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Abstract
We propose a highly scalable solver for a two-dimensional depth-integrated fluid
dynamic model in order to simulate flow-like landslides, such as debris or mud
flows. The governing equations are discretized on quadtree meshes by means
of a two-step second-order Taylor–Galerkin scheme, enriched by a suitable flux
correction in order to avoid spurious oscillations, in particular near disconti-
nuities and close to the wetting-drying interface. A mesh adaptation procedure
based on a gradient-recovery a posteriori error estimator allows us to efficiently
deal with a discretization of the domain customized to the phenomenon under
investigation. Moreover, we resort to an adaptive scheme also in time to prevent
filtering out the landslide dynamics, and to an interface tracking algorithm to
avoid an excessive refinement in noninterfacial regions while preserving details
along the wetting-drying front. Finally, after verifying the performance of the
proposed numerical method on idealized settings, we carry out a scalability anal-
ysis of the code both on idealized and real scenarios, to check the efficiency of
the overall implementation.
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1 INTRODUCTION AND MOTIVATION

Hydrogeological instability is among the effects of climate change with the highest impact on the safety of people and of
the built environment. In particular, landslides are responsible for significant human and economic losses worldwide.1,2

The capability to predict landslides and to assess the risk connected with extreme events is of paramount importance to
the safety of people and infrastructures,3 especially in densely populated urban areas located in landslide-prone regions.4
The dynamics of a landslide is characterized by a broad range of velocity scales, each being dominant in a particular
phase of the event, from the steady creeping slip to a catastrophic avalanche, passing through the intermittent rapid slip.
During these phases, the landslide displays different mechanical behaviors. In particular, during the triggering phase,
the landslide behaves roughly like a rigid body and the driving process is the pore-pressure diffusion that causes the
intermittent slipping of the involved material. Once the landslide is initiated, various behaviors take place, in particular
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a flow-like motion is typical of debris and mud flows, where the landslide follows a visco-plastic behavior and the overall
process becomes advection-dominated.

In this paper, we focus on the “rapid” movement of flow-like landslides, that is, a movement characterized by a
relatively large velocity. In other words, we assume that the mass has lost its equilibrium and we primarily analyze
the associated run-out. We propose an efficient implementation of a two-dimensional depth-integrated fluid dynamic
model able to simulate such kind of landslides. Following previous works,5-7 the landslide model equations are numeri-
cally solved by using a Taylor-Galerkin method.8,9 We implement a parallelized version of the two-step Taylor–Galerkin
scheme10 on h-adaptive quadtree meshes, in order to handle the different length-scales characterizing a landslide dynam-
ics, while ensuring a reasonable computational burden. The spatial mesh adaptation is carried out via a metric-based
iterative algorithm driven by a recovery-based a posteriori estimator for the discretization error.11,12 Successively, we
enrich the spatial adaptation with an adaptive choice also of the time step, following Reference 13. The quadtree data
structure14 allows us to exploit highly efficient algorithms for mesh traversal, partitioning, refinement, coarsening and
balancing that are particularly well suited for scaling up to very large number of parallel processes on distributed-memory
systems.15-23 In particular, the use of such data structure for the mesh management allows to reduce the communi-
cation required in the error estimation and refinement/coarsening steps, that are often a bottleneck in the parallel
implementation of adaptive simulation algorithms.24

The ability of being relatively easily deployed on large clusters and to fully exploit the available computing power
represents a key requirement for the applicability of the proposed solver. Indeed, the main use case we have in mind is
the integration of the code within a full stack of tools for environmental risk monitoring, which combines physics-based
numerical simulations with a statistical data analysis, in order to predict catastrophic events and to assess the associated
risk level.25 In this framework, a large number of simulation runs may be needed on each scenario, either to evaluate the
possible outcome of a specific event or to continuously calibrate the model parameters with respect to observations, for
example, in a data assimilation process. For all these reasons, the algorithm design process we pursue is driven by the
need to achieve maximum parallel scalability.

The paper is organized as follows. We present the governing equations for fast flowing landslide modeling in Section 2,
while Section 3 gathers all the numerical tools used to approximate the selected model. In particular, Section 3.1
introduces the discrete spaces on balanced quadtree meshes with hanging nodes. Section 3.2 defines the two-step
Taylor–Galerkin discretization algorithm. Section 3.3 provides details on the procedure used to track the wetting–drying
interface. Finally, Sections 3.4 and 3.5 furnish the error estimator together with the metric-based adaptation procedure
used to select both the spatial and the temporal computational mesh. In Section 4, we carry out the numerical assess-
ment. In order to verify the performance of the proposed discretization setting, we compare discrete with corresponding
analytical solutions. Moreover, we execute a scalability analysis, both in case of idealized and real configurations, in order
to check the actual efficiency of the overall implementation. Finally, in Section 5, we draw some conclusions and offer
perspectives for possible future developments of the current approximation framework.

2 DEPTH-AVERAGED MODELING OF FLOW-LIKE LANDSLIDES

In this section, we introduce the governing equations used to model the fast landslide material (notice that the model
here adopted is reliable as long as the substrate is not too slanted). Inside a Cartesian domain Ω ⊂ R2 and in the time
window (0,T], we solve the de Saint-Venant equations

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜕th + 𝜕xUx + 𝜕yUy = 0,

𝜕tUx + 𝜕x

(
U2

x
h
+ 1

2
gh2

)
+ 𝜕y

(
UxUy

h

)
= 1

𝜌

f B
x +

1
𝜌

𝜕x(𝜎xxh) + 1
𝜌

𝜕y(𝜎xyh) − gh𝜕xZ,

𝜕tUy + 𝜕x

(
UyUx

h

)
+ 𝜕y

(U2
y

h
+ 1

2
gh2

)
= 1

𝜌

f B
y +

1
𝜌

𝜕x(𝜎xyh) + 1
𝜌

𝜕y(𝜎yyh) − gh𝜕yZ,

(1)

with respect to the unknown functions h and U = [Ux,Uy]⊤ modeling the material depth and the horizontal mass flux,
respectively, to be supplemented by proper initial and boundary conditions. In particular, following References 6 and 7,
we distinguish inΩ a wet (Ωw) and a dry (Ω ⧵Ωw) region, defined as the portion of the whole domain where h > hmin and
h ≤ hmin, respectively, with hmin a threshold under which we have a null momentum flux. This trick allows us solving
(1) on the whole Ω instead of on the wet region only. This leads to a considerable computational advantage taking into
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1288 GATTI et al.

account thatΩw varies in space and time. Moreover, we can assign boundary data directly on the boundary 𝜕Ω instead of
on a curve changing in time. In particular, we apply nonreflecting boundary conditions.

