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Abstract

The adoption of Artificial intelligence (AI) technologies is steadily in-
creasing. However, to become fully pervasive, AI needs resources at the
edge of the network. The cloud can provide the processing power needed
for big data, but edge computing is close to where data are produced
and therefore crucial to their timely, flexible, and secure management. In
this paper, we introduce the AI-SPRINT “Artificial intelligence in Secure
PRIvacy-preserving computing coNTinuum” project, which will provide
solutions to seamlessly design, partition, and run AI applications in com-
puting continuum environments. AI-SPRINT will offer novel tools for AI
applications development, secure execution, easy deployment, as well as
runtime management and optimization: AI-SPRINT design tools will al-
low trading-off application performance (in terms of end-to-end latency or
throughput), energy efficiency, and AI models accuracy while providing
security and privacy guarantees. The runtime environment will support
live data protection, architecture enhancement, agile delivery, runtime
optimization, and continuous adaptation.

Keywords: Cloud computing, fog computing, edge computing; AI and ma-
chine learning; Cloud trust security & privacy.

1 Introduction

Artificial Intelligence (AI) is becoming pervasive today, with the AI software
platforms worldwide market forecast to grow significantly through 2023, ap-
proaching USD 11.8 billion in revenue at a CAGR of 35.3% [1]. Many of the
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benefits of this evolution will come from using computing resources at the pe-
riphery of the network, i.e., where source data is produced. Many companies are
evaluating the use of edge computing for data collection, processing, and online
analytics to reduce applications latency and data transfers. A growing number of
use cases, e.g., predictive maintenance, machine vision, and healthcare, to name
a few, can benefit from AI applications spanning edge-to-cloud infrastructures
leveraging resources available at the computing continuum. Edge intelligence,
i.e., edge-based inferencing, will become the foundation of all industrial AI ap-
plications while most new applications [2] will involve some AI components at
various levels of the computing continuum. Training and/or retraining AI mod-
els at the edge will provide opportunities to optimize the use of computational
resources preserving data privacy and increasing the security of data. However,
while solutions to support application development and transparent execution of
general applications are becoming available, AI applications still lack solutions
to optimally split AI models and application components providing resource
efficiency, performance, data privacy, and security guarantees.

In this paper, we introduce AI-SPRINT, a recently funded by the Euro-
pean Commission under the Horizon 2020 framework. AI-SPRINT will make
it possible to seamlessly design and partition AI applications among the cur-
rent plethora of cloud-based solutions and AI-based sensor devices (i.e., devices
with intelligence and data processing capabilities). The AI-SPRINT framework
is currently under development and this paper aims at highlighting the main
challenges and design principles behind it. The remainder of this paper is or-
ganized as follows. Section 2 describes AI-SPRINT objectives. In Section 3,
we introduce an application inspired by one of the AI-SPRINT use cases. In
Section 4, we present AI-SPRINT approach. Related works are discussed in
Section 5, while conclusions are finally drawn in Section 6.

2 AI-SPRINT Objectives

AI-SPRINT will overcome current technological challenges for the design and
efficient execution of AI applications exploiting resources in the edge-to-cloud
continuum such as flexibility, scalability, interoperability, security and privacy,
and aims at achieving the following objectives:

1. Provide design and development tools for the implementation of AI
applications (including machine learning / deep learning applications and
large-scale analytics) consuming resources across the computing contin-
uum including multi-clouds, edge servers, and AI enabled sensors. The
design environment will include: (1) programming abstractions to hide
the communications across components and to transparently implement
the parallelization of the compute-intensive part of the application possi-
bly exploiting specialized resources (e.g., GPUs and AI enabled sensors),
(2) quality annotations (e.g., data flow rates, application latency, energy
constraints) to express performance, accuracy, privacy, and security con-
straints.
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2. Deliver tools for secure execution and privacy preservation to
implement solutions providing secure AI models deployment and data
processing which combine hardware-enforced confidentiality and integrity
with policy-defined privacy. This aims to: (1) ensure confidentiality and
integrity of application data across the computing continuum, (2) secure
application configuration and execution and data transfers, (3) provide
privacy-preserving solutions through AI model partitioning and edge train-
ing and retraining.

