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In non-Hermitian quasicrystals, mobility edges (ME)
separating localized and extended wave functions in
complex energy plane can arise as a result of non-
Hermitian terms in the Hamiltonian. Such ME are of
topological nature, in the sense that the energies of lo-
calized and extended states exhibit distinct topological
structures in the complex energy plane. However, de-
pending on the origin of non-Hermiticity, i.e. asymme-
try of hopping amplitudes or complexification of the in-
commensurate potential phase, different winding num-
bers are introduced, corresponding to different trans-
port features in the lattice: while ballistic transport is
allowed in the former case, pseudo dynamical localiza-
tion is observed in the latter case. The results are il-
lustrated by considering non-Hermitian photonic quan-
tum walks in synthetic mesh lattices. © 2022 Optical Society

of America

http://dx.doi.org/10.1364/ol.XX.XXXXXX

Introduction. Mobility edges (ME), separating localized from
extended states, are known to arise in the single-particle energy
spectrum of three-dimensional disordered lattices (like in the
Anderson model), and in certain one-dimensional lattices with
an incommensurate potential (quasicrystals) [1–3]. In Hermitian
systems, a rather general (though not universal [4]) rule is that
the existence of extended states and absolutely continuous spec-
trum implies dynamical delocalization and ballistic transport.
Hence in case of a ME dynamical delocalization and transport is
commonplace. Recently, topological phases in non-Hermitian
(NH) systems have sparked a great interest (see e.g. [5–23] and
references therein), with the prediction and observation of exotic
phenomena, such as enriched topological classification [5, 11],
the breakdown of the conventional bulk-boundary correspon-
dence [6, 7, 9, 13, 14, 19] and the NH skin effect [7, 10, 14, 15, 19].
In particular, exciting physics arises from the interplay among
topology, non-Hermiticity and aperiodic order [24–41]. Interest-
ingly, in NH quasicrystals the metal-insulator phase transition
and the appearance of ME induced by the non-Hermiticity are
of topological nature, as they can be traced back to the change
of a spectral winding number [5, 24, 30, 32, 34, 36, 37]. From the

experimental side, photonic quantum walks in synthetic lattices
have provided a fantastic platform for the experimental demon-
stration of such exotic effects, thanks to the ability to precisely
engineer the Hamiltonian of the system [13, 16, 21, 40, 41].

In this Letter we study the dynamical (transport) prop-
erties in quasicrystals where topological ME are driven by
non-Hermiticity, and show that, unlike Hermitian systems,
ballistic transport can be prevented in the NH case. In particular,
two different types of topological ME can be created in NH
quasicrystals: by either assuming asymmetric hopping ampli-
tudes (type-I ME) or by complexification of the incommensurate
potential phase (type-II ME). While ballistic transport is allowed
in type-I ME, it is forbidden in type-II ME, where a regime of
pseudo localization is observed. These results are illustrated by
considering discrete-time photonic quantum walks in synthetic
mesh lattices with a bichromatic quasi-periodic potential.

Non-Hermitian mobility edges and transport in quasicrystals.
We consider a one-dimensional NH quasicrystal with nearest-
neighbor hopping described by the single-particle Hamiltonian
Ĥ = ∑n,m Hn,m|n〉〈m| with matrix Hamiltonian H given by

Hn,m = κ exp(h + iθ)δn,m−1 + κ exp(−h− iθ)δn,m+1 + Vnδn,m
(1)

where Vn is the incommensurate potential, κ the hopping am-
plitude, and h + iθ a complex Peierls (gauge) phase. The on-site
potential Vn is given by Vn = V(x = 2παn + ϕ + iε), where
V = V(x) is a 2π-periodic real function, α an irrational Dio-
phantine number and ϕ + iε the complex potential phase. To
highlight the dependence of the Hamiltonian H on either the
phases θ or ϕ, we will write H = H(ν) with ν = θ, ϕ. We as-
sume a finite lattice comprising a sufficiently large number L
of sites in a ring geometry, so that periodic boundary condi-
tions (PBC) apply. The lattice size L is taken so as to provide a
rational approximant of the irrational α. For convenience, we
assume α = (