In Equation (1), g is the gravitational acceleration, 𝜌 is the density of the material, fB = [f B
x , f B

y ]⊤ denotes the bed
friction, 𝝈 is the deviatoric part of the Cauchy stress tensor, with components [𝜎xx, 𝜎xy, 𝜎yy], and Z describes the orography
profile. In particular, the bed friction is defined by the Voellmy rheology, so that

fB = −
(

pB tan 𝛿
1
|v|

+ 𝜌g
|v|
𝜉

)

v, (2)

where pB is the bed pressure given by the Stevino law, being pB = pS + 𝜌gh, with pS the atmospheric pressure, 𝛿 is the bed
friction angle, v = [vx, vy]⊤ = U∕h is the horizontal depth-averaged velocity, and 𝜉 is a turbulence friction coefficient with
the same dimension as for the acceleration.

Law (2) turns out to be particularly suited in the modeling of debris flows or rock avalanches.26,27 We also remark
that, as proposed in other works,28-30 the bed friction angle should be considered time dependent due to consolidation
processes. However, we consider 𝛿 as a constant since the main goal of the paper is to assess the scalability performance of
the proposed implementation rather than focusing on modeling aspects that do not affect the performance of the overall
framework.

Concerning the choice for 𝝈, we employ a depth-integrated visco-plastic Bingham stress model, that is

𝝈 =

(
𝜏Y
√

I2
+ 2𝜇

)

D, (3)

where 𝜏Y is the yield shear stress, 𝜇 is the fluid viscosity, D denotes the horizontal strain rate tensor defined
component-wise by Dij = 1

2

(
𝜕xj vi + 𝜕xi vj

)
for i, j = 1, 2, with x1 = x, x2 = y, v1 = vx, v2 = vy, and where I2 = 1

2
D ∶ D

represents the second invariant of the three-dimensional depth-averaged strain rate tensor

D =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

D11 D12
1
2
𝜕zvx

D21 D22
1
2
𝜕zvy

1
2
𝜕zvx

1
2
𝜕zvy −(D11 + D22)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

component D33 being computed via the incompressibility constraint. In particular, following Reference 7, we evaluate I2
under the hypotheses of steady state, laminar, simple shear flow, so that the depth-integrated rate of deformation tensor
along the normal direction, z, is identified by relations

𝜕zvi =
3

2 + 𝜁

vi

h
, (4)

for i = 1, 2, where 𝜁 = 𝜏Y∕𝜏B, with 𝜁 ∈ [0, 1] and 𝜏B the bed friction. Now, the relation between v and 𝜁 ,

|v| = 𝜏B

6𝜇
(1 − 𝜁)2(2 + 𝜁), (5)

results in the third-degree polynomial

𝜁
3 − (3 + a)𝜁 + 2 = 0, (6)

in the unknown 𝜁 , being a = (6𝜇|v|)∕(h𝜏Y ). By applying the best second approximation of a third-degree polynomial
which provides a maximum error equal to 1∕32, we obtain the equation

3
2
𝜁

2 −
(114

32
+ a

)
𝜁 + 65

32
= 0, (7)
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GATTI et al. 1289

that can be solved in a closed form. Once the equation is solved for 𝜁 , we can compute quantities (4) (i.e., the two
components D13 = D31 and D23 = D32) and, consequently, the invariant I2.

3 THE NUMERICAL METHOD

To simplify the discussion, we rewrite system (1) as a generic nonlinear system of conservation laws, that is, as

𝜕tq + ∇ ⋅ F + ∇ ⋅D = r, in Ω × (0,T], (8)

to be supplemented with proper initial and boundary conditions. Here, q = q(x, t) is the vector of the conserved variables,
being x = (x, y) ∈ Ω ⊂ R2 and t ∈ (0,T], F = F(q) and D = D(∇q) denote the tensor of the transport and of the diffusive
fluxes respectively, while r = r(q) is the reaction term.

In particular, with reference to system (1), it turns out that q = [h,U]⊤, tensor F(q) = [Fx(q),Fy(q)] has components
defined by

Fx(q) =

⎡
⎢
⎢
⎢
⎢
⎣

Ux
U2

x

h
+ 1

2
gh2

UyUx

h

⎤
⎥
⎥
⎥
⎥
⎦

, Fy(q) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Uy
UyUx

h
U2

y

h
+ 1

2
gh2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

the diffusive flux D(∇q) = [Dx(∇q),Dy(∇q)] is characterized by the components

Dx(∇q) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0

− 1
𝜌

𝜎xxh

− 1
𝜌

𝜎xyh

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, Dy(∇q) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0

− 1
𝜌

𝜎xyh

− 1
𝜌

𝜎yyh

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

while the reaction term coincides with

r(q) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
𝜌

f B
x − gh𝜕xZ

1
𝜌

f B
y − gh𝜕yZ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

In the sequel, we deal with the space-time discretization scheme adopted to approximate problem (8) (i.e., (1)),
endowed with a wetting-drying interface tracking algorithm. In particular, both the spatial and the temporal discretiza-
tions of the domain Ω × (0,T] will be driven by a mesh adaptation procedure detailed in Sections 3.4 and 3.5.

3.1 Discrete spaces on hierarchically refined Cartesian quadtree meshes

To offer a sharp description of the solution in wet regions and, at the same time, to prevent a smearing of the solution
near wet-dry interfaces, we resort to a spatial mesh adaptation procedure. In more detail, we carry out an isotropic spatial
adaptation on quadtree meshes, with the constraint to have adjacent cells whose size differs at most by a factor equal
to two. The quadtree data structure easily enables both coarsening and refinement although it leads to nonconformal
meshes characterized by the presence of hanging nodes. A mesh refinement consists in replacing an element with four
children of equal size (see Figure 1, top), while coarsening occurs when removing four children and replacing them with
a parent (see Figure 1, bottom).

Concerning the update of the discrete variables on adapted meshes, we compute the solution on the new grid by
means of a bilinear interpolation of the solution computed on the previous mesh, while the orography characterizing
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1290 GATTI et al.