3. Develop a runtime environment for application execution and
monitoring that implements policies orchestrating the applications’ ex-
ecution across the computing continuum via: (1) application deployment
to accelerate the delivery of applications and AI models, (2) monitoring of
edge-to-cloud resources, (3) dynamic, energy aware, and optimal resource
allocation to fit workload requirements and data size/streaming through-
put variability, and (4) resilient applications’ execution with performance
guarantees.

4. Provide advanced solutions for AI architecture enhancement al-
lowing iterative refinement of AI application architecture design and de-
ployment by: (1) assimilating newly generated data from the field, (2)
integrating new AI sensors, (3) adding new privacy, security, and applica-
tion performance constraints. The final goal is to feed such information
to the design tools and redeploy an updated AI model and application to
the target environment, exploiting edge resources for model training and
retraining.

AI-SPRINT solutions will be validated across industrial and health domains
thanks to three use cases including farming 4.0, maintenance & inspection, and
personalized healthcare in line with EU priority areas for AI investments [3].

The tools developed in the AI-SPRINT project will help AI application de-
velopers to easily implement new applications. System integrators will be pro-
vided with powerful yet flexible tools to develop multi-cloud systems including
resources at the full computing continuum stack involving classic components
and AI models. Cloud providers will benefit from tools for simplifying resource
management also at the edge layer and for offering new PaaS AI services thanks
to the availability of novel open source design tools.

3 AI-SPRINT Running Example

In order to provide the intuition of the AI-SPRINT solutions’ benefits, we in-
troduce an application inspired by one of the AI-SPRINT use cases related
to the maintenance and inspection of a wind farm as depicted in Fig. 1(a).
The application software includes six components that today need to be devel-
oped independently and integrated by spending a significant effort. Conversely,
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Figure 1: AI-SPRINT solution applied to the use case of maintenance and inspection of
a wind farm. (a) Components required by the application (b) Design approach enabled by
AI-SPRINT toolchain.

Fig. 1(b) shows the development path that can be followed when the AI-SPRINT
toolchain will be available.

The first software component, C1, is in charge of taking a picture from the
airborne drone, controlled remotely by a human operator. The second compo-
nent, C2, is a classifier, which checks if the image quality is sufficient for further
processing and otherwise it triggers the acquisition of a new picture. C3 is a
complex, computer-vision-based application that, given a model of the wind
farm, positions the picture on the farm itself and guides the operator to identify
the next element to be examined. This component has the goal of monitoring
the inspection campaign and guarantees that this covers the complete site. C4

and C5 are two additional AI modules whose goals are to: (1) provide an initial
feedback to the operator and notify if the inspected part, e.g., the blade, has a
problem (this is performed by C4 and it could possibly require to take additional
pictures); and (2) identify the specific problem, e.g., a crack (performed by C5).
Finally, C6 is a large-scale analytic application, which identifies patterns in part
degradation by considering external factors (e.g., historical weather data, us-
age of a specific turbine, size of the plant, etc.) and it is periodically run also
considering the data gathered across all the windfarms in a geographic area.

A possible deployment runs C1 and C2 on the drone, C3 on the edge server
located in the operator’s van, while C4, C5 and C6 are executed on the cloud.
Since C4 and C5 require significant computation, they are run on expensive
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GPU-based cloud VMs, which are started on demand by C3 logic. Unfortu-
nately, C4, C5, and C6 are not under the administrative control of the data
owners, hence cloud tenants or powerful adversaries with root access can po-
tentially access image data. C4 and C5 are implemented via classifiers based
on Convolutional Neural Networks (CNNs) whose architecture was iteratively
identified by software developers with a classic trial and error process until the
model accuracy was considered satisfactory. Being a complex activity, appli-
cation developers do not usually explore a large number of solutions and the
computational requirements of the final identified CNNs need to be matched a
posteriori with the cloud VMs capacity and application performance constraints
(e.g., by verifying a posteriori that C5 inference time for a single image is less
than 50 ms).

Similarly, it is also difficult to provide an upper bound to the time required to
retrain the AI model in case the application is extended to cope with additional
damage classes. Model retraining, and to some extent also the initial training
of C4 and C5 CNNs, is challenging from the privacy perspective if it is run on
cloud, whereas it could only achieve best effort performance if the organization
local infrastructure has limited capacity.

