and effi-
ciently driving the analyses and evaluations that guide the
daydreaming. The main issue is then to carefully establish which
parameters could play a role in the anticipation of any future (state of
the) factory, as sometimes the perspective is a rather narrow elucida-
tion of parameter values (e.g. in closed optimisation [116,165]), and
sometimes it is a wide exploration of multitudinous dimensions and
influences (e.g. in reveries [60,91]).

With that, this leads to a scoping to embed all initiatives to estab-
lish potential future situations. Moreover, the could-be model is not
dependent on a specific perspective on the daydreaming factory and
can therefore be employed to balance the interests of different stake-
holders.

The digital system reference is applied as the basis for establishing
and exploring the exploration space, where the convergence towards
appropriate solution candidates is arranged by means of comparing
and altering the various digital prototypes that are the bases for sim-
ulations and evaluations. In a daydreaming factory there is no ambi-
tion to select likely scenarios; only to learn from as many potential
feasible futures as possible. To avoid combinatorial explosions, some
specific strategies may be employed to stop the consideration of sce-
narios that are infeasible or those that are specifically designated as
not being interesting through human input.

In particular, the digital system reference may apply four different
strategies: i) by hypothesising potential futures, not all potential
solution routes need to be fully evaluated, ii) validation is imminent,
ceasing infeasible routes, iii) based on likeliness and envisaged
impact, parameter variations in the prototypes can be prioritised,
and iv) during simulations/evaluations the results are immediately
fed back in the digital prototypes, so the models/routes can converge
more purposefully. It is notable that despite such strategies to reduce
unnecessary computation, the exploration space in a daydreaming
factory would still be relatively large and that it is important to char-
acterise this space in contrast to the solution space of traditional opti-
misation approaches.

2.3. Exploration space and solution space � scenario generation

The open-ended and hypothesis-based framework of reveries in a
daydreaming factory result in an unconfinable exploration space,
rather than a well-defined solution space or even a possible solution
with a (small) bandwidth of variations allowed as is the case with
optimisation problems. Professor Kanji Ueda pioneered the thinking
in manufacturing systems about classes of problems based on the
availability of information about the space that is considered [206]:
class I comprising problems with complete descriptions, class II prob-
lems with incomplete description of the environment but the pres-
ence of full specifications, and, class III comprising problems with
incomplete description of the specification and the environment.

The exploration space in a daydreaming factory falls in class III
and is the result of diverging activities (or reveries), whereas the
solution space in optimisation is the rendition of the convergence
process, defining the more delineated sub-space that captures the
realm of viable, feasible and unequivocal potential outcomes. Where
solution spaces are often constructed in a bottom-up manner (quite
applicable in e.g [168].), the exploration space instigates the search
space in a more top-down manner.

Navigation in a structured and continuous solution space is the
basis of many mature approaches [182] in a wide variety of topics in
production, ranging from design [107] via toolpath optimisation
[140] and fabrication [39], to assembly [4] and life-cycle aspects
[102]. Furthermore, this approach has been used to achieve joint
optimisation across some of these stages as well [200]. A variety of
moethods can be instrumental in navigating the solution space,
whether they address the entire solution space or a specific subset of
all aspects [202]. Moreover, different mechanisms are used to
increase the efficiency of the optimisation process, ranging from
(smart but) brute force, via linear optimisation [185], genetic algo-
rithms [135], simulated annealing [89] and AI [35] based techniques.
So, as soon as such a solution space can be defined, such approaches
can be used to single out promising solution candidates. These
approaches are infeasible for the more divergent exploration. The
main reason for this is that the solution space is suitable for naviga-
tion based on interpolation, whereas the exploration space requires
extrapolation. Additionally, many reveries result in an exploration
space that is

� subjective; different stakeholders have different interpretations of
the same subject or aspect. This potentially renders a point in the
exploration space simultaneously valid and invalid � dependent
on the perspective involved.

� incomplete; as the exploration space is the result of diverging
activities, it will not form a continuum. Rather it may contain indi-
vidual markers that replicate insights. Moreover, any insight may
be defined in only a subset of the available dimensions.

� uncertain; the exploration space captures insights that are not
necessarily underpinned or validated (yet). Hence, these insights
are capricious and potentially deceptive steppingstones in deter-
ministic optimisation.

� dynamic; the diverging activities that shape the exploration space
engender continuous adaptations of that space as well as path-
dependency. Moreover, as feedback and learning are inherent to
the daydreaming factory (see Fig. 2 and section 5), this path
dependency is an inherent way to shape the exploration space �
rendering parts of the exploration space sparse and other parts
dense.

In a different representation, the exploration space captures the
impressions of scenarios prefiguring potential futures, where the
solution space renders the consolidated and consistent version
thereof. In terms of the digital system reference (Fig. 3), both the
exploration and the solution space relate to the digital master and
prototype, albeit with different tools and techniques to process them.

Whereas myriad approaches exist for closed and continuous solu-
tion spaces, navigating the open-ended and fragmentary exploration
space takes certainly a different attitude and more inductive, demiur-
gic, and creative approaches. At the same time, simultaneously navi-
gating in the exploration and solution space does add value for
daydreaming, as both spaces can reinforce the navigation processes
while guiding both the diverging and converging activities concur-
rently. Consequently, daydreaming factories sidesteps the traditional
hierarchical way of organising production environments and decision
mechanisms.

2.4. Sources of creativity in reveries � definition and exploration

As the digital system reference for daydreaming is rooted in the
depiction of current, envisaged, and prototypical situations, the basis
for daydreaming rather lies in the information content that in over-
arching and prescriptive process models. With that, daydreaming
relies on combining, aligning, evaluating, assessing and selection
information entities.

Hence, any set of tools, techniques, and methods that can process
these information entities can contribute to the effectivity and effi-
ciency of daydreaming. With that, deterministic optimisation



Fig. 5. Virtual Factory test setup at the University of Twente.

Fig. 6. Demonstration of AR for interactive evolvement in factory layout planning.
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techniques, AI approaches, simulations, engineering models, and
human engineering skills can conjointly and equivalently partake in
creating scenarios [32], assessing potential futures, and in supporting
decision making. In this, the crucial creativity can be based on engi-
neering models, but foremost stems from smart engineers, smart
algorithms or intelligence evinced by experience, observations, learn-
ings or any other form of acumen. This creativity contributes to find-
ing inward-oriented variations involving originative combinations of
existing parts of the exploration/solution space, but certainly also to
adding out-of-the box ventures based on intuition, experience, edu-
cated guesses or even serendipities.

Whereas these ventures may lead to radical solutions or paradigm
shifts, their underpinning is often difficult to establish in a determin-
istic, structured, or transformative manner, thus relying more on
human creativity and ingenuity. Consequentially, the predictability
of scenarios and their building blocks may suffer from extensive cre-
ativity and out-of-the-box thinking. However, scenarios are embed-
ded in mutually related engineering models, analyses, simulations,
and what-if analyses, while being contextualised by both the as-is
and the to-be models and are being guided by the strategy definition.
Therefore, a scenario will have an inherent coherence (or path-
dependency) that is instrumental in establishing its validity and
added value. Consequently, scenarios are a kind of preferent vectors
in the exploration space, as such spanning and driving the efforts in
establishing solution candidates. These efforts involve extensive anal-
yses, simulations and evaluations (see sections 3, 4), so the quality
and realism of any scenario (as the storyline that captures a reverie)
will have significant impact on the performance of the validation of
the scenario. In this, e.g., massive parallelisation (see Fig. 2), does
allow daydreaming to explore seemingly disconnected potential
futures. Moreover, massive parallelisation is also instrumental in
probing the stability of identified potential futures, strengthening the
antifragility of reveries.

As, however, reveries are inherently aiming at capturing non-
existing solutions or combinations, it is not always possible to assess
the realism of reveries beforehand. In essence, reveries in themselves
should not be hampered by any a priori sanity check or set of con-
straints. At the same time, it is essential to keep the scenario genera-
tion and evaluation process manageable. Here, the triad consisting of
i) digital system reference, ii) captured experience and iii) learning
from navigating the exploration space is conducive for budgeting, tai-
loring, and managing all calculation/simulation efforts involved.

2.5. Learning from explorations of scenarios � updating models

In this, closing the feedback loop is paramount (see the lower
arrows in Figs. 2 and 3). It only makes sense to make scenarios, fore-
casts and unrestrained what-if analyses, if their potential consequen-
ces are made explicit and lead to learnings for the factory itself, but
foremost to learnings that allow the daydreaming factory to recon-
noitre even more appropriate paths for scenarios and what-if analy-
ses. In other words, the feedback and learnings determine how well
the daydreaming factory is able and enabled to delineate the most
suitable and fruitful part of the solution space mentioned � while
inherently considering any (evolving) set of optimization criteria that
may be imposed or encountered.