F I G U R E 1 Example of refinement (top) and coarsening (bottom) for a quadtree mesh. The dofs characterizing space ̃Q
h
1 are

highlighted (notice that the hanging nodes do not enrich the space). [Colour figure can be viewed at wileyonlinelibrary.com]

the source term is recomputed directly on the input orography, that is, via the Digital Terrain Model (DTM), associated
with a regular quadrilateral grid. In particular, we update the slope since the source term of the momentum equation
involves the terrain slant, both along the x- and y-direction. Thus, for each DTM cell, we compute, once and for all, the
terrain slope along both the Cartesian directions with the divergence theorem, by considering as integration walk the
diamond-shape path joining the centroids of the four cells sharing an edge with the considered DTM cell. Successively, at
each quadtree element, we assign a unique slope value coinciding with the value taken by the orography at the centroid
of the quadtree cell. We observe that this procedure is consistent with the case of a planar orography. Moreover, in view
of a discrete setting, it corresponds to approximate the integrals involved in the weak formulation of problem (8) with a
midpoint quadrature rule.

Following Reference 16, the presence of the hanging nodes is handled by modifying the discrete space instead of
adding new degrees of freedom (see Figure 1), with the goal of preserving the partition of unity property. To this aim, we
introduce the standard space Q

h
1 of the continuous piecewise bilinear polynomials associated with the regular quadtree

meshh to discretize the material depth as well as the two components of the mass flux Reference 31 (chapter 2). Then,
we define the modified discrete space Q̃

h
1 ⊂ Q

h
1, which still collects continuous piecewise bilinear polynomials, where the

value of the conservative quantities at the hanging nodes is identified with the arithmetic mean of the values taken by the
same quantities at the corresponding parent nodes.

Now, we assume to have a maximum level M of uniform refinements. If we denote by {𝜙(1),h∕2l

k , k = 1, … N(1)
l } the

standard finite element basis of Q
h∕2l

1 , for l = 0, … ,M, and by {�̃�(1)i , i = 1, … Ñ(1)} the basis of Q̃
h
1, we can identify two

levels of refinement, say l1 = 0, … ,M − 1 and l2 = l1 + 1, such that

�̃�
(1)
i (x) =

N(1)
l1∑

k=1
wk,l1𝜙

(1),h∕2l1

k (x) +
N(1)

l2∑

k=1
wk,l2𝜙

(1),h∕2l2

k (x), (9)
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GATTI et al. 1291

for any x ∈ Ω. In particular, the weights wk,l1 , wk,l2 are determined by imposing the partition of unity property,

Ñ(1)
∑

i=1
�̃�
(1)
i (x) = 1, (10)

for any x ∈ Ω, together with the Lagrangian property,

�̃�
(1)
i (xj) = 𝛿ij, (11)

for i, j = 1, … ,Ñ(1), with 𝛿ij the Kronecker delta.

3.2 Two-step Taylor–Galerkin discretization on quadtrees

Following Reference 7, we approximate system (8) by resorting to a two-step Taylor–Galerkin (TG2) method on a spatial
quadtree mesh characterized by a 2:1 balance ratio.

In more detail, to deal with the time discretization, we consider the Taylor series expansion of the conserved variable
q around a given time tn, which, when evaluated at time tn+1, is given by

qn+1 = qn + Δt 𝜕tqn + Δt2

2
𝜕

2
t qn + (Δt3), (12)

with qj = q(x, tj) and j = n,n + 1. Thus, indicating by Qn ≈ qn the time discrete conservative variable at the generic time
tn, we have

Qn+1 = Qn + Δt 𝜕t

(
Qn + Δt

2
𝜕tQn

)
. (13)

Now, after introducing an intermediate state, Qn+ 1
2 , we can formalize the semi-discrete two-step temporal scheme as

{
Qn+ 1

2 = Qn + Δt
2
𝜕tQn

,

Qn+1 = Qn + Δt 𝜕tQn+ 1
2 .

(14)

Concerning the spatial discretization, we employ standard finite elements, based on a quadtree partition, ̃h, of Ω.
We associate different approximation spaces with the two temporal steps in (14). We use the space Q0 of the continuous
constant polynomials to discretize the first step (i.e., to compute the intermediate state Qn+ 1

2 ), and the space Q̃
h
1, described

in Section 3.1, to discretize the second step (i.e., to compute the final state Qn+1).
Thus, the discrete counterpart of the two steps in (14) is provided by the equations

(Qn+ 1
2 , 𝜙

(0)
j ) = (Q

n
, 𝜙

(0)
j ) −

Δt
2
(
∇ ⋅ Fn

, 𝜙
(0)
j

)
+ Δt

2
(
rn
, 𝜙

(0)
j

)
,

(Qn+1
, �̃�

(1)
i ) = (Q

n
, �̃�

(1)
i ) + Δt

[(
F∗,n+

1
2 ,∇�̃�(1)i

)
+
(
rn+ 1

2 , �̃�
(1)
i
)
+
(
Dn

,∇�̃�(1)i
)]
− Δt

∫
𝜕Ω

(
F∗,n+

1
2 n +Dnn

)
�̃�
(1)
j d𝜎, (15)

by properly varying indices j and i, where Qn, Qn+1 ∈ Q̃
h
1, Qn+ 1

2 ∈ Q0, and where Fn, Dn are the transport and the diffu-
sive fluxes at time tn, {𝜙(0)j }i and {�̃�(1)i }j denote the set of the basis functions for spaces Q0 and Q̃

h
1, respectively, (⋅, ⋅) is the

standard scalar product in L2(Ω), F∗,n+
1
2 represents the numerical flux discussed below at time tn+ 1

2 , and n coincides with
the outward unit normal to the boundary 𝜕Ω. Both the equations in (15) exploit the conservation law in (8). However, we
remark that the diffusive term is neglected in the intermediate state according to what done in Reference 7. The reason is
that D depends on the gradient of q, but the gradient is not computable in Q0. Vice versa, the diffusive contribution is com-
putable in Q̃

h
1. For this reason, the final state comprehends the diffusive term evaluated at time tn since no corresponding

approximation is available at the intermediate time tn+ 1
2 . This choice is similar to an operator splitting strategy and only
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1292 GATTI et al.

mildly affects the convergence rate in time of the whole numerical procedure, consistently with what observed in Refer-
ence 7. We observe that the TG2 scheme can be conceived as a combination between the explicit Euler scheme, used to dis-
cretize the diffusion term, and a second order Taylor method to approximate the transport and the reaction contributions.

Concerning the boundary conditions closing problem (15), we note that the effect of the boundary data on the actual
flow is not relevant as far as the wetting front does not reach the boundary 𝜕Ω. Therefore, we employ nonreflecting
boundary conditions for the transport contribution, while we impose null diffusive interface fluxes.