4 AI-SPRINT approach

AI-SPRINT provides novel design tools and a runtime environment for fast
development, optimization, and management of AI applications running across
a cloud-edge computing continuum. Fig. 2 represents the general architecture
of AI-SPRINT.

4.1 AI-SPRINT design tools

AI-SPRINT design-time solutions include tools for: (1) annotating AI applica-
tions with non-functional/QoS constraints and guide code parallelization; (2)
evaluating a priori performance of AI applications both at training and at in-
ference time; (3) identifying and automating the search for the most accurate
deep neural network starting from labeled dataset; (4) automatically explor-
ing multiple candidate deployments for the application components maximizing
resource efficiency and minimising the cloud usage cost.

4.1.1 Design & programming abstractions

Application components will be annotated with design abstractions allowing to
specify: i) intra- and intercomponents parallelism, ii) constraints on application
performance, security, privacy, and underlying resources, and iii) deployment
alternatives that will be automatically explored by the envisioned solutions.
For example, in Fig. 1-b, C3 is a complex application and internal parallelism
can be exploited to improve application execution time and to reduce the van
edge server required capacity. The base for the AI-SPRINT programming layer
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Figure 2: AI-SPRINT Architecture

will be the PyCOMPSs programming framework1 that aims to facilitate the
parallelisation of existing Python applications. PyCOMPSs offers a simple pro-
gramming model based on sequential development in which the developer is
mainly responsible for: i) identifying the functions to be executed as asyn-
chronous parallel tasks; ii) annotating them with standard Python decorators.
New annotations will be introduced to allow predicating on components perfor-
mance and to specify constraints on the target deployment. For example, C2

can be automatically allocated by the design tools on the drone or on the van
edge server according to the application performance constraints (e.g., image
processing time less than 30 ms). On the other hand, to enforce a high-security
level for the execution of C6, another annotation will force C6 code to run in a
secure enclave. A number of ML algorithms implemented with PyCOMPSs are
already available as a Distributed Computing Library2 inspired by scikit-learn,
that eases the task of developing applications providing a common interface
in all algorithms. Furthermore, as a parallel framework, PyCOMPSs exploits
inter-node and intra-node parallelism and executes neural networks tasks (like
Tensorflow or Keras) as external processes.

1https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-
superscalar

2https://github.com/bsc-wdc/dislib
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4.1.2 Performance models

AI-SPRINT will provide also a performance modelling approach based on Ma-
chine Learning (ML) to predict the execution time of inference or training tasks
of AI models deployed across the computing continuum. The tools will au-
tomate the AI application performance profiling and identify the ML model
providing the highest performance prediction accuracy supporting model selec-
tion and hyper-parameters tuning. Preliminary results in [4, 5, 6] have shown
that ML models allow to achieve good accuracy (with average percentage error
between 5 and 15%) in cloud environments. AI-SPRINT will extend the use
of such models to consider AI-based sensors and deep networks partitioned and
deployed across computing continua.

4.1.3 AI models architecture search

AI-SPRINT will develop solutions to enable developers with limited ML exper-
tise to train high-quality models specific to their needs also in terms of Quality
of Service (QoS) requirements. In particular, we focus on deep neural networks,
which now have become very popular and the reference framework for ML due
to their human level accuracy in domains such as images and sequences (e.g.,
time series) understanding. Despite the compelling arguments for using neural
networks as a general template for solving ML problems, training these models
and designing the right network topology is still a matter of art craft and de-
signer experience. Indeed, the design still requires specifying the parameters of a
typically large network architecture with several layers and units, and then solve
a difficult non-convex optimization problem. AI-SPRINT will provide tools for
developing learning as a service solution, that, starting from a training set with
labelled training examples (images or temporal data series which are of interest
for use cases) will automatically identify the most accurate deep neural network
which provides execution time guarantees. For example, component C5 (see
Fig. 1-b) will be automatically identified in a way that the model accuracy (on
a cross-validation set) will be at least 90% keeping the inference time below
50ms under a target production environment. Moreover, AI-SPRINT will auto-
matically identify, e.g., the minimum cost target deployment able to support the
training activity in less than 20 hours (given the available training set). Finally,
AI-SPRINT will develop solutions for breaking down large deep networks for
cooperative, privacy preserving analytics. To this end, instead of performing the
whole model inference on the cloud, AI-SPRINT will explore solutions where
the edge servers or the AI-enabled sensors run the initial layers of the neural
network, and then send the output to the cloud to feed the remaining layers
and produce the final result. For example, since C4 is annotated with privacy
protection, the AI model will be split into two components (orange elements in
Fig. 1-b) so that some feature pre-processing can be performed on the van edge
server and the images sent to the cloud will be obfuscated (blurred) and will
not allow, even to the cloud provider, to reconstruct the original picture.
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4.1.4 Applications design space exploration