Hence, the daydreaming factory becomes a bi-directional learning
factory: the factory is trained based on the input of e.g. scenarios and
what-if analyses, but these scenarios and analyses can simulta-
neously evolve and be steered by what is learned in the factory and
in the myriad simulations and measurements at all levels of aggrega-
tion: from process conditions (robust optimization) to business mod-
els and company strategy. Daydreaming will not single out an
‘optimal’ scenario or configuration of a scenario, it rather allows a fac-
tory to learn from assessing the consequences and outcomes of sce-
narios. This gives companies a way to harmonise company strategy
and envisaged directions for future developments in a purposeful
way.

With that, the conglomerate of all aspects yields a sandbox that
figuratively allows for daydreaming: asking “what-if” questions and
testing consequences thereof, without breaking anything and learn-
ing at the same time. Provided that this learning leads to a more pro-
found grip on the behaviour of the factory (1) and a continuous
evolvement/improvement of the structure that underlies the solution
space (2), a new way of achieving breakthroughs in factory environ-
ments comes within reach. This is in contrast to traditional methods
of achieving the best possible parameters through optimisation.

2.6. Experiencing potential futures � updating representations

A precondition for this is that anyone that interacts with the day-
dreaming factory can engage in such a way that he or she will not
only be able to ‘see’ or ‘analyse’ possible futures, but rather can expe-
rience possible futures. In so-called synthetic environments, the day-
dream factory can actually come to life � combining the real world,
the cyberspace bur foremost also the dynamics/behaviour of the fac-
tory. This allows for real-time interaction and real-time learning and
even interactive evolvement (optimalisation). Technologies such as
virtual factories [191] seen in Fig. 5, mixed reality [76], Virtual Real-
ity/ Augmented Reality (VR/AR) [133,201] as shown in Fig. 6, dash-
boarding [26], and rapid hybrid prototypes [122] all provide
promising potential for such evolvement.
2.7. Fidelity of Digital Models - instantiation

Using digital models for exploring potential futures with sufficient
confidence in results requires the use of models with the appropriate
fidelity. An important consideration would be the fidelity of models
required for daydreaming. Consider a cutting tool force model [75]
that is used to calculate the cutter mechanics at the interface of a
milling operation.

While this model may be useful for estimating the forces at the
cutting interface, it is not directly useful for thinking about the
dynamic model of the machine tool or trajectory planning. For such
purposes a model with a different fidelity such as those presented in
[40,219] would be required. When it comes to the high-level toolpath
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planning a higher-level model, perhaps with simple kinematics such
as the one explored in [208] would be necessary. The logistics of
moving resources between the different machine tools would require
a shop-floor level model such as the model used in [80]. Exploration
of the same shop-floor as a constituent of a global production net-
work requires yet another model with a different fidelity [121,207].
Effective daydreaming would take place across multiple levels of
fidelity combining foresight that would result from a combination of
models with various levels of fidelity as shown in Fig. 7. Multi-fidelity
Fig. 7. Examples of models with different fidelities used in daydreaming (adapted
from [192]).

Fig. 8. Anarchic manufacturing system as a scenario exploration tool (based on [110]).
modelling is used as an approach in many fields [22,175,224] includ-
ing manufacturing systems [178,216,220]. It is clear that models with
a higher fidelity tend to require more computational power but will
result in better precision and less uncertainty in predictions [151]. In
an ideal implementation, daydreaming could take place at any fidel-
ity, with the understanding that with lower fidelities the uncertainty
associated with the generated foresights will be higher. However,
this does not necessarily mean that the foresight will be less valuable
as daydreaming is primarily taking place in the exploration space and
a vaguely defined area in the exploration space may be translatable
to a concrete solution with human intervention. Furthermore, as day-
dreaming continues as an ongoing process, in the absence of shocks,
the accuracy of foresights will increase [106].

With the assumption that daydreaming factories are attempting
to converge to an antifragile system against external stimuli and
internal inertia resulting from disruptions, exploring the fidelity of
models that have shown the greatest promise would be prudent. The
types of models in the literature that have focussed on disruptions
include: (1) inventory models, (2) configuration models, and (3) dis-
tributed manufacturing models

(1) Inventory models: Constrained aggregate inventory models of

the total cost (or profit) form an important part of the research
literature for disruption management. These are models where
the problem is formulated as a mathematical optimisation
model with the objective function in the form of maximisation
of a function of the order release schedule of products. Such
models range from multi-product [117] to those that focus on
the role of inspection as early determiners of quality issues
[157] to those that consider sustainability as well as disruption
[73]. Research based on these models is an example of focussed
optimisation of one or two dimensions based on one class of
variables. The parameter optimisation and schedules that are
derived from these models yield good results when good quality
data is available but in the context of larger global production
networks, the complexity of gathering the necessary data make
them ineffective and only useful in limited instances [90].

(2) Configuration models: The other class of models that feature
prominently in the production system literature to deal with
disruptions are those that consider the configuration of the
manufacturing system as a decision variable as well as the work
schedule. These include models that focus on optimal design
before the occurrence of disruption [54,95] and those that focus
on reconfiguration following the disruption. The latter category
saw a significant growth in numbers in the aftermath of global
disruptions [36,55,217].

(3) Distributed manufacturing systems: In addition to inventory
models, another class of models that regularly consider disrup-
tions and their effect on manufacturing systems are distributed
systems, often expressed as multi-agent manufacturing systems
with models comprised of interaction rules between the various
agents [28,110,174,188,197]. This class of models, depending on
the flexibility of the approach that has been utilised to create
the agent framework may allow emergent behaviour to synthe-
sise [204]; a prospect very well aligned with the daydreaming
framework. In the absence of strict architecture of a pre-deter-
mined decision-making framework, an anarchic manufacturing
system composed of distributed agents interacting with each
other as the scenario assessment tool in the daydreaming
framework may extrapolate in the exploration space [123] as
seen in Fig. 8. In the anarchic manufacturing system, the differ-
ent elements of the system negotiate based on a market bidding
mechanism. A product announces its requirements (a), resour-
ces may send bids (b) and the product would accept the best bid
based on internal criteria (c). There may be other negotiations in
the same environment at the same time, for example for procur-
ing maintenance services (d). Examples of applications of such
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anarchic systems have been shown in dealing with complexity
[111], balancing multiple objectives [112], mass customisation
[109], cloud manufacturing [113], transition to new product
lines [108] and assembly [114] as well as dealing with disrup-
tions.

These examples are representative of the types of digital mod-
els at various fidelities that would form the basis for scenario gen-
eration in a daydreaming factory. With the selection of the digital
model fidelity and the choice of method for exploration of model
space, a process would be desirable to automate the generation of
extrapolation scenarios instead of relying on constant human
input.

2.8. The theory of domain randomisation and its application in reveries
in daydreaming factories � domain randomisation

Domain randomisation is consideration of all parameters, varia-
bles and even some of the constants in the exploration space and ini-
tialisation of scenarios based on random values or guestimates
chosen by experts for all of these.

This is often done using a low-fidelity digital model of a physi-
cal artefact that is computationally inexpensive. Each randomised
model is then simulated and the inputs from virtual sensors that
mimic the sensors available on the physical system are recorded.
In many of the implemented systems, the values from the virtual
sensors are used to train a machine learning model, although any
type of learning, human, machine or a combination of the two
could hypothetically be used to establish foresights. In case of
machine learning, the foresight takes the shape of the trained
model.

The trained model is then connected to the physical sensors and
effectors connected to the actual system. The model is then used for
decision making based on the input from the real sensors.

The technique has been used with success in computer vision
[193], robotic pose manipulation [164] and the control of autono-
mous vehicles [156]. The formal definition articulated in [152] can
be adapted to daydreaming factories as follows:

Let us assume that st 2 S indicates the state of a system at time t.
The strategy pðajsÞ defines one approach for investigating the explo-
ration space E given the state swhere each element samples an action
a. The actions could range in scope from changing process parameters
to modifications in the system architecture and structure. For exam-
ple, in the state where all machines are working, the action “no main-
tenance” or “maintain machine 1” could be examples of such actions
resulting from the “maintenance” domain associated with the
manufacturing system.

The reward function r : S � A!R denotes desirability of the
action at the given stage. A higher number signifies a higher desir-
ability.