Finally, from a computational viewpoint, we avoid the expensive consistent mass matrix inversion associated with the
second step in (15) by adopting a mass lumping technique.32 This turns out to be a strategical choice in view of a parallel
implementation of the numerical procedure. Indeed, we can avoid to build a global linear system, thus skipping expensive
communications among processors.

The TG2 scheme in (15) is a second order space-time method. Nevertheless, for F∗,n+
1
2 = Fn+ 1

2 , the scheme is neither
monotone nor positive preserving.10 Here, we are interested in setting up a numerical scheme able to avoid spurious
oscillations near discontinuities while ensuring mass conservation. This requires the implementation of suitable flux
limiter techniques, like the Flux Corrected Transport (FCT; we refer the interested reader to References 33-35 for further
details). In particular, we resort to a first-0order monotone numerical flux (i.e., a “low-order” flux), weighted by a flux
correction function that guarantees a first-order accuracy near discontinuities, in accordance with the Godunov theorem.
We use a Lax-Friedrichs “low-order” numerical flux with Rusanov correction in order to modify the truncation error
only, thus enabling for independent space and time adaptation. Let us focus on a single mesh element Q, with resolution
Δx × Δy. We define the Lax–Friedrichs anti-diffusive contribution with Rusanov correction,

𝛿Fn
Q = max(

Δx
Δt
,
Δy
Δt

)
1

2Δt
(∇Qn

, 𝜙
(0)
Q ), (16)

with 𝜙
(0)
Q the generic Q0-basis function associated with the element Q. The L2(Ω)-product in (16) leads us to deal with a

linear function of the ratios Δx∕Δt and Δy∕Δt for both the x- and the y-components. Now, since such ratios are upper
bounded by the CFL condition, the maximum in (16) is reached when replacing Δx∕Δt and Δy∕Δt with the maximum
simple wave speed with respect to both the Cartesian directions and in the considered element, this yielding the Rusanov
anti-diffusive flux recipe.36 Thus, according to the classical FCT strategy,33-35 the numerical flux associated with the cell

Q, F
∗,n+ 1

2
Q , reads,

F
∗,n+ 1

2
Q = (F

n+ 1
2

Q − 𝛿Fn
Q) + 𝛼Q𝛿Fn

Q, (17)

with F
n+ 1

2
Q the restriction to Q of the transport flux F at time tn+ 1

2 , and where 𝛼Q ∈ [0, 1] denotes the elementwise constant
correction coefficient. We adopt the Zalesak multidimensional flux correction, as described in the corresponding seminal
paper.33 The main steps leading to this specific definition of 𝛼Q are here summarized for completeness.

For each mesh node i and for each component z of the conserved variable q, we compute the low-order updated
discrete solution zn+1,low

i at time tn+1 by considering in the second step of (15) the low order numerical flux obtained by
setting 𝛼Q = 0 in (17), for each Q . We define now the set,i, of the elements sharing the node i, by including also the
elements such that at least one hanging node has node i as a parent. Then, the corrected updated solution at node i at
time tn+1 is given by

zn+1
i = zn+1,low

i + Δt
mi

∑

Q∈i

𝛼Qf z
Q,i, (18)

where mi is the component of the lumped mass matrix associated with node i, while f z
Q,i represents the component related

to z of the vector fQ,i = (𝛿Fn
Q,∇�̃�

(1)
i ), that is, of the anti-diffusive contribution to node i from element Q. Now, to determine

𝛼Q, according to References 35,37, we introduce the auxiliary quantities

P+i =
1

ΔtSi,xSi,y

∑

Q∈i

max{0, f z
Q,i}, P−i =

1
ΔtSi,xSi,y

∑

Q∈i

min{0, f z
Q,i},

W+
i = max

Q∈i

zn+1,low
i − zn+1,low

i , W−
i = min

Q∈i

zn+1,low
i − zn+1,low

i ,

(19)
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GATTI et al. 1293

which coincide with the sum of all the positive/negative anti-diffusive fluxes associated with node i and with the distance
to the local extrema,37 respectively, Si,x and Si,y denoting the x- and the y-components of the maximum simple wave speed
at the node i associated with the updated low-order solution. Finally, after introducing the nodal quantities,

R+i =

{
min{1,W+

i ∕P+i } if P+i ≠ 0
1 if P+i = 0,

R−i =

{
min{1,W−

i ∕P−i } if P−i ≠ 0
1 if P−i = 0, (20)

we define the correction factor associated with the generic element Q, that is,

𝛼Q = min
i

{
R+i , if f z

Q,i ≥ 0
R−i , if f z

Q,i < 0,
(21)

which guarantees the maximum discrete principle.
To conclude, the numerical flux F∗,n+

1
2 in (15) is defined by collecting the elementwise contributions in (17).

3.3 Tracking of the Wetting–Drying interface

The discetization scheme in the previous section is enriched with the Lagrangian interface prediction strategy introduced
in38 in order to accurately track the evolution of the wetting–drying interface. The spatial mesh adaptation procedure
detailed in the next section also will play a role in such a direction.

Thus, according to the modeling in Section 2, the wet region is discretized by setting a threshold, hmin, for the depth
h so that no momentum flux takes place under this value. This threshold has to be chosen sufficiently small to prevent
unrealistic behaviors, although not too small to avoid the rise of numerical instabilities yielded by the division by h in the
definition of the transport fluxes.

The strategy we adopt to track the wetting– interface is very basic. At a given time tn, first we identify the wetting-drying
interface elements, coinciding with the cells which have, at least, a dry node (where the discrete material height is under
hmin) as well as a wet node (where the discrete value for h is above hmin). For each interface element, QI , we compute the
average velocity. Then, we identify the neighbouring cell containing the centroid of QI when advected by such an average
field. This localized search turns out to be possible by exploiting the CFL condition. Finally, the neighboring element is
marked for refinement, up to a suitable refinement level (we refer to the next section, in particular to formula (27), for
further details, and to Figure 2 for a sketch of the front-tracking procedure).

To avoid an excessive smearing of the solution when interpolating the physical quantities from one mesh to another,
we avoid coarsening the cells along the interface.

3.4 Space adaptation

The wetting–drying interface tracking process is complemented by an adaptive management of the spatial mesh, driven
by an a posteriori error estimator. Among the several estimators for the discretization error available in the literature, we
select a gradient recovery approach.11,12,39 One of the main strengths of these estimators is the intrinsic independence
from the problem at hand. In particular, the estimators depend on the chosen discrete space but not on the equations
governing the problem. Moreover, other important properties are enjoyed, such as the computational effectiveness as well
as the easiness of implementation.