AI models architecture search, as the deployment of non-deep models/application
components, will be subject to an additional step of design space exploration
where multiple alternative candidate deployments will be evaluated. As an ex-
ample, in Fig. 1-b component C6 can be deployed on large VMs at provider P1

or medium instances at provider P2. Since the number of solutions may become
extremely large depending on the number of possible providers and components
allocation alternatives, AI-SPRINT will ease the application design by provid-
ing an automated tool to derive, given the QoS constraints, optimal component
placement maximizing resource efficiency while minimizing the cloud usage cost.

4.2 AI-SPRINT runtime environment

To run applications transparently on a heterogeneous architecture, we need a
runtime environment which manages the different components and data of the
applications and reacts to system perturbations and requirement changes. The
AI-SPRINT runtime environment will include tools to: i) support the continuous
deployment of AI applications; ii) support application components concurrent
execution reacting to node failures and identifying their optimal placement and
resource capacity; iii) trigger automated model retraining, leveraging on solu-
tions for training and retraining at the edge; iv) optimize the scheduling and
assignment of accelerator devices among competing training jobs.

4.2.1 Continuous deployment

Continuous deployment is the process where development, testing, delivery and
progressive deployment of an application is considered as a whole, reducing op-
eration and development costs. Nowadays, once an application is in production,
IaaS users have to manage the virtual infrastructures where their applications
run, which usually imposes significant overhead and need for skills. IaaS users
have to choose the VM image from a catalogue that best fits their needs and
configure software (i.e., application servers and binaries). As application re-
quirements might change, new application versions are developed and need to
be re-deployed. This is especially important in a scenario where data is con-
tinuously retrieved, and AI models are retrained. Given the heterogeneity of
the edge layer, it is necessary to provide streamlined mechanisms to guide the
process of configuring computing resources across the computing continuum. A
large number of different cloud management platforms are available today to
automate application deployment on cloud systems [7]. Despite the advantage
of being able to choose among different providers, this diversity poses an im-
portant drawback caused by the use of non-interoperable systems. To avoid
cloud lock-in and to facilitate application deployment at the edge, AI-SPRINT
will leverage IM3 and provide a cloud-edge orchestrator enabling the automatic

3https://www.egi.eu/services/cloud-compute/
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deployment of AI application models and components, without manual provi-
sioning.

AI-SPRINT will use Docker containers to automate deployment and provide
the level of isolation needed to enforce performance constraints with minimal
overhead. Both private and public clouds will be valid targets. Applications
will be described as OASIS TOSCA templates4 describing the topology of their
components and their software dependencies. Application templates will sup-
port restrictions for the deployment on multiple heterogeneous resources (i.e.,
including hardware accelerators, e.g., GPGPUs) also at the edge layer, by spe-
cific attributes (e.g., the target image, performance constraints or privacy re-
quirements), which will be instantiated and managed by a single interaction
with the AI-SPRINT framework.