In a manufacturing system, this function would typically be a
representation of profits, whereas in a daydreaming factory it would
be either a compound function or a set of rewards capturing dimen-
sions such as environmental impact, social sustainability, and rare
resource usage as well as economic returns [2,14,77,194]. For brevity,
the notation rt ¼ rðst ; atÞ is introduced. A daydreaming system would
strive to maximise the aggregate return function over the horizon T
which can be defined as:

Rt ¼
XT

t0�t

gt
0�trt0 ð1Þ

g 2Rþ is a discount factor that controls how important getting
good rewards quickly would be in the exploration context. In pursuit
of antifragility, higher values of g are likely to be assumed. The objec-
tive is to find the best strategy p�that yields the maximum return in
the system J:

p� ¼ argmax
p

J pð Þ ð2Þ
Assuming that each planning horizon starts in a fixed initial state,
the return that can be expected can be written as

J pð Þ ¼ E R0jp½ � ¼ Et»p tjpð Þ
XT�1

t¼0

rt ð3Þ

Where pðtjpÞ is the likelihood of the given trajectory expressed as
t ¼ ðs0; a0; s1; . . . ; aT�1; sT Þ under the strategy p. The likelihood is the
product of arriving at each of the states given the actions that are
taken in the preceding state:

p tjpð Þ ¼ p s0ð Þ
YT�1

t¼0

p stþ1jst ; atð Þp st ; atð Þ ð4Þ

Note that the transition model pðstþ1jst ; atÞ is determined by the
dynamics of the production system and the exploration space. If
unlimited experimenting was possible in the context of the dynamics
of the system, good strategies could be determined. However, in the
context of manufacturing systems, sampling from the real-world
dynamics is infeasible economically.

In domain randomisation, therefore, an approximate dynamics
model is used p̂ðstþ1st ; atÞ � pðstþ1jst ; atÞ. p̂ takes the form of the rever-
ies in daydreaming factories. An individual approximation may not be
representative of the outcome in the physical manufacturing system;
therefore, the approach is to decide the strategy based on a variety of
dynamics models instead of just one. With the introduction of a set of
parameters m that defines the dimensions of the exploration space the
possible set of dynamics can be written as p̂ðstþ1st ; at ;mÞ. So the objec-
tive is updated to maximise the return that can be expected across a
distribution ðrmÞ of different dynamics models in the exploration space
(see [210] for a discussion on selecting the parameters):

p� ¼ argmax
p

Em» rmEt»p tjp;mð Þ
XT�1

t¼0

rt ð5Þ

Domain randomization thus relies on the digital system reference
with an instantiation of underlying engineering models to establish
the dynamics of the system to randomise variables that are likely to
affect the performance significantly. This makes the method useful
for daydreaming as the resulting reveries may represent possible
futures with a significant change in performance thus getting the fac-
tory closer to antifragility.

The investigation of the exploration space may be carried out by a
variety of methods, ranging from brute-force algorithms [78] if the
desired exploration space is small to heuristic strategies [56] (such as
path-dependent stepping stones to parameter refinement and refin-
ing grids), using meta heuristics such as particle swarm optimisation
[30] and multi agent based exploration [92] to using quantum com-
puting techniques [51].

With appropriate engineering models, re-use of simulations
would be possible, and it would be feasible to consider the simplifica-
tion of common simulations (e.g. using an algorithm to approximate
complex simulations in relatively stable situations). Without a stable
base and a good understating of the dynamics of the system in the
form of a well-articulated model, any forethought will be vain or at
least unrealistic. So, the existence of the engineering model under-
pinning the digital representation of the production system is critical.

In addition to automated domain randomisation, an integrated
conglomerate of mutually dependent simulations can be defined by
expert users who have an understanding deeper than the available
digital instances of the engineering model in an attempt to converge
on a good answer quickly.

This paper will not enumerate all existing randomisation
approaches, but rather discuss how the resulting scenarios are used in
conjunction with simulation and analytics to create useful foresights.

3. Learning from simulation in reveries

In the past few decades, many advances in simulation of
manufacturing systems have come about [131]. The overall purpose of
the technique is to evaluate the modelled system under a set of



Fig. 9. Various fidelities of simulation models and information exchange between the
systems involved (adapted from [71]).
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parameters [142]. In the context of this paper, fundamentally, the set
of parameters are generated based on pursuit of a planning strategy
and formalise the structure of this application in the daydreaming fac-
tory framework as an enabler for investigation of the exploration
space.

3.1. Simulation and its use in foresighting

Simulation [172], in general, covers a large arsenal of techniques,
technologies and tools, the focus of the paper is on manufacturing
systems, so the interpretation of the term simulation here refers to
the focus on factory simulation. Simulation of manufacturing systems
is a well-documented field [141]. This paper will not contemplate all
of the details and instead focus on providing the working definition
and highlighting related fields that fit in the daydreaming framework
including factory control (intervention based on digital representa-
tion on the physical factory), bi-directional communication (twin-
ning) and product development (scenario generation and
assessment).

According to the VDI (Verein Duetscher Ingenieure � The Associa-
tion of German Engineers) guideline 3633 [10], simulation is the imi-
tation of a dynamic process within a system employing an
experimental model. The aim of this simulation is to receive results
that may be transferred to real systems. In addition, simulation
defines the preparation, execution and evaluation of directed experi-
ments within a simulation model. Including these basic steps, the
execution of a simulation study is a cyclical and evolutionary process.
Typically, the first draft of the model will frequently be altered to
make use of in-between results and in general the final model can
only be achieved after several cycles. The aim of such traditional sim-
ulation studies is to arrive at objective decisions by dynamic analysis
and support the user in the decision-making process.

Modelling is regularly considered as a powerful tool for visualising
systems and enabling both quantification and observation of their
behaviour. Manufacturing system modelling may use different for-
malisms and modelling methods, depending on the field addressed
by the considered problem and aspects to be described.

Building a model is rarely an end in itself. The goal of most analy-
ses is to be able to make a ‘good’ decision. Whether the system is a
production line, a distribution network, or a communication system,
modelling can be used for gaining knowledge of the system at differ-
ent life-cycle phases, for evaluating a certain feature in the system,
for prediction of system performance, for comparison between sev-
eral alternatives, for problem detection, for evaluating and improving
system performance.

3.2. Simulation modelling techniques

Restricting the scope to simulation-based modelling of factories,
essentially three major simulation techniques shall be considered:
Discrete-Event Simulation (DES) [199] which has been the quasi-
standard for modelling complex system in operations research com-
munities for many decades; Agent-Based Simulation (ABS) a newer
approach in factory modelling [176]; and, system dynamics which
has attracted limited attention in manufacturing systems [44].

Multimethod approaches combining some of these methods have
been used. A complex DES model, for example, may be utilised on-
line for short term rescheduling of the factory while agent-based
technology is applied for modelling the behaviour of the human
operators in the shop-floor [154]. In another example, system
dynamics and agent based modelling are combined for a remanufac-
turing study [139]. Nevertheless, DES remains the most popular
modelling methodology in manufacturing system simulation, espe-
cially for discrete parts manufacture and thus important in the con-
text of daydreaming factories.

3.3. Simulation models and factory control

This section covers the applications of simulation on different lev-
els of a production systemmodelled at various fidelities. The different
roles of simulation in production planning and scheduling and pro-
duction control systems, and the corresponding fidelities are shown
in Fig. 9.
To make the categorization easier, three main levels are defined. A
real production environment is presented on the left side of the
figure. The physical system constitutes the lowest level that includes
the real manufacturing facilities of the factory.

The middle level corresponds to the control and schedule execu-
tion system and generally, this is the Manufacturing Execution Sys-
tem (MES) of the production system and the link between the
simulation model and this system mirrors the “intervention” connec-
tion between the digital representation and physical factory in the
daydreaming framework. It controls the physical system, i.e. propa-
gates the scheduled tasks as commands to the physical system and
receives reports about the execution state of the plan. This level, nor-
mally, does not have any complex planning or decisions-making
function but it has a close connection to the resources at a lower
level. Any change in the state of the lowest level is described by
events, and these events will cause reactions in the control system.

The highest level represents the integrated planning and schedul-
ing system, where complex decision-making and scheduling pro-
cesses are carried out. At this level, the simulation models tend to be
combined with additional components such as optimisation algo-
rithms and sensitivity analysis resulting in “Extended” simulations.
The resulting plans from such simulations are executed by the physi-
cal system under the control of the second level. The planning and
scheduling system gets feedback information about the plan from the
second level. Both, new planning and scheduling tasks and feedback
information are received from the production database. About pro-
duction systems, the third level is usually very complex. In order to
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eliminate the technical problems in the design phase, the modelling
and simulation of the whole system is needed. However, in order to
model the three levels in one framework substantial compromise is
needed due to the different fidelities required. A solution that is often
used is to use separate models of the system at various fidelities as
shown in Fig. 9. This manifestation of the planning functions on dif-
ferent levels of operational, tactical and strategic have been explored
by researchers in this area [45,179]. Daydreaming, being a top-down
exploration, starts at the highest level (i.e. strategy) which would cir-
cumvent the challenges of consistency between the current state of
the physical system and the digital representations. With availability
of computational power and good data, daydreaming can extend to
the more operational layers, where possible and appropriate.