Herein, we summarize the whole procedure we follow, for reader completeness. Starting from an assigned quadtree
mesh, ̃n

h, at time tn, we look for a size function, known as metric,40 that specifies a new sizing for the mesh elements,
so that a suitable norm of the discretization error remains below a user-defined tolerance, 𝜏. In the original proposal
by Zienkiewicz and Zhu, the chosen norm is the H1(Ω)-seminorm. In particular, we refer to the H1-seminorm of the
discretization error associated with the generic component z of the vector q in (8) at a given time tn, that is, to

|ez,n
h |2H1(Ω) = ∫Ω

|∇zn − ∇zn
h|

2 dΩ, (22)
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1294 GATTI et al.

F I G U R E 2 Tracking of the wetting–drying interface: wet domain at time tn with associated interface curve highlighted in blue. The
grey square corresponds to a cell marked for refinement since containing the centroid identified by the red cross when advected by the
corresponding average field. [Colour figure can be viewed at wileyonlinelibrary.com]

where zh denotes the discrete counterpart of z, while index n keeps trace of the selected time tn. In References 11,12,
and 39, the authors derive an error estimator for |ez,n

h |H1(Ω) by replacing in (22) the exact gradient ∇zn with a computable
quantity, known as recovered gradient. In general, the recovered gradient is expected to provide an approximation to∇zn

better than ∇zn
h. Several methods are available in the literature to recover ∇zn (see, e.g., References 41-43). In the sequel,

we compute the recovered gradient∇Rzn
h by projecting, componentwise, the discrete gradient∇zn

h onto the bilinear space
Q̃

h
1, so that ∇Rzn

h ∈ [Q̃
h
1]2. For further details about the gradient recovery procedure we refer the interested reader to

Section 10.3 in16 and to.24

Thus, we can introduce the local recovery-based estimator for the discretization error, defined by

𝜂
2
Q = ∫Q

|(∇Rzn
h − ∇zn

h)|Q|
2 dQ, (23)

for each element Q ∈ ̃n
h, and where the integral is computed via a suitable quadrature formula (in the numerical assess-

ment below, we employ the four-point Gaussian quadrature rule). The global error estimator is consequently assembled as

𝜂
2 =

∑

Q∈̃n
h

𝜂
2
Q. (24)

Now, according to a metric-based approach,16 we predict a new mesh size, h∗Q, for each element Q of the grid ̃n
h (which

constitutes the so-called background mesh, that is, the grid where the computations are actually performed). To this
aim, we impose that the global estimator 𝜂 matches a user defined accuracy 𝜏 (i.e., 𝜂 = 𝜏), in combination with an error
equidistribution criterion, so that

𝜂
2
Q =

𝜏
2

N
, (25)

with N the cardinality of the background mesh ̃n
h. Then, the local error estimator is scaled with respect to an area

information, by introducing the quantity �̃�
2
Q = 𝜂

2
Q∕h2

Q. By exploiting the definition of the scaled estimator in (25), we can
predict the new elementwise size,

h∗Q =
𝜏

�̃�Q
√

N
. (26)

 10970363, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fld.5186 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


GATTI et al. 1295

Notice that, since we deal with a quadtree mesh, we need to express the geometric information in (26) as a number of
levels of refinement or coarsening. Actually, with each cell Q in ̃n

h, we have to associate an integer number, lQ, which
specifies the number of refinement (if lQ > 0) or coarsening (if lQ < 0) levels (where lQ = 0 means that no action has to be
taken on the cell Q). Under the hypothesis of invariance of �̃�Q with respect to possible changes in the mesh size, so that

�̃�Q =
𝜂Q

hQ
=

𝜂
∗
Q

h∗Q
,

with 𝜂
∗
Q the error estimator computed on the mesh element identified by the predicted size h∗Q, and since increasing

the refinement level reduces to halve the characteristic cell size lQ so that 2−lQ = h∗Q∕hQ, we derive that the level of
refinement/coarsening coincides with

lQ =

⌈

log2

(
𝜂Q
√

N
𝜏

)⌉

. (27)

In practice, we have introduced some controls on the metric-based mesh adaptation procedure to contain the
associated computational effort. In particular, the user is demanded to set an upper bound, Nmax, on the maximum
number of mesh elements jointly with a minimum space resolution, Δmin, in the wet region. This allows us to avoid an
over-refinement along the front. Moreover, we have set a minimum time, Δtada, between two consecutive mesh adapta-
tion steps. Indeed, a mesh adaptation strategy combined with an interface tracking procedure at each iteration might be
computationally too expensive and sometimes also useless from a modeling view point.

3.5 Time adaptation

The possible heterogeneity in time characterizing the phenomena of interest justifies an adaptive choice of the time
step. For a certain time tn−1, the idea is to predict the next time step Δtn, namely the next time tn, by resorting to an a
posteriori estimator for the discretization error in time. When predicting both the space and the time discretization, it is
rather standard to keep distinct the space from the time error estimator in order to make the whole adaptation procedure
more straightforward (see, e.g., References 44-47). Here, we adopt the same strategy. In particular, we refer the reader
to Figure 3 where a sketch of the coupling between space and time mesh adaptation, together with the wetting–drying
interface tracking procedure, is provided.

To drive the adaptive selection of the time step, we follow the approach proposed in Reference 13.
Consistently with Section 3.4, we refer to the generic component z of the vector q in (8). We denote by zh the discrete

counterpart of z, that we assume to be known at the times tj, for j ∈ {0, ...,n − 1}, with Δtj = tj − tj−1 the jth time step in
the temporal window [0,T]. To identify the next time step Δtn, we again exploit a recovery-based a posteriori estimator

F I G U R E 3 Block diagram of the whole space-time adaptive procedure. [Colour figure can be viewed at wileyonlinelibrary.com]
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1296 GATTI et al.

for the H1-seminorm of the time discretization error,

|ez
h,t(x)|

2
H1(In−1)

=
∫In−1

|𝜕tz − 𝜕tzh|
2 dt, (28)

with In−1 = [tn−1
, tn] and for x ∈ Ω. To make computable the right-hand side in (28), we approximate the derivative of the

discrete solution by means of a standard finite difference scheme, so that

𝜕tzh ≃
zn

h − zn−1
h

Δtn−1 , (29)

d with zj
h = zh(x, tj), for x ∈ Ω and j ∈ {0, ...,n}. As far as the time derivative 𝜕tz is concerned, we replace the exact solution

z with the recovered solution z∗ coinciding with the quadratic interpolation of the pairs of data (tn−2
, zn−2

h ), (tn−1
, zn−1

h ),
(tn

, zn
h) (see, e.g., References 13 and 48). Thus, the square of the estimator in time associated with the interval In−1 turns

out to coincide with

𝜂
2
In−1
(x) = T̃

∫In−1

|
|
|
𝜕tz∗(x) −

zn
h − zn−1

h

Δtn−1
|
|
|

2
dt, (30)

for x ∈ Ω, the scaling factor T̃ being introduced to make 𝜂In−1 dimensionally compatible with the space estimator in
(23)-(24). Notice that, the integral in (30) can be computed exactly since the derivative 𝜕tz∗ and the finite difference in
(29) coincide with a linear and with a constant polynomial, respectively.