√
5− 1)/2 = limn→∞(Fn−1/Fn) (the inverse of

the golden mean) and L = Fn for large enough n, where Fn are
the Fibonacci numbers defined recursively by Fn+1 = Fn + Fn−1
and F0 = F1 = 1. The matrix Hamiltonian H is Hermitian for
ε = h = 0. Non-Hermiticity can be thus introduced in two
ways: (i) by allowing for a non-vanishing imaginary gauge field
h 6= 0, corresponding to asymmetric hopping amplitudes [42];
and (ii) by considering a complex potential phase ε 6= 0 [24].
Let us now suppose that in the Hermitian limit h = ε = 0 the
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Hamiltonian does not possess ME, i.e. all eigenstates are either
exponentially-localized or extended. In the former case, ME can
be induced rather generally by the introduction of an imaginary
gauge field (h 6= 0) via the mechanism dubbed non-Hermitian
delocalization transition [5, 42]: some localized eigenstates be-
come delocalized and acquire complex energies, while the other
eigenstates remain localized with real and unchanged energies.
Such a kind of NH-induced ME is referred to as type-I ME. In
the latter case, i.e. when in the Hermitian limit all eigenstates
of H are extended, ME can be induced by a complex phase
ε 6= 0 in the incommensurate potential, so as some extended
states become localized with complex energies, while the other
eigenstates remain extended with real and unchanged energies.
Such a kind of NH-induced ME is referred to as type-II ME.
The physical mechanism underlying the formation of type-II
ME is again the non-Hermitian delocalization transition but
for the lattice in the reciprocal (Fourier) space: in fact, in re-
ciprocal space the complex phase ε in the potential acts as an
imaginary gauge field [24] . The formation of NH type-I and
type-II ME is illustrated in Fig.1 for the quasi-periodic potential
V(x) = λ1 cos(x) + λ2 cos(2x), corresponding to a generalized
Aubry-André model. To ensure the appearance of the NH ME,
we assume non-vanishing values for both λ1 and λ2 so as to
break the self-duality of the Aubry-André model. Localized and
extended wave functions ψn are identified by their inverse par-
ticipation ratio (IPR), defined as IPR = ∑n |ψn|4/(∑n |ψn|2)2,
with IPR ∼ 1 for a tight localized state and IPR ∼ 1/L� 1 for
an extended state. In Figs.1(a) and (b), the potential amplitudes
V1 and V2 are set so as in the Hermitian limit all wave functions
are localized. Application of an imaginary gauge field h clearly
creates a ME with extended wave functions corresponding to
complex energies forming closed loops in complex energy plane,
while localized wave functions retain their real energies like in
the Hermitian case. In Figs.1(c) and (d) the potential amplitudes
V1 and V2 are set so as in the Hermitian limit all wave func-
tions are extended. Application of an imaginary phase ε clearly
creates a ME with localized wave functions corresponding to
complex energies forming closed loops in complex energy plane
while extended wave functions retain their real energies. As
shown in previous works [5, 24, 30, 34–37], both types of ME are
of topological nature, in the sense that the energies of localized
and extended states exhibit distinct topological structures in the
complex energy plane. Specifically, for a given base energy EB
the following two spectral winding numbers can be introduced

Wν = lim
L→∞

1
2πiL

∫ 2π

0
dν

d
dν

log {det(H(ν)− EB)} (2)

where ν is either θ or ϕ. In type-I ME, the relevant winding
number is Wθ , which takes a non-vanishing value whenever EB
is internal to any one of the complex energy loops associated to
the extended eigenstates, while Wϕ is always vanishing. Like-
wise, in type-II ME the relevant winding number is Wϕ, which
is non-vanishing whenever EB is internal to any one of the com-
plex energy loops associated to the localized eigenstates while
Wθ is always vanishing.
A main result of this work is that the different nature of the two
types of ME, characterized by the two distinct topological num-
bers, can be unveiled by considering the dynamical localization
properties of the system, i.e. the possibility of an initially local-
ized excitation to spread or move in the lattice. Let us indicate
by ψn(t) the occupation amplitude of the lattice at site n and
time t for the initial condition, at time t = 0, corresponding to
the excitation of the single site at n = n0, i.e. ψn(0) = δn,n0 , and
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Fig. 1. (Color online) (a,c) Energy spectrum and (b,d) IPR of eigen-
functions of a quasicrystal in a ring geometry with the incommensu-
rate bichromatic potential V(x) = V1 cos(x) + V2 cos(2x). In (a,b),
V1 = 2 and V2 = 1.5, corresponding to all states localized in the Her-
mitian limit (ε = h = 0; red bold dots). Application of the imaginary
gauge field (h = 0.5, ε = 0; blue dots) creates a type-I ME: some states
become delocalized, with energies describing a closed loop in complex
plane, while the other states remain localized and retain their original
real energies. In (c,d), V1 = 0.2 and V2 = 0.5, corresponding to all
states extended in the Hermitian limit (ε = h = 0; red bold dots).
Application of the imaginary potential phase (ε = 0.6, h = 0; blue
dots) creates a type-II ME: some states become localized, with energies
describing closed loops in complex plane, while the other states re-
main extended and retain their original real energies. Other parameter
values are κ = 1, α = (