Generally, a simulation model is developed, for modelling the
overall behaviour of the system, including control methods and
reflecting the physical system by modelling the resources [69].
Mainly this kind of simulation model (simulation model in 9) is
applied for testing and validating production plans and collecting sta-
tistical data. To use the terminology from section 2.8, simulation is
used to generate foresight in the form of Et»pðtjp;mÞ. The detail, the
granularity and the time-horizon of the simulation model depend on
the system to be modelled, or more accurately, the fidelity with
which the state and the actions are modelled. In the daydreaming
framework, these features are chosen to enable fast simulation runs,
thus ensuring great number of model runs, to allow a robust calcula-
tion across the entire rm distribution. Fig. 10 shows the diagrammatic
view of the detailed process of reveries in the context of simulation.
In this context, the explo-ration domain is used to parametrise many
Fig. 10. Reveries and generation of foresights using simulation.
simulation models. The probability distribution assumed for the
parameters can control how much the reverie would favour explora-
tion of black swan events. For each set of values for the selected
parameters, a simulation is used to estimate the dynamics of the sys-
tem and predict the future state. The aggregate results from the fore-
sights which are then used to form the strategy and a catalogue of
actions with the best expected outcomes given any state of the sys-
tem. These outputs may be used, as shown in Fig. 2, to update the
strategy, change and update engineering models or modify the digital
representation to enable operational intervention in line with the
daydreaming paradigm.
There are numerous examples of this method in the recent litera-
ture in simulation-based improvement of manufacturing systems
that implement, partially, the daydreaming framework: [183]
deployed the framework together with reinforcement learning to
enhance the operational efficiency of a production control system.
They showed that a reinforcement learning based adaptive order dis-
patching algorithm, in this framework, can outperform existing rule-
based heuristic approaches.

On a similar basis, [226] who use environment simulation rather
than reveries and daydreaming, proposed a tool for generalised con-
version of production control decisions based on discrete events sim-
ulation to reinforcement learning environments that can use the
basis of the simulated system to approximate control outcomes and
determine strategies that are shown to perform better than the
heuristics that are typically used.

[173] show that for single unit transfer, an online reinforcement
learning based scheduling method utilising many simulation results
competes with heuristic methods and verify that such strategy is
robust to stochastic processing time.

The concept of using discrete events simulation in this manner
has attracted sufficient attention to encourage researchers to investi-
gate means to automate the integration of the simulation and learn-
ing tools. As exemplars: [52] proposed a framework for integration
with a commercial off-the-shelf simulation software system and
[227] articulated the workflow for converting a smart manufacturing
context into one where reinforcement learning based on simulation
could be achieved automatically.

In the absence of full digital representations of Fig. 3, digital twins
provide a good source of information as the basis for reveries. These
have been used in the context of production control to assess the
rewards for a reinforcement learning approach [150]. The applicabil-
ity of this approach in dynamic production scheduling problems has
also been demonstrated with the data coming from various elements
of the cyber-physical system being utilised to form and run the simu-
lations [72]. The paper also demonstrated the benefits of the tight
integration between the simulation framework and the learning
framework as underpinned in daydreaming.

Another alternative for foresight generation in the context of
automated machine learning from synthetic data generated from
simulation (or indeed other computational sources) is data farming
[53]. This term has roots in the military [103] and has gained more
and more attention with the fact that computing capabilities consti-
tuting information storage, information processing and information
transmission speed have increased more than a trillionfold since the
1950s making such approaches feasible. Researchers have articulated
how data generated from such approaches is not “big data” but “bet-
ter data” that could yield better information [167].

Simulation has been used as means to optimise parameters in a
production system. Generally, in a system like this, the simulation
module is applied as a fitness evaluation function of an optimization
algorithm [86,163]. These algorithms may reside outside the simula-
tion software in a separate solver system [16] or in the simulation
system as an integrated sub-module [66].

The boundary layers between the different levels in mapping the
simulation and emulation model (in Fig. 9) and the daydreaming
framework (in Fig. 2) are not always well defined. For example,
researchers have made distinction between simulation where the
control layer is replicated and emulation (emulation model) which
lacks the control elements [58] but may incorporate parts of the
hardware in the model. Despite this difference, the applied modelling
techniques across the two levels are the same. Instead of validating
production plans, emulation is applied for testing and evaluating con-
trol systems. Emulation models are not generally used for experi-
mentation in the same manner as simulation models. As an
emulation model reflects the physical system more precisely, it can
be used to carry out a constrained series of verification procedures to
ensure the performance or reaction of the control system [125]. In
other words, regardless of the layer at which the interaction between
the simulation (or emulation) model and the physical factory is tak-
ing place, a corresponding link mirrors the relationship in the
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daydreaming framework. Actions are, in fact, the interventions car-
ried out on the physical factory based on the digital representation
and production strategy and predicted results form the learning and
strategy in the daydreaming framework.
Fig. 11. Mass analytics with a GPU (based on approach in [116]).
3.4. Learning beyond the model used for simulation and verification

One of the fundamental hazards in using synthetic data generated
based on a model is the speculation that any learning, be it by human
or machine, will only result in the rediscovery of the model that was
used to generate the said synthetic data [145]. However, for any non-
trivial discrete manufacturing system, the number of nonlinearities
that permeate in the generation of the system model diminish the
probability of such an event. The virtual environment generation that
takes place in daydreaming factories, generally involves a shift in per-
spective between the original engineering model used as the basis of
generating the parameterised digital representations and the data
that is gathered. The functions generating the data, in general, are
nonlinear and hard to invert. Considering these properties the chan-
ces of rediscovery of the initial model is not high [198].

The other consideration which is often a major issue in the use of
simulation is the validation and verification of the model before it
can be used to reliably predict the behaviour of the system [131].
However, one of the main advantages of using the results of many
simulations as synthetic data for learning is that there is less need for
verification of each individual model to match reality. There is
research that shows that if the parameters that describe the explora-
tion space are reasonably realistic the aggregate learning achieved
could be of good quality [156].
4. Learning from analytics in reveries

While digital simulations and purely numerical methods have
played an increasingly important role in evaluation of engineering
models; analytic methods still have a pivotal role in generative mod-
els and find good use in evaluative assessment of systems of higher
orders of complexity [24,49,57]. For example, consider the case of an
engineering model such as Markov Chains applied to several work-
stations in a hybrid serial and parallel configuration in an attempt to
evaluate performance [25]. These techniques have provided a good
balance between performance and precision with many of them
allowing iterations to get more precise answers. The use of parallel
computing including graphical processing unit (GPU) based ones
allow analysis of many iterations of many models at the same time.
The iterations in methods such as those that set thresholds and
resolve them until the overall best answer is obtained [116], can thus
be carried out in parallel instead of running consecutive iterations
one after another. This allows a significant increase in speed and
hence applicability of the methods for generating foresights about
the possible changes in and around the production system.

The time saving offered by these techniques which allow mass
analysis of similar models with different parameters may be signifi-
cantly beneficial for models that consider different objectives in an
integrated manner [3]. One of the relatively recent advances in this
area is the use of consumer graphical processing units to allow paral-
lel computing using accessible and inexpensive hardware [144]. For
an example see Fig. 11 where the source paper proposes an iterative
process where the parameters are continuously modified and rounds
of optimisation are carried out until the threshold for the desired
throughput is met. In mass analytics, the alternative approach of con-
sidering many different values for the parameters (drawn from the
probability distribution rðmÞ) at the same time and then comparing
and selecting the best outcomes is utilised.

The application of such methods is still emerging in manufactur-
ing systems and is in early stages of research and development. How-
ever in other fields that have similar computational needs, the use of
GPUs has shown excellent promise and speed ups [101,166].

The performance gain from mass parallelisation allows rich data-
sets that can be used to achieve high quality learning to be produced
using analytic techniques. In the context of daydreaming, this enables
extrapolation in the exploration space in reasonable times.