Now, in order to have a unique quantifier of the error on the time interval In−1, first we evaluate estimator 𝜂In−1 at each
vertex v of the current grid ̃n−1

h . Successively, we compute an average value, 𝜂In−1,Q , of the estimator on each element
Q ∈ ̃n−1

h , and, finally, we sum the elemental contributions throughout the mesh ̃n−1
h . This allows us to define the time

estimator for the interval In−1 as

[𝜂T
In−1
]2 =

∑

Q∈̃n−1
h

𝜂
2
In−1,Q

with 𝜂
2
In−1,Q

= 1
4
∑

v∈Q
𝜂

2
In−1
(v). (31)

Starting from (31), we are able predict the time step Δtn. To this end, we rewrite estimator 𝜂T
In−1

by applying a suitable
scaling with respect to the temporal dimension Δtn−1, being

[𝜂T
In−1
]2 = T̃Δt2

n−1[�̃�
T
In−1
]2, (32)

with

[�̃�T
In−1
]2 = 1

Δt2
n−1

∑

Q∈̃n−1
h

1
4
∑

v∈Q
∫In−1

|
|
|
𝜕tz∗(v) −

zn
h − zn−1

h

Δtn−1
|
|
|

2
dt.

Then, we impose 𝜂
T
In−1

= 𝜏
Δt, with 𝜏

Δt a local tolerance, strictly dependent on the specific problem at hand. This choice,
combined with relation (32), allows us to derive the new time length as

Δtn =
𝜏
Δt

√
T̃ �̃�

T
In−1

. (33)

We observe that time adaptation can be carried out only after the second time step. Indeed, the interpolation underling
the definition of the recovered gradient in (30) involves the value of the discrete solution at three consecutive times. As
a consequence, the first two time steps, Δt0 and Δt1, are freely set by the user. Moreover, to increase the effectiveness of
the adaptive procedure, it is advisable to fix a minimum as well as a maximum value, Δtmin and Δtmax, for the time step
in order to lower and upper bound the time length predicted in (33). In the assessment below, we choose Δtmax starting
from a numerical stability analysis based on the CFL condition, and we assign Δt0 = Δt1 = Δtmax.
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GATTI et al. 1297

4 NUMERICAL RESULTS

In this section we pursue a twofold goal. First, we explore the reliability of the proposed discretization framework on an
ideal case study, taken from the literature.7 Successively, we investigate the scalability performance of the implementation
both on an ideal configuration and on a real case study.

We identify the computational domain Ω with the rectangle (0,L) × (0,H) m2.
Concerning the tracking of the wetting/drying interface, we choose the threshold hmin equal to 10−5 m, so that no

momentum flux takes place when the depth h is below such a value.
As far as the recovery-based error estimators is concerned, we choose the depth h to drive both the space and the time

adaptation. In particular, we set the tolerance 𝜏 in (26) to 10−5 m, while, for the time adaptation, we choose the scaling
factor in (30) as T̃ = Δtn−1, while setting the control steps Δtmin and Δtmax to 10−6 and to the value provided by the CFL
condition, respectively.

4.1 Reliability analysis: the Dam-break problem

We verify the performance of the numerical setting in Section 3 on a benchmark scenario, whereΩ coincides with a square
area, so that L = H = 500 m, in the presence of a flat and frictionless bed (i.e., r and D are null in (8)). These assumptions
reduce system (8) to the classical shallow water equations.49 The simple configuration here considered allows us to have
an analytical solution taken as the target trend to be replicated.

We analyze two different setups, characterized by a fully wet and by a wetting/drying initial condition, respectively.
In both cases, we apply nonreflecting boundary conditions on the whole boundary, 𝜕Ω.

The grid resolution is set equal to 1∕12 m for the interface regions and to 1∕6 m for the wet areas, and a local tolerance
𝜏
Δt = 100 m for the time adaptivity. The spatial mesh adaptation procedure is performed every Δtada = 10−3 s, with a

maximum number of elements of the order of one million1.
Let us focus on the former configuration. At the beginning, the domain is entirely covered by material at rest, with a

material height equal to 70 m in the left half of the bed and to 7 m in the right part. The final time of interest coincides
with T = 2.2 s.

Figure 4 compares the analytical with the numerical solution along the line y = 250 m, in terms of the elevation h
and of the mass flux Ux, by highlighting a very good matching. We recognize a standard trend, that is, the generation
of a shock along the downstream (i.e., on the right of the dam) direction, together with an upstream (i.e., on the left of
the dam) rarefaction wave. We remark the effect of the flux limiter which allows us to avoid the generation, and conse-
quently the propagation, of spurious oscillations in correspondence with the wetting/drying interface, thus guaranteeing
the maximum discrete principle.

We consider now the latter setting. The material column, with an initial height equal to 70 m, is localized at the
barycenter of the domain. The final time T is set to 0.8 s. The collapse of the material column, under the effect of the
gravity, yields two rarefaction waves of equal intensity but symmetric with respect to the associated transverse axis, thus
generating two nonlinear waves traveling along the same line but with an opposite direction.

In Figure 5, we provide the profile for the height and for the flux Ux at times t = 0.3 s and t = 0.8 s, both for the
analytical and the approximate solution. The correspondence between the two solutions is remarkable. In this case, the
bed is initially dry so the spatial adaptation, combined with the front-tracking technique, plays a crucial role to ensure a
detailed preservation of the interface in the wetting/drying zone. Figure 6 (left and center panel) highlights this feature.
We focus on the bottom-left quarter of the domain, that is, on the set {(x, y) ∶ 0 ≤ x, y ≤ 250 m}. The two plots show the
material height distribution at two different times, superimposed to the quadtree adapted mesh. It is evident the sharp
detection of the wetting/drying front provided by the spatial mesh adaptation as well as the correct tracking of the interface
between the wet (in red) and the dry (in blue) zones. The panel on the right in the same figure displays the evolution of the
time step yielded by the temporal adaptation process. In the very early stage of the simulation, the time step, initially set
to 0.01s, drastically drops, in conjunction with the sudden collapse of the dam. Successively, the time step is, on average,
reduced until time 0.15 s is reached. After this instant,Δtn slightly increases until it reaches a constant value, about equal
to 0.0018 s.