4.2.2 Programming Framework Runtime

AI-SPRINT will also provide a runtime system in charge of supporting concur-
rent code execution, automatically detecting and enforcing the data dependen-
cies among components and spawning parallel tasks to the available resources,
which can be nodes in an edge cluster or clouds. The solution will leverage
the PyCOMPSs runtime, which already provides scalability and elasticity fea-
tures of edge and cloud resources. In particular, PyCOMPSs is already able
to: i) manage distribution, parallelism and heterogeneity in the edge resources
transparently to the application programmer; ii) handle data regardless of per-
sistency by supporting a single and unified data model; iii) use edge devices as
workers to migrate components initially deployed in the cloud and/or to react
to failures of nodes running at any layer of the computing continuum. Within
AI-SPRINT, PyCOMPSs runtime will be extended to support the serverless
computing paradigm, and application components will be run as event-triggered
functions orchestrated within a workflow. This will allow a flexible and elastic
execution of AI applications. For example, given the edge server current load,
C3 in Fig. 1-b can be dynamically allocated and run as a function on the edge
server or in the cloud reducing operation costs and still providing execution
time guarantees for the overall application. Application components migration
will leverage Krake5 which provides a central point to manage application com-
ponents at any layer of the computing continuum identifying the “best” layer
depending on user-defined metrics, re-evaluating the placement at regular inter-
vals and automatically scaling-up and down resources. Components to resource
assignment will be based on multiple criteria (e.g., battery level, network la-
tency, availability of accelerator devices boosting component execution, etc.).

Finally, application components will be continuously monitored by a mon-
itoring platform which will be able to gather metrics at every layer (including
the application level, possibly including AI inference accuracy) of the computing

4http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-
Profile-v1.3.pdf

5https://gitlab.com/rak-n-rok/krake
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continuum and the ESPER6 complex event processing engine will integrate and
correlate application end-toend performance with the monitoring events and
respective measurements at the full cloud-edge stack.

4.2.3 Privacy preserving continuous training

AI applications frequently operate in dynamic environments that change over
time and models must be continually updated to capture the most recent data
trends; AI-SPRINT will provide solutions to facilitate AI model continuous
training. In particular, AI-SPRINT will provide a general-purpose framework
towards continuous integration of AI model updates and code changes into the
deployment environment, advancing the features provided by most of today’s
learning frameworks which perform training offline, without any system support
for continual model updating. Model retraining (periodic or triggered by large
drifts) will be supported. Two possible kinds of updates are foreseen: i) the
AI model structure is unchanged (only weight matrices and internal state ini-
tialization, in the case of models with memory, are updated); ii) the AI model
structure changes because of retriggering of the AI model architecture search.
Edge training and retraining in AI-SPRINT will leverage federated learning
algorithms [8], [9], [10] where different learners exchange only part of the
information which can be extracted from the data in order to improve a model
globally, but without making explicit the data used to train it. Error losses
and corresponding gradients will be computed as close as possible to the data
sources so as to distribute the least amount of information which is not strictly
required for the training or retraining task leveraging AI model partitioning be-
tween the edge and cloud layers (C3-C4 and C3-C5 CNN submodels in Fig. 1).
For example, referring to the example in Fig. 1-b, during the training, C3 sub-
model forward pass will be processed on an edge server which will send to the
cloud only preprocessed data (blurred images in Fig. 1). The cloud, in turn,
will compute the loss function and C4 parameters gradients (which will be sent
back to the edge server) without accessing the raw images.

4.2.4 Scheduling for accelerator devices

Deep neural network training is a computationally intensive process. A promis-
ing approach to reduce the processing time is using one or more GPUs, which
allows to achieve from 5 up to 40x time improvement when compared to CPU-
only deployments. Training NNs on multiple GPUs makes it also possible to
handle larger amounts of data and increases the accuracy of the trained mod-
els. Despite all of these advantages, the cost of GPU-based systems is usually
high both in private and public clouds (e.g., GPU-based VMs time unit cost
is 5-8x higher than the corresponding CPU based VMs [6]). The efficient use
of GPUs is hence an important problem that AI-SPRINT will address. More-
over, to increase the possibility to share expensive and specialized resources,
cloud infrastructures are shifting away from traditional configurations, where

6http://www.espertech.com/esper/
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hardware accelerators are installed locally in individual servers, toward the re-
source disaggregation paradigm, in an attempt to expose accelerators as pooled
network resources that can be accessed across all the system nodes. As a con-
sequence, cloud infrastructures can increase resource utilization by allocating
spare fragmented resources to remote training applications. Virtualization and
resource disaggregation simplify the complexity and enhance the flexibility of
cloud systems management but pose new challenges on how to obtain the best
performance. Indeed, in such environments, applications have limited access
and view of the resources, since disaggregation technologies abstract the view of
the hardware topology and its characteristics and allow resource access through
fine-grained resource partitioning. Hence, to fully exploit the resource efficiency,
an intelligent system able to orchestrate the resources with a high-level view of
the system is needed. AI-SPRINT will face these problems by proposing ad-
vanced techniques to solve the joint resource planning (i.e., how many GPUs to
assign to a training job) and scheduling problems (i.e., determine the job order-
ing leading to optimal resource access) both for private and public clouds. The
final goal is to obtain the efficient use of shared public cloud VMs/private in-
frastructures while observing the completion time goals of training jobs (taking
into account, possibly, AI model partitioning between cloud and edge servers).
GPU sharing and access mechanisms will be based on rCUDA7, which allows
multiple devices that connect through a network to a single rCUDA server, to
share the physical GPUs among the different concurrent requests.