In addition to simulation and analytics, the third class of techni-
ques that can be used to predict the trajectory of the system are those
that are based on data analytics and machine learning applied to the
data that is gathered from the physical factory (e.g. [9,50,97]). How-
ever, these have been excluded from the scope of the paper as Gao
et al. provided a comprehensive overview of these techniques [48].
Combinations of these methods have also been explore by research-
ers (e.g. simulation and learning [153], analytics and learning[57],
and simulation and analytics [27])

5. Transferring learning and twinning for foresighting

Completing the dynamics loop in daydreaming factories requires the
ability to transfer learning from the synthetic world of the reveries to the
physical system. In the proposed framework in Fig. 2, it is shown that
the intervention in the physical system is through the digital representa-
tion of the factory and no direct action is taken based on the achieved
learning. This approach is based on that proposed around the develop-
ment and operation of digital twins [181]. Twinning or mirroring which
is the cycle between the physical and digital counterparts of the system
would allow a controlled implementation of interventions [68].

In the vast majority of production systems, a proportion of inter-
ventions will be reliant on human action based on the produced fore-
sights. A number of frameworks have been proposed to formalise the
process of such action in the context of smart manufacturing [5,6].

The necessity for human intervention often brings with it a desire
for explainability for the generated foresights. Most machine learning
approaches are still “black box” and while automated systems follow
adjustment instructions, the humans interacting with such systems
often seek an explanation. A deep exploration of explainable artificial
intelligence [29] is outside the scope of this paper; examples of appli-
cation in manufacturing can be found in [59,85,170,221]

5.1. Transferring learning from the physical space to the cyberspace

The prospect of automated transferring of learning from one context
to another is one that has gained significant attention from the machine
learning researchers [148]. In the context of daydreaming, the transfer
from the physical space to cyberspace may take place at different levels.
The complexities of the hardware configuration of physical sensors and
network connections is addressed under internet of things [134] and 5G
enabled manufacturing [19,215] and will not be considered.

At the lowest level of abstraction, what is transferred is data.
Depending on the context, this may already constitute learning (e.g.
direct measurement of a pre-defined quality indicator i.e. surface
roughness in a polishing process), but in most cases higher levels of
abstraction are required for learning to take place. Many different
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protocols allow data from physical manufacturing resources to be
captured, transferred, and linked with a digital representation [48].
At higher levels of abstraction, information and knowledge [218]
become the subject of transfer.

Setting aside the automated transfer of learning, the human initi-
ated transferring of learning has long been a generalisation mecha-
nism for extrapolating from limited experiences to make changes
towards achieving a goal in a larger system.

In consideration of the automated transfer of learning, generalisa-
tion of limited learning from the physical system is of significant
interest. The core idea here is to devise a generator that creates syn-
thetic data and then the learning from the synthetic data is compared
to that achieved from the physical data. The generator is adjusted
until there is no discernible difference between the learning resulting
from the physical data and that from the synthetic data. The genera-
tor can then be used to generate more generalised data that main-
tains the core attributes of the data generated by the system [43].

The learning is thus transferred from the physical system to a cali-
brated cyber system that can be adjusted and on which experimenta-
tion can be conducted through means like simulation [137].

Fig. 12 shows this approach in diagrammatic formwith simulation
as the generation technique using the terminology introduced in sec-
Fig. 12. An approach for transferring learning from the physical system to cyberspace
(adapted from [20]).
tion 2.8 based on the work presented in [20]. The strategy pu is ini-
tially selected with the parameters mu and the probability
distribution of rðmuÞ for the parameters. The strategy is then carried
out in the real system and data is gathered to establish the trajectory
based on observed system states. Simultaneously, the strategy, the
parameters and their distribution are used to simulate trajectories.
Afterwards, the discrepancy between the two are calculated and the
parameters and their distribution are updated over time to minimise
the discrepancy. The updates stop when the discriminator is not able
to distinguish between the synthetic learning and the learning
achieved from the physical system.

5.2. Transferring learning from the cyberspace to the physical space

The main method of transferring learning from the cyberspace to
the physical production system has been manual intervention. For
example, an engineer considering various scenarios in a simulation
model would make the decision on how to change the parameters in
a physical system to implement the results learned from considering
the overall outcome of all simulation.

The more recent research in digital twins and associated technolo-
gies has allowed a consideration for automated transfer of learning
from the cyberspace to the physical space [81].

The general approach for transferring learning from the cyber-
space to the physical space based on foresights (as shown in Fig. 10)
would be to use physical sensors to establish the state of the system ð
stÞ and implement the best set of actions (atÞ under the circumstances
(with a given m) in the control structure of the digital representation.
This would then get replicated in the physical system automatically
through the bi-directional information transfer expected in a digital
twin or through manual intervention. As a good example of bi-direc-
tional information transfer, a virtual-physical scheduler system based
on offline training at different fidelities using this approach was dem-
onstrated in [214].

In some cases, utilising an interim virtual model created with a
different perspective would allow intermediate learning that is easier
to transfer to the physical space. In such cases first the learning is
attempted by considering a synthetic data and mapping it to another
set of synthetic data. The learning is then transferred to allow map-
ping between data from the physical space and the second set of syn-
thetic data, which, in turn is used for learning and determining
strategy [65].

One area in manufacturing systems where this aspect of transfer-
ring learning has been used prominently is in human robot collabora-
tion. For example, an investigation into deep learning for recognising
the motions of the human and the context to infer the intention of
the operator has shown great promise in the method [212]. A proof
of concept for adaptive path planning for human robot collaboration
based on a digital twin was presented in [31]. The authors showed
how the learning in the digital twin could be used to effect control in
the physical system to avoid the human operator during operation of
the robot.

5.3. Combining learning from cyberspace with learning from physical
space

While transferring learning from physical space to cyberspace and
vice versa is used to great effect in the manufacturing systems
domain, it is also necessary to consider the cases where the learning
from both domains is combined. This is usually through an extension
of the generalisation method explored in section 5.1. Some informa-
tion from the physical system is used to create and train a synthetic
data generator which then can be used to generate larger datasets
that have attributes similar to those exhibited by the physical system
[43] where the general approach to create the synthetic data genera-
tor and calibrate it based on learning from the physical system (see
Fig. 13). Generative adversarial networks are a particular implemen-
tation of this approach and have been used successfully in a range of
applications in production systems [87,98]. In these approaches, a
generator is used with initial parameters to create synthetic learning.
A discriminator is then used to find measurable differences between
learning gained from data from the physical system and synthetic
data. The differences can be used to update the parameters in the
generator and the loop can iterate until calibration is achieved to the
require accuracy. The generator is then used to create the necessary
data for the purpose of the system.

As examples of this approach, its use in establishing the root cause
of quality issues as demonstrated in [120] is noteworthy. In this case,
the automated learning is combined with expert knowledge using
Bayesian techniques. In contrast, the sensitivity of the success of the
approach to the quality of the utilised model has been highlighted in
[177]. It was shown that if the underlying model for creating of the
synthetic data is not calibrated well with the physical system the
quality of the learning will not be high.

Despite this sensitivity, the effectiveness for fused learning
between physical and cyberspace has been shown in domains as var-
ied as knitted garment manufacture [74], detection of industrial



Fig. 14. Co-evolution of physical and digital entities for foresighting.

Fig. 13. Initialisation and calibration of synthetic data generator for fused learning
between physical and cyber systems (adapted from [43]).
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components in various environments [94], categorisation of fatigue in
materials [67], and, surface defect detection [64].The advantages and
challenges in combining learning from the synthetic and real data in
the context of manufacturing have been articulated in [96]. Fig. 14
shows the framework for co-evolution of physical and cyber systems
in a daydreaming factory with a combination of machine and human
learning. This framework is proposed based on the amalgamation of
the presented research with the consideration of the potential advan-
tages of understanding that is gained from domain expert knowl-
edge.

Sensor data acquisition over the use phase of the factory gener-
ates data that will be used in learning (sensor data acquisition in the
figure). Algorithms such as deep learning, deep Q learning, reinforce-
ment learning or any of the other algorithms that have been pre-
sented over the years of machine learning research in manufacturing
may be used for this purpose [41,129,155,213]. From the learning
insights and patterns emerge which are scrutinised by the domain
experts (insights and patterns in the figure). As a result of this scru-
tiny both the physical system and the digital counterpart that is the
foresighting model will be updated (physical and digital process
adjustments in the figure). Depending on the exploration space, the
foresighting may be a digital twin or a different digital representa-
tion.

This is used in conjunction with a randomised set of generative
parameters to explore different possibilities in the production system
in a diverging space (simulation in the figure). This exploration which
can use the same learning techniques as those used with the physical
system will generate additional insights which are then fused with
those generated through learning from the physical system.