Finally, in Figure 7 we provide a barplot for the percentage relative error characterizing the mass conservation at dif-
ferent times. The interpolation step associated with the space adaptation does not introduce a significant mass loss, which
remains always below 0.01%. This is a relevant feature since, a priori, the interpolation is not a conservative operation in
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F I G U R E 4 The dam-break problem (first scenario). Comparison between computed and analytical solution: height h (left) and mass
flux Ux (right) at two different times (top-bottom). [Colour figure can be viewed at wileyonlinelibrary.com]

terms of mass. Note that we use the function Integrate Variables in Paraview50 to compute the mass, also when evaluat-
ing the relative error in Figure 7, the reference quantity being represented by the mass at the initial time. The Paraview
function introduces a discretization error of approximately 0.03% at the initial time, so that the higher error at the first
time step is linked to the interpolation error of the initial data.

4.2 Reliability analysis: Sensitivity to 𝚫tada

A spatial mesh adaptation at each time step could be computationally too expensive and not necessarily useful from a
modeling view point. Here, we carry out a sensitivity test to assess the influence of the temporal adaptation parameter
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F I G U R E 5 The dam-break problem (second scenario). Comparison between computed and analytical solution: height h (left) and
mass flux Ux (right) at two different times (top-bottom). [Colour figure can be viewed at wileyonlinelibrary.com]

Δtada onto the numerical outcome. To this aim, we consider a flat square domain with dimensions L = H = 5 m, where
we solve a wet-dry dam-break configuration initially at rest, characterized by a left and a right state equal to 2 and 0 m,
respectively. The final time T is set to 0.1 s, while the tolerance on the time adaptation is chosen as 𝜏

Δt = 10 m. As far
as the space adaptation is concerned, we set the maximum number of mesh elements equal to ten millions and a finest
resolution equal to 0.625 and to 0.1562 m in wet and in the wet-dry region, respectively. We keep the CFL number equal
to 0.9 for all the simulations.

We select a value for Δtada in the set

{0, 0.0001, 0.0003, 0.0006, 0.0011, 0.0017, 0.0022, 0.0028, 0.0033, 0.0039, 0.0044, 0.0500}.
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F I G U R E 6 The dam-break problem (second scenario). Colormap of the material height h superimposed to the quadtree adapted mesh
at t = 0.3 s (left) and t = 0.8 s (center); temporal evolution of the time step (right). [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 7 The dam-break problem (second scenario). Barplot of the percentage relative error associated with the mass conservation,
at different times. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 8 gathers the results of such an analysis in terms of the number, NΔtada∕Δt, of the time steps performed before
adapting the mesh (top-left), the CPU-time (top-right) and the accuracy (bottom), as a function of parameter Δtada in a
logarithmic scale (so that Δtada = 0 s does coincide with Δtada = 10−6 s). In particular, since the time step is adaptively
selected, we provide the mean value of NΔtada∕Δt over the time, while the accuracy is quantified with respect to the L∞-norm
associated with.

From the four panels, it is evident that it is possible to identify a region where the CPU-time and the accuracy strike
a balance.

4.3 Reliability analysis: accuracy test

We test now the rate of convergence of the adopted numerical scheme. To this aim, we consider an inviscid material
initially at rest and characterized by the material height

h(r, 0) = 1 + 1
10

exp
(
−50

L2 r2
)

with r2 =
(

x − L
2

)2
, (34)

 10970363, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fld.5186 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


GATTI et al. 1301

10–6 10–5 10–4 10–3 10–2 10–1

 t
ada

 (s)

100

101

102

M
ea

n 
N

 t
ad

a
/

 t

10–6 10–5 10–4 10–3 10–2 10–1

 t
ada

 (s)

101

102

103

C
P

U
-t

im
e 

(s
)

10–6 10–5 10–4 10–3 10–2 10–1

 t
ada

 (s)

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

E
rr

or

10–6 10–5 10–4 10–3 10–2 10–1

 t
ada

 (s)

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

E
rr

or

F I G U R E 8 The sensitivity to Δtada test. Number of the time steps performed before adapting the mesh (top-left); CPU-time (top-right);
L∞-norm of the error (bottom) associated with the material height (left) and the mass flux (right). [Colour figure can be viewed at
wileyonlinelibrary.com]

on a flat square domain with dimensions L = H = 2 m. The final time T is set to 0.1s, while the tolerance on the time
adaptation is 𝜏Δt = 10 m. We carry out the convergence analysis on a family of structured grids with uniform grid spacing
Δx = {L∕2i}10

i=6. We keep the CFL number equal to 0.8 for all the simulations that provides a diminishing maximum value
of the time step for incrementing the space level of refinement.

Since the exact solution is not known explicitly, we adopt the solution computed on a structured mesh with grid
spacing equal to Δx = L∕211 as a reference (see Figure 9, top). Then, we compute the L2-norm of the discretization error
along the line y = H∕2 m. In Figure 9, bottom we show the trend of the error associated with the mass flux (left panel)
and with the material height (right panel). The estimated rate of convergence turns out to be equal to 1.72 and 1.50,
respectively. This is in accordance with the expectation since the flux limiters might alter the second-order convergence
by returning an intermediate (between one and two) rate.

4.4 Efficiency analysis: scalability tests

Here, we assess the performance of the overall implementation by carrying out some intensive scalability tests, both on
ideal and real scenarios. In particular, for the ideal tests, we save the whole numerical solution every 0.1 s, we switch on
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F I G U R E 9 The accuracy test. Reference solution (top) along the line y = H∕2 m: material height (left), x-component of the horizontal
mass flux (right); convergence trend of the L2-norm of the error (bottom) associated with the mass flux (left) and the material height (right).
[Colour figure can be viewed at wileyonlinelibrary.com]

the spatial adaptation every Δtada = 0.04 s, while the time adaptation is always activated. Finally, the maximum number
of quadtree elements is set equal to the order of 10 millions.