√
5− 1)/2, θ = ϕ = 0 and L = 377.

let ψ̃n(t) = ψn(t)/
√

∑n |ψn(t)|2 be the corresponding normal-
ized occupation amplitudes. As a measure to characterize wave
spreading in the lattice, we consider the second-order moment
[38, 43]

σ2(t) = ∑
n
(n− n0)

2|ψ̃n(t)|2 (3)

for the position operator. Ballistic transport corresponds to
an asymptotic linear growth in time σ(t) ∼ vt with some
characteristic speed v; diffusive transport corresponds to a
lower-than-linear growth σ(t) ∼ tδ (δ < 1); and dynamical
localization corresponds to a bounded behavior of σ(t) with
time. While there is not a one-to-one correspondence between
spectral and dynamical properties of a quantum system, a gen-
eral rule of thumb in an Hermitian system is that the absolutely
continuous spectrum, corresponding to extended states, yields
ballistic transport at a speed v which is proportional to the
Lebesgue measure of the absolutely continuous spectrum [38].
However, in NH systems such a scenario is deeply changed
since the energies of localized and/or extended states can
acquire a complex energy, thus introducing different lifetimes of
various wave functions [43]. Figure 2 shows typical numerical
results of wave spreading in the NH quasicrystals with either
type-I [Fig.2(a)] or type-II [Fig.2(b)] ME. In the former case, σ(t)
grows linearly with time, indicating ballistic transport like in the
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Hermitian limit. The transport is allowed by the extended states,
which acquire complex energies and dominate the dynamics
at long times. As compared to the Hermitian case, transport
is unidirectional owing to the convective motion introduced
by the imaginary gauge field [10]. A very different scenario is
observed in type-II ME, where localized states acquire complex
energies while extended states have real energies. In this
case the spreading in the lattice is greatly suppressed and a
pseudo-localization regime is observed [Fig.2(b)]. Interestingly,
in the early stage of the dynamics (up to t ∼ 30) one observes
some fast wave spreading which is mediated by the extended
states with real energies. Subsequently, the spreading is stopped
and dynamical localization is observed for a while. On a much
longer time scale, a further increase of σ(t) can be eventually
observed, corresponding to a jump of the excitation to a
different lattice region. Such a behavior stems form the fact that
in type-II ME localized eigenstates of H have a larger growth
rate (imaginary part of the energy) than extended states. Hence,
at longer time they dominate the dynamics, leading to a regime
of pseudo-localization with stochastic jumps among localized
eigenstates possessing different lifetimes, a regime similar to the
one recently observed in Ref.[43].
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Fig. 2. (Color online) Wave spreading in a NH quasicrystal with
(a) type-I, and (b) type-II ME. Parameter values in the two cases are
the same as in Fig.1. The panels show, on a pseudo color map, the
temporal evolution of the normalized occupation amplitudes |ψ̃n(t)|
for single-site excitation of the lattice at t = 0. The insets depict the
corresponding behavior of the second-order moment σ(t). Note in (b)
the use of a log scale for time.

Mobility edges in photonic quantum walks. The main results
discussed above for the continuous time evolution of the wave
function governed by the NH Hamiltonian H can be extended
to discrete-time quantum walks, which have provided a feasi-
ble platform to experimentally observe the exotic properties of
NH synthetic crystals and quasicrystals [13, 16, 21, 40, 41, 43].
Specifically, let us consider a photonic quantum walk realized in
coupled optical fiber loops [16, 40, 43, 44], where the imaginary
gauge field h is introduced by balanced gain/loss in the two
fiber loops while a complex incommensurate potential V(x) is
emulated by using synchronized amplitude and phase modula-
tors in one of the two fiber loops. Light dynamics is governed
by the discrete-time coupled equations [16, 40, 43, 44]

u(m+1)
n =

[
cos βu(m)

n+1 + i sin βv(m)
n+1

]
exp(h− 2iVn) (4)

v(m+1)
n =

[
cos βv(m)

n−1 + i sin βu(m)
n−1

]
exp(−h) (5)

where u(m)
n , v(m)

n are the pulse amplitudes at lattice position
n and at discrete time step m on the left and right moving