The digital and physical learning loops thus coincide and enable
a co-evolution of both the physical system and the digital counter-
part (co-evolution in the figure). It is important to note that in con-
junction with the daydreaming reveries or iterations, the operation
of the physical system and tactical simulations on the digital
counterpart continue to deliver the objectives of the manufacturing
system.

The co-evolving framework is demonstrated in [38] where the
notion of digital closeness is used to track how different the digital
twin and a robotic system are and starting with a basic model of a
robotic workcell and an iterative approach is used to bring the two
together.

The controlled fusion of automated learning together with incor-
poration of domain expertise in parallel to the normal operation of
the production system forms the daydreaming framework. As noted
above, various subsets of the interweaving loops in the daydreaming
framework have already been implemented by researchers. Never-
theless, an integrated holistic implementation with the specific, iden-
tified aim of achieving antifragility is only identifiable through
combining outcomes of various research efforts and yet to emerge in
full.

The co-evolution of digital and physical counterparts of a produc-
tion system reinforces the paradigm of co-evolution of products, pro-
cesses and production systems as articulated in [195]. This enables
positive dynamics in interactions between the company strategy, the
manufacturing strategy and the understanding and anticipation of
the effects of external driving forces and is in line with co-creative
value as defined in [203]. Fig. 15 identifies how daydreaming facto-
ries provide an enabler for parts of the co-evolution framework.

They allow the effect of external stimuli as well as the possible
interactions between the manufacturing strategy, the products, the
processes and the production system to be explored and foresights
generated that can be used to change the production system directly,
or provide information to enable a change in product design, process
design or company and manufacturing strategy.

6. Outlook for foresighting AI-augmented factories

The presented framework for daydreaming is the consolidation of
a number of partial paradigms that brings together learning from
synthetic data, transferring learning from the digital domain to the



Fig. 15. Daydreaming factories in the context of coevolution of products, processes
and production systems (adapted from [195]).

Fig. 17. Human-in-the-loop factory adaptive automation and mapping to daydream-
ing (from [17]).
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physical, virtual environments, human-led maching learning,
human-machine collaboration and digital twinning together. Partial
implementations of the framework have been presented throughout
the paper to demonstrate individual aspects and in this section vari-
ous examples, together with their mapping onto the framework are
enumerated and the future prospect of the emergence of holistic
implementations to achieve resilience, robustness and antifragility
are explored.

Section 1 relayed how daydreaming based on human learning has
existed in some form throughout the history of the development of
production systems. Therefore, the main focus of this section is on
daydreaming where the human learning is augmented by artificial
intelligence. It is acknowledged that significant computational power
would be required to implement such a framework. However, con-
sidering that daydreaming takes place in parallel to the factory carry-
ing out its normal operation, it is conceivable that the spare
computing capacity in a cyber physical factory can be repurposed for
daydreaming. Furthermore, even with limited computational power,
imprecise but useful foresights may be produced that could lead to
abstract level solutions. Daydreaming is a continuous process that is
conducted with no direct interference with the physical factory and
as time goes by the accuracy and precision of the foresights will
increase without critical requirement for additional computational
resources.

6.1. Partial implementations of daydreaming across different
applications in production systems

In order map the partial implementations of daydreaming to the
proposed framework, a simplified abstract diagrammatic version of
the framework is used as shown in Fig. 16. The simplified version of
Fig. 16. Simplified daydreaming framework.
the framework is useful for marking which aspects of the daydream-
ing framework in a particular research work without presenting
unnecessary complexity. Twinning between the digital representa-
tion and the physical factory is conducted according the require-
ments of the strategy. Daydreaming then generates information that
updates the digital representation � and consequently the physical
factory -, the engineering models that are used to generate the digital
representation and, ultimately, the strategy for designing, running,
maintaining, upgrading, and dismantling the factory.

Human in the loop systems

Several researchers have considered the human decision maker as
an active part of the production system [83]. This view resonates well
with the daydreaming framework as many of the higher cognitive
functions required for the reveries are traditionally carried out by
humans and in this strand of research, they are formalised. See
Fig. 17 for an example from [17].
Combining human and machine learning is a powerful construct
to go beyond optimisation and explore unlikely tangents in the
exploration space.

The daydreaming and digital representation loop
Learning from the synthetic data and updating the digital counter-

part based on calibration with the real system has been shown to be
an effective approach for achieving resilience in the digital twin
[209]. Fig. 18 shows the mapping of this introvert application of rev-
eries where the overall goal is to have better digital representations
based on the rever-ies and comparison with observables from the
real system. The resilience in the digital twin is achieved here by con-
tinually detecting anomalies, evaluating their effect, deciding on
responses, and self-adapting the digital twin.
Fig. 18. Using reveries as a means to achieve resilience in digital twins (from [209]).
Shopfloor level learning
The use of synthetic data in manufacturing is not limited to

manufacturing systems and is used for process level decision making



Fig. 20. Simple measures for resilience of a production system (modified from [54]).

Fig. 19. Adaptable production control through the use of reinforcement learning
(adapted from [84]).
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as well. Researchers have used such data to tune the performance of
individual machines carrying out controlled processes.

Using a physics based model to train a chatter detection algorithm
as demonstrated in [21] fits in the daydreaming framework. In the
context of the daydreaming framework, the engineering model is the
physics based model used to generate multiple data points to train a
neural network and determine the representation of chatter and
inform the strategy to avoid chatter in the course of machining. This
is an example of how learning from reveries can be achieved with
other techniques in artificial intelligence, in this case, the use of
supervised learning to train a neural network.

Adaptive production control
The use of learning to achieve better control is another application

pattern that matches the daydreaming framework. For example, the
reinforcement learning system proposed in [84] provides a good
demonstration of how the adjustment of strategy based on learning
achieved from observations from sensors in a physical production
system constitutes a partial implementation of a daydreaming factory
(see Figure 19). The strategy, in this case, is the set of actions that the
agent will take in response to observations. This affects and is
affected by the company strategy in the long term as the learning is
combined across different layers of the system.

6.2. Daydreaming as a means to achieve resilience, robustness and
antifragility

The research presented in section 6.1 shows that aspects of day-
dreaming have already been implemented in research settings and,
occasionally, in the industry for plethora of purposes. However, the
authors believe that the key differentiator between a daydreaming
factory and other systems that learn from a combination of synthetic
and real data is the pursuit of antifragility. To construct the context
for measuring the antifragility of a system, quantitative measure is
required. While quantitative measurement of antifragility has not
been the topic of exploration in the manufacturing domain, re-
searchers have produced measures to ascertain the resilience of pro-
duction system.

Fig. 20 shows some simple definitions. The recovery time (1) is the
time that it takes from the time of the occurrence of the disturbance
for the system to recover its performance measure to a number
within the historical boundaries of that measure. The disrupted time
(2) is the time that the system spends with the performance measure
outside the established bounds. The disruption volume (3) is the inte-
gration of the performance measure over the disrupted time from the
basis of the lower historical bound. Using similar considerations as
those presented for resilience, a definition of robustness measures in
production systems can also be achieved [184].

In perfect availability of data, all these measures provide good
insights. However, in a production system certain data is only avail-
able for the present and the past. Albeit suitable indicators for future
conditions may be available, any statement on future circumstances
originates from conjectures, and as such stems from extrapolation of
a certain state. This immediately leads to several challenges; for
example, if the disruption is external and the occurrence of the event
is not known the only way to know about it would be to continuously
calculate the performance measure and track it to estimate the dis-
ruption. One challenge here is how to decide the frequency of calcu-
lation for the performance measure. Too frequent and the costs
associated with the data gathering may become significant. Too infre-
quent and the disruption may be entirely missed (assuming the sys-
tem will, at some point, recover).

Another challenge is the choice of measure in a given scenario. For
example, consider the scenario where the performance measure is
the throughput of the production a medical product used in treat-
ment of a pandemic. Initially, disruption volume may seem like the
best measure as it correlates with the number of treatments missed.

However, as proven in the case of the COVID pandemic in 2020,
recovery time is just as important. The damage caused by a long
recovery time with a smaller disruption volume could lead to the
health system being incapacitated whereas a short recovery time
with a larger disruption volume may be absorbed better.

Consideration of such challenges shows that the concept of select-
ing a quantification framework for resilience and robustness is com-
plicated. This is even more difficult for antifragility due to the time
that is required for it to manifest.

Exploration of the notions of resilience and robustness is not lim-
ited to manufacturing and many other fields rely on good definitions
and measures [171].

One of the definitions that resonates well with daydreaming is the
capacity approach proposed in [13]. This approach relies on the fun-
damental understanding that resilience (and evidently robustness
and antifragility) can be described as a dynamic construct that allows
an entity to manage stressors and shocks using three mechanisms
with varying capacities: the absorptive capacity, the adaptive capac-
ity and the transformative capacity.