4.2.5 Trusted Execution Environments

AI-SPRINT will provide tools for the deployment of compute instances enabled
with Trusted Execution Environments (TEEs). Trusted execution of appli-
cations in computing continua poses many challenges: i) application entities
must be orchestrated in a way that only trusted parties are allowed to establish
communication channels with each other, i.e., end-to-end encryption; ii) code
attestation and verification mechanisms are required to ensure that only the cor-
rect code/binary is being executed, as well as secure patch management where
only code changes which are verifiable and auditable are performed; iii) the or-
chestration framework must support heterogeneous environments that provide
TEEs of different vendors such as Intel SGX, ARM Trustzone8, etc.; iv) since
there exists no trust relationship among the various stakeholders as well as priv-
ileged users such as the cloud provider, data and code must be protected in a
way only owners can access and modify. In order to provide security guarantees
across all layers, mechanisms such as secure boot are essential to also attest
and guarantee that the correct operating system (OS) is booted. In order to
address these challenges, AI-SPRINT, starting from SCONE9 will develop an
orchestration framework that provides secure application execution using TEEs.
The framework will enable software developers to run unmodified code in TEEs

7http://www.rcuda.net
8http://www.sierraware.com/open-source-ARM-TrustZone.html
9https://sconecontainers.github.io
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supporting various vendors as well as providing a cross-compiler framework for
translating legacy applications into secure AI-SPRINT ones. In order to pro-
vide strong end-to-end encryption, the framework will provide mechanisms for
key generation, exchange as well as remote attestation and verification. More-
over, the framework will also integrate secure booting mechanisms to ensure
that the OS applications are running on can be attested to provide an extra
level of security. To reflect continuous integration of fast-evolving applications,
the framework will be equipped with patch management mechanisms providing
verifiable mappings of binary code changes to trusted source code repositories
in a way the executed code can be always trusted. Finally, an integrated policy
enforcement mechanism ensures that only data owners can access and modify
their training or inference data.

4.2.6 Secure Networks

The creation and lifecycle management of secure network paths in a computing
continuum requires the coordination of multiple routers across multiple sites in-
terconnected by transit networks, across multiple administrative domains, and
with different security characteristics. Providing trusted and reliable commu-
nications requires dealing with many challenges, such as: (1) untrusted transit
networks; (2) network resources changing over time due to node mobility; (3)
different nodes and domains having different capabilities in terms of security;
(4) conflicting policies due to the co-existence of multiple tenants; (5) network
failures and disruptions.

To address these challenges, AI-SPRINT will leverage and extend the ONOS
controller10 [11] and its ecosystem of technologies for network control and man-
agement. AI-SPRINT will make it possible to seamlessly configure and manage
a secure, private edge cloud service. The AI-SPRINT Secure Networks compo-
nent will leverage network programmability to minimize provisioning delays and
to implement rich security policies while minimizing traffic tromboning. Addi-
tionally, it will manage the setup of the relevant Virtual Network Functions,
steer secure tunnels through them, and will ensure that the network paths com-
ply with the security policies defined at design time including when traffic is
rerouted in case of failure.

In deploying the network functions and paths, the component will optimize
the deployment taking into account the availability of programmable network
devices, such as programmable switches or smart NICs supporting the P4 pro-
gramming language11 [12].