paths, respectively, β is the coupling angle of the beam splitter,
and Vn = V(x = 2παn + ϕ + iε) is the incommensurate
potential. A connection between the discrete-time quantum
walk dynamics [Eqs.(4) and (5)] and the continuous-time
dynamics described by the Hamiltonian H [Eq.(1)] can be
established in the limit β ' π/2 and |Vn| � 1, as shown in
the Supplemental document. In this limit, the discrete-time
quantum walk dynamics basically splits into two independent
continuous-time processes described by two Hamiltonians H±
given by Eq.(1) with an incommensurate potential Vn and with
opposite effective hopping amplitude κ = ±(π/2− β)/2. The
appearance of the two types of ME and corresponding transport
properties discussed in previous section are therefore expected
to be observable in discrete-time NH photonic quantum
walks. As an example, Fig.3 shows the numerically-computed
quasi energy spectra (under PBC) and IPR of corresponding
eigenstates in discrete-time quantum walks for the bichromatic
incommensurate potential V(x) = V1 cos(x) + V2 cos(2x) and
for parameter values corresponding to the appearance of type-I
[Fig.3(a,b)] and type-II [Fig.3(c,d)] ME. Note that the quasi
energy spectra are grouped into two blocks, spaced by π and
mapping the eigenenergies of the two Hamiltonians H± in the
continuous-time limit (see Supplemental document). The differ-
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Fig. 3. (Color online) (a,c) Quasi energy spectrum and (b,d) IPR of
eigenfunctions in the NH discrete-time photonic quantum walk for the
bichromatic incommensurate potential V(x) = V1 cos(x) + V2 cos(2x)
and for β = 0.9 × (π/2). In (a,b), V1 = 0.2356 and V2 = 0.1178,
corresponding to all localized states in the Hermitian limit (ε = h = 0;
red bold dots). Application of the imaginary gauge field (h = 0.4, ε =
0; blue dots) creates a type-I ME. In (c,d), V1 = 0.0157 and V2 = 0.0393,
corresponding to all extended states in the Hermitian limit (ε = h = 0;
red bold dots). Application of the imaginary potential phase (ε = 0.6,
h = 0; blue dots) creates a type-II ME. Note that the quasi energy
spectra are grouped into two blocks spaced by π, as discussed in the
main text. Other parameter values are α = (

√
5− 1)/2, ϕ = 0, and

L = 377.

ent dynamical properties of the two types of MEs are shown
in Fig.4. Like in the continuous-time Schrödinger equation, we
excite the lattice in a single site by launching a single optical
pulse in one of the two fiber loops, namely we numerically

solve Eqs.(4) and (5) with the initial condition u(0)
n = δn,n0

and v(0)n = 0. The spreading of the excitation in the synthetic
lattice versus discrete time m is measured by the second-order

moment σ2(m) = ∑n(n − n0)
2|ψ̃(m)

n |2, where we have set

|ψ̃(m)
n |2 =

(
|u(m)

n |2 + (|v(m)
n |2

)
/ ∑n

(
|u(m)

n |2 + |v
(m)
n |2

)
. Note

that for type-I ME unidirectional ballistic transport is observed
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[Fig.4(a)], while a pseudo-localization regime, like the one
discussed in Fig.2(b), is observed for type-II ME [Fig.4(b)].
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Fig. 4. (Color online) Wave spreading in a NH discrete-time photonic
quantum walk with (a) type-I, and (b) type-II ME. Parameter values
are the same as in Fig.3. The panels show on a pseudo color map the
discrete temporal evolution of the normalized occupation probabilities

|ψ̃(m)
n |2 for single-site pulse excitation of the lattice. The insets depict

the corresponding behavior of the second-order moment σ(m). Note
in (b) the use of a log scale for the discrete time m.

Conclusions. Mobility edges in Hermitian crystals with an
incommensurate potential enable rather generally transport in
the lattice owing to the extended nature of some eigenstates.
However, such a scenario is deeply modified when considering
NH quasicrystals, where two different types of topological
mobility edges can be created by either application of an
imaginary gauge field (type-I ME) or by complexification of the
phase of the incommensurate potential (type-II ME). Here we
unravelled that the two kinds of ME, characterized by different
topological numbers, show very distinct transport properties:
while in the former case ballistic transport is observed, in the
latter case a regime of pseudo dynamical localization is found.
Such a regime is of purely NH nature and arises from the
different complex energies of the localized eigenstates, that
dominate over extended states. We illustrated such a behavior
by considering discrete-time photonic quantum walks in NH
synthetic mesh lattices with a bichromatic incommensurate
potential. The present results provide major insights into the
physics of mobility edges in NH quasicrystals, suggesting a
dynamical-based approach to distinguish the different topology
of NH ME feasible for an experimental demonstration using
synthetic photonic mesh lattices.
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