The absorptive capacity allows a system to absorb the impacts of
shocks in the short term. The adaptive capacity enables the system to
gain a good understanding of the post disruption environment and
adjust its parameters to function well in the new setting. The trans-
formative capacity denotes the ability of the system to influence its
environment to change. With this definition and relating back to
Fig. 4, a production system with a high absorptive capacity would be
resilient, one with a high adaptive capacity would be robust and one
with a high transformative capacity would be antifragile.

A daydreaming factory will thus be one that is pursuing a high
transformative capacity. This would entail an outward looking
investigation of an exploration space with interactions with the
external environment. It should be noted that in many cases, as
those covered in section 6.1, the learning techniques and the day-
dreaming framework achieve good results in increasing the absorp-
tive and adaptive capacity of the system, however many other
frameworks including prognostics [47], big data analytics [48],
reinforcement learning [149] and optimisation [182] may be better



Table 2
Tabular structure of a KPI (Adapted from [43]).

Row Description
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contenders for improvement of adaptive capacity. The absorptive
capacity often requires very quick action making heuristics a more
suitable option for improvement, in general. Table 1 summarises
the information in an easy to access format.
Table 1
Resilience capacity approach in production.

Capacity measure Time focus Environment focus Improvementmethods

Absorptive
Adaptive
Transformative

Short
Medium
Long

Internal
Int. & ext. input
External

Heuristics
Optimisation
Daydreaming

Content:
Name
ID
Description
Scope
Formula
Unit of measure
Range
Trend
Context:
Timing
Audience
Production methodology
Effect model diagram
Notes:

Primary data related to a KPI
The long name and abbreviation
The ID used in the enterprise
A textual description of the KPI
Related elements in the system
Mathematical formula for calculation
SI Unit of measure
Minimum and maximum values
Higher or Lower better
Secondary data to understand KPI
Frequency of calculation
Who would be interested
Discrete, batch or continuous
Links with other KPIs as a diagram
Additional notes
6.3. Key performance indicators for daydreaming

With the primary purpose of daydreaming having been identified
as improvement of the transformative capacity of a production sys-
tem in pursuit of antifragility, it is important to define key perfor-
mance indicators that can be used to measure how well the
daydreaming process is working.

ISO22400 [62] provides a standardised methodology for detailed
definition of KPIs. Since its advent, the standard has been used by
researchers for monitoring discrete manufacturing systems [162],
considering the challenges of human centred manufacturing in the
industry 4.0 era [15], and, providing a consistent definition for overall
equipment effectiveness (OEE) [169].

Although the approach proposed for defining KPIs in the standard
are universal and are designed to be sector agnostic, the pre-defined
KPIs are not necessarily suitable for all industries. For example, using
the pre-defined KPIs for the process industry requires several modifi-
cations [225].

The standard provides a unified modelling language based class
diagram (see Fig. 21) to identify the entities and relationships that
need to be defined in a non-ambiguous manner to specify a KPI. In
Fig. 21. UML model for defining a KPI (Adapted from [61]).

Table 3
A proposed time based KPI for resilience.

Row Description

Content:
Name
ID
Description
Scope
Formula
Unit of measure
Range
Trend
Context:
Timing
Audience
Production methodology
Effect model diagram
Notes:

Recovery time
The time between an external stimulus and recov-
ery of the system performance to within pre-
established bounds.

The entire system
Rt ¼ Nt � Dt where Nt is the time the system re-
achieves the normal performance and Dt is the
time the disturbance took place.

seconds
½0;þ1 Þ
Lower is better
Research needed
Investors, planners, engineers
Discrete, batch and continuous
Selection of the timing of the calculation depends
on the likely disturbances and recovery times. The
calculation frequency should be selected such
that the probability of completely missing distur-
bances is close to zero.
section 6.2, the difficulty of establishing a quantifiable measure for
resilience, robustness and antifragility was established. Using an
extensible standard allows a common baseline for defining such
measures for daydreaming and making sure that they are universally
understood.

As indicated in the figure, each KPI definition can be used to gen-
erate many instances of the KPI, each with many values. The referen-
ces and ranges are associated with individual instances of KPIs to
allow granular definition. In addition the standard specifies a tabular
format for the definition of KPIs as shown in Table 2.

The tabular format has the advantage of presenting the informa-
tion in an easy to access format recognising multiple stakeholders.
This makes sure that the chances of misinterpretation of the KPI is
minimised [147].

In addition, with the notion of standardised KPI definitions the
prospects of using generic meta models for automated computer
aided analysis of productions sytems becomes more attainable [23].
In order to quantify the anticipated benefits of a daydreaming fac-
tory, it is essential to define an effective KPI. The operational KPIs
such as throughput or work in progress will not be affected by
whether the daydreaming process is formalised or left to the tradi-
tional ad-hoc processes of previous generation. By definition, the
daydreaming happens in parallel to the production system generat-
ing the usual value on an ongoing basis so this is expected.

A better class of KPIs for measuring the effectiveness of day-
dreaming, would be those designed to assess the robustness, resilince
and antifragility of the system.

While a good starting point, this KPI would not measure any attri-
bute uniquely associated with a formally articulated daydreaming
system. In other words, any system that incorporates means for
achieving resilience, including but not limited to the use of formal
semantics [223], designing the system configuration for resilience
[54], open manufacturing [88], the use of distributed control systems
[127], data oriented approaches [11], or the use of strategies from
biological systems [118] would produce good results for this KPI
without daydreaming. Table 3 shows such an example KPI.
This KPI is defined for measuring the resilience of the system on a
time basis. This definition is similar to the throughput underproduc-
tion time ðTUTeÞ in [54] but calculates the time from the start of the
disruption rather than the start of the underproduction. Here, the
assumption is that there are natural variations in the performance
metric and therefore boundaries for normal performance are defined.

For daydreaming to be measured, a different class of KPI that
could measure antifragility of the system is needed. The authors pro-
pose that the performance measures for antifragility in manufactur-
ing should take the form of a set of KPIs linked to the critical success
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factors (CSF) [63] of the enerprise as antifragility needs to be viewed
as a multidimensional measure with no obvious linearisation
approach for the various dimensions.

So to define the success criteria for daydreaming, the UML model
in the ISO22400 (Fig. 21) needs to be augmented to add the notion of
CSF as a linking entity. This is shown in Fig. 22 where the entity CSF is
added as an aggregation of KPI instances.
Fig. 22. Augmenting the ISO22400 class model to add CSF.
While domain specific research is required to identify the minimal
optimal set of KPIs that could form an effective CSF for measuring the
daydreaming ability of a manufacturing system, the set is likely to
include: measures of number of innovations in the system as defined
by changes in configuration, measures of discrete increases in
throughput, measures of discontinuous increases in output value, the
time that it takes to double the output of the production system, long
term trajectory of traditional KPIs, rate of adoption of new technolo-
gies, delay in adaptation to new strategic goals, long term job satis-
faction changes for human workers and improvement in
involvement of stakeholders.

The timing for the measurement of the KPIs is another aspect
that requires further research. While some could be measured
before and after each intervention resulting from reveries, others
would require careful selection of timing to capture long-term
effects of strategies.

6.4. An illustrative example of a daydreaming factory

To bring the overall picture for the daydreaming factory together, it
would be useful to consider a practical example of one such factory in
action. The example involves a small production line of two machines
and two operators (see Figure 23). The line is attempting to make low-
volume, very high value, very high-quality products. At the beginning
of the exemplar scenario, highly skilled operators are using the
machines with frequent adjustments to maintain quality. The yield is
low but the quality is excellent and one of the operators is considering
retirement. Deploying the daydreaming framework results in the fol-
lowing events:

(1) A lightweight digital representation of the line (see section 2.2).

At this stage, very little effort is put into this twinning activity
and the resulting digital entity is only partially representative of
the system at a very high level.

(2) The digital model is used to identify a potential set of parame-
ters that can be set on the machine to maintain quality with
fewer adjustments. On this occasion, due to the differences
between the behaviour of the non-identical digital entity and
the physical line, the intervention is not successful, and more
actions become necessary on behalf of the operators.

(3) The skilled operator sees a new highly costly, “connected and
sensorised” machine in a machine tool show and proposes that
purchasing one would be beneficial to the company in the long
term. The digital representation of the factory is used for the tra-
ditional simulation analysis, assessing the impact of the intro-
duction of the new machine. Based on the trust in the expert
operator and the encouraging results from the simulation, the
company invests in one such machine. The machine works and
improves the quality and the throughput. The backlog starts to
go down and the company starts thinking about replacing the
other machines with more expensive connected equivalents
(see section 3.1).