5 Related work

In this section, we review some recent relevant works related to AI cloud-edge
application design, runtime management and security. An important step of

10https://opennetworking.org/onos/
11https://p4.org/

12

https://opennetworking.org/onos/
https://p4.org/


the application design is performance modeling. The performance analysis of
computing continuum applications can be tackled from different perspectives.
The most traditional ones rely on analytical models [13] and simulation [14],
[15]. Some recent studies have exploited ML models for performance prediction
of large systems [16], [17], since a black box approach has several benefits (e.g.,
no required knowledge of the system internals, fast estimation time). Moreover,
AI model architecture search is a hot topic in AI cloud-edge application design
both for industry and academia. Works can be classified according to the explo-
ration paradigm adopted in searching for the best topology suited for solving a
specific problem; in general, most of the approaches use genetic algorithms [18]
and reinforcement learning [19]. After the first attempt to learn dense neural
models [20], most of the research focus is now on CNNs for image recognition
with model accuracy as a target, although more recent approaches have started
considering a multi-objective perspective trading-off accuracy with energy con-
sumption [21] also for edge devices [22] and in a federated setting [10].

Runtime management is among the most important issues to run the ap-
plications on a heterogeneous architecture. Cloud orchestration is the process
needed to manage the entire lifecycle of a cloud application. Our previous work
in the field is IM [7], a cloud orchestration runtime that deploys complex and
customized virtual infrastructures on multiple back-ends, including most popu-
lar public clouds and on-premise solutions. From the programming framework
runtime perspective, optimizing and provisioning edge resources is critical be-
cause of the edge limited capacity and several approaches have been proposed to
tackle this issue. Some of them (e.g., [23]) focus on domain-specific solutions.
Another approach refers to the assignment of multi-task applications in hetero-
geneous clouds (e.g., [24], [25]). A third possible set of approaches exploits
decentralized resource management systems [26]. Scheduling is another signifi-
cant topic in runtime management. There has been considerable work done in
the domain of GPU scheduling for HPC systems to improve load balancing and
performance of CPU and GPUs [27] but there are few solutions for AI training
applications. Authors in [28] proposed Gandiva, a cluster scheduling frame-
work able to improve latency of training deep learning models in GPU clusters.
[29] presents a topology-aware placement strategy to schedule deep learning
jobs on a Power8 machine based on NVLink while [30] proposes Harmony,
a deep learning-based scheduler addressing explicitly performance interference
among DL jobs and minimizes average job completion time. Significant GPU
utilization increase can be obtained by means of virtualization [31] and remote
access [32] which allow to transparently share the GPUs in a server among
many applications running in different nodes of the cluster.

To guarantee privacy and security at the node and network levels, we must
address these elements both in design tools and in the runtime environment.
A Trusted Execution Environment (TEE) is a secure part of a general-purpose
CPU that guarantees confidentiality and integrity of code and data loaded into
it. A number of frameworks exist that exploit the TEE functionality in sev-
eral ways. For example, Haven [33] uses Intel SGX to execute unmodified
Windows applications, such as Microsoft SQL Server, inside a secure enclave.
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Another relevant framework is provided by VC3 [34] which uses Intel SGX
to execute trustworthy MapReduce applications in an untrusted cloud environ-
ment. A number of open source frameworks exist that support the use of Intel
SGX such as OpenEnclave [35,36]. From the network perspective, recent works
have explored various directions relevant to AI-SPRINT: guaranteeing consis-
tent updates throughout the network is a critical issue for patch management
[37]; policy checking by injecting probe packets makes it possible to assess the
behaviour of hybrid networks [38]; automatic conflict resolution is a necessary
tool to minimize the impact of security policies on network performance [39].

6 Conclusion

This paper presents the research agenda and main challenges that will be faced
by the AI-SPRINT H2020 project. AI-SPRINT will develop a novel framework
for developing and operating AI applications and, since its very beginning, will
foster open source and the early adoption of its tools by end-users. Core benefits
resulting from such a novel tech toolbox include:

• Reduction of skill shortage and steep learning curves in the development
of AI software on computing continuum ecosystems through open source
tools, models, methods and methodologies.

• Shorter time to market for AI applications that meet performance, security
and privacy requirements.

• Reduction of costs for software developers to design and evolve AI appli-
cations running at the edge, by defining novel solutions to select optimal
architectures.

• Reduction of costs to operate AI applications and increased value for cloud
providers and end-users, by relying on a runtime environment with efficient
and energy aware use of computing continuum resources.
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