(4) Observations from the physical factory and the “guesses” of the
expert operators are used to recalibrate and improve the digital
representation. At this stage, the accuracy of the representation
has improved but may not yet capture all of the dynamics of the
real system (see section 5.3).

(5) This is the critical step where daydreaming makes the differ-
ence. The digital representation is used to assess many different
scenarios. The representation is connected to external sources of
data and analyses very many possible combination of technology
upgrades. Technologies such as text mining [7,115], the quality
backward chain [12] and interoperability enablers like the asset
administration shell [189], customer purchasing data [222], and
MTconnect [99,100,205] provide the sources for the information.
As the result of these reveries (which happen on a relatively low
cost computing system, using a GPU for parallel processing), a
solution based on retrofitting sensors on the existing machines is
identified. This brings all of the pertinent benefits of the new
machines to the existing line at a fraction of the cost (see sec-
tions 3 and 4).

(6) The solution is procured and installed; enabling the operator with
less expertise to upskill and deliver the quality and throughout,
capture the expertise of the retiring operator and maintain an up
to date digital representation that can be used for future reveries.
The performance of the system is monitored using effective KPIs to
ascertain the short and long term effects of daydreaming (see sec-
tion 6.3)

6.5. An industrial example of daydreaming in a factory

At the beginning of section 6, it was identified that complete
implementations of the full daydreaming factories are arguably yet
to emerge. However, there are examples that implicitly implement
most of the framework. In this section, the case of a tyre manufac-
turer attempting to improve their warehousing solution, only to dis-
cover unexpected foresights is presented.

Tyre manufacturing is a complicated process involved the process-
ing of natural rubber to get compounds with various properties. The
compounds are then processed and cut to various shapes and sizes,
which are then assembled into a green tyre on a drum, green referring
to the uncured status of the rubber. The green tyre is then cured under
pressure and heat on a press to create the finished product.

Typically, a large tyre manufacturing plant would have hundreds
of these presses and produces different sizes and types of tyres simul-
taneously. After production, the quality of tyres is ascertained
through numerous inspection and test procedures. Once the quality
control is complete, the tyre can be sent to the warehouse. The tyres
arriving at the warehouse are subjected to sorting before they can be
stacked in iron racks or pallets.

Apollo Tyres in Hungary use the energy efficient solution of grav-
ity channels. The produced tyres are moved through a single con-
veyor to the warehouse. A barcode scanner scans each individual tyre
to determine its details and allocates a storage space, designated by a
gravity channel for each unique type of tyre. A lift then takes the tyre
to the identified location. This is similar to the luggage handling
mechanism used in airports.

At any given time, each gravity channel can only accommodate one
type of tyre. Since the length of the channel is fixed, the tyre-carrying
capacity for each channel would only depend on and is inversely pro-
portional to the size of the tyre that is stored in the channel.

Sorted tyres are palletised and a pre-set number of tyres of the
same type are packaged on the same pallet to be shipped to custom-
ers. For each type of tyre, there is an ideal number of tyres that need
to be stored on a pallet. Tyres are stored in various gravity channels



Fig. 23. A daydreaming factory in action.

Fig. 25. Selection of parameter probability distributions in pursuit of antifragility in a
production system.

Fig. 24. The simulation model for Apollo Tyres.
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until the total number of available tyres of a specific type reaches the
ideal number, at which point a palletisation order is generated and
the tyres are gathered from the various channels, packaged on the
pallet and shipped. If the system is waiting for a specific type of tyre
for a long time (longer than a timeout period), it may decide to pallet-
ise fewer tyres than the ideal number and ship the partial pallet.

Apollo wanted to know if the existing facility could cope with
additional complexity in their product portfolio or if the infrastruc-
ture would be overwhelmed and additional capacity should be pro-
cured. The company set up a digital representation of the sorting and
storage facility (see Fig. 24) and generated many scenarios with vari-
ous parameters. The scenarios were simulated using the digital repre-
sentation allowing for associated uncertainties.

The original intent for setting up the scenarios was to establish
optimum values for parameters such as timeouts and ideal pallet sizes.
The learning from the simulation of numerous scenarios, however,
went much beyond this and showed that the static approach to decid-
ing the rules was a limiting factor in capacity usage. Further investiga-
tion of the exploration space and mapping it to the solution space
allowed the company to design a dynamic decision-making logic for
deciding timeouts and ideal pallet sizes which increased the overall
capacity by 15% at no cost and reduced the predicted cost of invest-
ment in expansion by 33% through better alignment of the proposed
future solution with the needs of the factory. Using scenario genera-
tion, reveries and learning, Apollo tyres implemented a daydreaming
factory that, according to the company, allowed them to go beyond
optimisation and “to identify what they did not know” they needed.

There are other examples of successful implementation of solutions
that closely match the daydreaming factories in the literature. For
example, in [70] the authors implemented an automated scenario gen-
eration that autonomously created discrete events simulation models.
The models were automatically populated with the data from the
manufacturing execution system and the enterprise resource planning
system and then the simulations were run in an automatic manner.
The generated models showed that replacing the static dispatching
rule used in the factory with a dynamic dispatching rule that took
maintenance into account improved the KPIs and allowed the com-
pany to not only meet their production targets but also to deliver 2% of
their products early in the final month of the study. Again, the initial
purpose for setting up the automated platform was to optimise the
parameters, but the generated knowledge went beyond the original
intention and gave the company the confidence to try and use a
completely new production release mechanism.

The work in [18] shows how scenario generation and reveries
across different layers can allow new product development to accel-
erate. Here scenario generation for reveries at one level were selected
from the pareto optimal front of the higher level using a workflow
automation system. The learning outcome that transcended the ini-
tial premise of the platform that was set up for optimisation, in this
case, was the knowledge that joint optimisation of two aspects of the
process would yield better results as reported in [37].

6.6. Challenges and future research directions for daydreaming

While daydreaming is a flexible framework which can fit a wide
variety of production systems as shown in previous sections, there are
challenges to make it work effectively in a manufacturing scenario.
The main challenge for the reveries is defining the exploration
space. Fig. 25 shows the selection of the probability distribution for
shaping the exploration space. The selection of the distribution can
affect the behaviour of the reveries. (1) Selecting a probability distri-
bution similar to the observed historical data will result in prognosis
and an attempt to predict the behaviour of the existing system. (2) In
order to pursue robustness in performance, a “wider” probability dis-
tribution can be chosen to allow more anticipation of outlying values.
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(3) Unbiased reveries can be generated by exploring the entire explo-
ration space with a uniform probability distribution. In many scenar-
ios this would be desirable as, daydreaming will be conducted in
parallel to the value generating function, and as such, it can gently
explore the space while the production continues. (4) A probability
distribution that actively tests less likely scenarios based on historical
data is one that is likely to identify the black swan events. This adven-
turous strategy can be combined with specific values for parameters
based on expert “guestimates”. It may even be the case of actively
seeking points of failure to better prepare the system [93].

The other challenge for a daydreaming system is that it is reliant
on trust of the humans involved in the production system. A good
way of building this trust would be to start with prognosis and over
time explore more adventurous probability distribution for the rever-
ies.

7. Conclusions

In this paper, a framework was proposed for achieving antifragil-
ity in production systems. The term “daydreaming” was chosen to
refer to this framework. Daydreaming in a factory occurs when imag-
ination about possible futures of the system, with some credibility, is
used to explore interesting interventions; and, when a change, that is
likely to produce additional value is identified it is investigated to
predict the effects. The change is implemented if seen appropriate,
lessons are learned, and a new cycle starts.

In considering the advances in manufacturing systems over the
past 60 years, it can be argued that efforts have been representative
of an evolution toward what Merchant envisioned as a unified, coor-
dinated, and automated manufacturing system with the caveat that
the desire to completely automate systems has morphed into human
enabling systems instead.

The questions that led to the genesis of daydreaming factories is
“What is the pattern of industrial evolutions that when take place
without anticipation they seem revolutionary?” and “Can the hith-
erto human based step changes be assisted by computers?”.

The presented framework shows that researchers have already
been working in this area for many years without a unifying vision.
Based on reverie enabled foresighting, the use of computers to enable
and assist breakthroughs can be pursued in a formal and definitive
manner. With a full implementation of the entire daydreaming cycle
as outlined in this paper, even the most unexpected changes are
likely to be considered in reveries assisted by artificial intelligence
and implemented with good foresight, making it possible to better
prepare for future industrial revolutions and transition to new pro-
duction paradigms more rapidly.
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