The simulations of this section have been run on the supercomputer CINECA GALILEO100 which is a new infras-
tructure co-funded by the European ICEI (Interactive Computing e-Infrastructure) project and engineered by DELL. This
supercomputer is composed by 554 nodes, and each node has 384 GB RAM and two 24-cores processors Intel Cascade-
Lake 8260 at 2.4 GHz. We have compiled and linked the application with the gcc-10 suite and OpenMPI 4.1.1. Finally, all
the floating-point operations are performed in double precision.

4.4.1 Ideal scenarios

Two settings are considered in this section. The first one coincides with the radial dam break problem. In such a case,
we deal with the standard shallow water equations solved on a flat bottom, without any source term. We set the final
simulation time T to 1 s. The computational domain is a square so that L = H = 5 m, while the initial height h is chosen as

h(r, 0) =

{
2 if r ≤ 0.5
1 if r > 0.5

with r =
√
(x − L∕2)2 + (y − L∕2)2. (35)
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F I G U R E 10 The radial dam break. Colormap of the material height h at t = 0.3 s (left), t = 0.6 s (center) and t = 1 s (right). [Colour
figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 11 The radial dam break. Scalability test: speed-up in log2 scale (left) and total wall time in log-log scale (right) as a
function of the number of ranks. [Colour figure can be viewed at wileyonlinelibrary.com]

The material is initially at rest. We consider a gravitational field g = 1 m/s2 and we assign nonreflecting boundary
conditions on the whole boundary domain. Figure 10 shows the material height distribution in the top-right quarter of the
domain, {(x, y) ∶ 2.5 ≤ x, y ≤ 5m}, at three different times after the dam collapsing, when employing a minimum spatial
resolution equal to 0.125 ⋅ 10−2 m and a local tolerance 𝜏

Δt = 1 m to constrain the time adaptivity.
We perform a scalability test according to the algorithm described in References 15, by using a different number of

cores, or likewise of domain subdivisions, from 16 to 512. Figure 11 gathers the plot of the speed-up (on the left) and of
the total simulation wall time (on the right) in seconds, as a function of the ranks. In both the plots, the values are scaled
with respect to the solution associated with 16 ranks. It is evident that the numerical method proposed in Section 3 scales
rather efficiently, up to the maximum number of cores we use. The total wall time employed with 16 ranks turns out to
be approximately 27 times the one demanded by 512 ranks, resulting in a parallel efficiency roughly equal to 80%, for a
total number of mesh elements equal to 6.79 ⋅ 106 at the final time.

As a second configuration, we consider a mass sliding along an inclined plane with bed friction, the gravitational field
being now selected as g = 9.81 m/s2, and for a final simulation time T equal to 3 s. The sliding mass, characterized by a
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1304 GATTI et al.

F I G U R E 12 The mass sliding along an inclined plane. Distribution of the still level at times t = 0 s (left) and t = 3 s (right). [Colour
figure can be viewed at wileyonlinelibrary.com]

density 𝜌 = 1400 kg/m3, is initially placed at the center of the domain Ω = (0, 1000)2 m2, with a height equal to

h(x, 0) =

{
max{0,min{500x∕L − 200, 30}} for x ∈ W
0 otherwise,

(36)

with L = 1000 m, and where

W =
{

x = (x, y) ∈ R
2 ∶

(x − L∕2)2

L2 +
(x − L∕2)2

L2 ≤ [0.2 + 0.01 sin(10 (y − L∕2) 𝜋
L2 ) ]

2
}

.

The material is initially at rest, while the plane has a slope of approximately 26◦ with respect to the horizontal axis, that
is Z(x) = 500 − 500x. The simulation is carried out in the absence of surface pressure and with a turbulence coefficient
𝜉 = 108 m/s2 and a bed friction angle 𝛿 = 23◦. Nonreflecting boundary conditions are imposed on the whole boundary
domain. The spatial resolution is set equal to 0.1667 m in the interface region, while we set a minimum spatial resolution
equal to 0.25 m in the wet areas. In Figure 12 we show the distribution of the still level, that is, the sum of the material
height h with the orographic surface Z, at the initial and at the final time. The contourlines are very sharply detected
thanks to the combined action between mesh adaptation and wetting–drying interface tracking.

Now, we perform a scalability analysis by varying the number of ranks from 16 to 512. Figure 13 gathers the results of
such an investigation. In the left panel, we show the speed-up, scaled with respect to the solution obtained when using 16
ranks, as a function of the number of processors. The right panel displays the trend of the total wall time after applying
the same scaling, and for an increasing number of ranks. The two plots confirm the efficiency characterizing the proposed
numerical setting, up to the tested number of cores. In this case, the total wall time characterizing the run with 16 ranks
turns out to be approximately 22 times the wall time required by the simulation based on 512 processors, roughly resulting
in a parallel efficiency equal to 70%, for a total number of mesh elements equal to 3.40 ⋅ 106 at the final time.

4.4.2 A real scenario: the Bindo-Cortenova landslide

In this section we consider a real setting represented by a 1.2 km2 wide translational landslide in Bindo-Cortenova, a small
village located in the northern of Italy, close to Lecco. The sliding material is formed by very large conglomeratic rock
blocks, up to 100 m in size, immersed in a gravelly sand matrix. The toe of the slope underwent a catastrophic failure in
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F I G U R E 13 The mass sliding along an inclined plane. Scalability test: speed-up in log2 scale (left) and total wall time in log-log

scale (right) as a function of the number of ranks. [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 14 The Bindo-Cortenova landslide. Colormap of the input orography (left) and of the slope magnitude (right). [Colour figure
can be viewed at wileyonlinelibrary.com]

December 2002 (with a material volume about equal to 1.2 ⋅ 106 m3), after a period of extremely heavy rainfall. For more
details about the considered scenario, we refer the interested reader, for instance, to Reference 51.

The input DTM, that is, the input orography Z, coincides with a 5-m-resolution raster. Figure 14 shows the DTM (left),
where the contour of the detached material is black-highlighted, together with the corresponding slope map (in degrees),
that is, the distribution of the arctan |∇Z| (right). According to Reference 51, the average thickness of the sliding material
is 38 m, and the mean slope is approximately 28◦. We consider a bed friction angle equal to the residual friction angle,
that is, 33.9◦, while the material density 𝜌 is set to 1291 kg/m3, and, for simplicity, we consider a null surface pressure.
Note that this assumption only removes the offset in the bed friction, in case of a nonnull surface pressure.

Concerning the rheological model, since we are interested in simulating a debris flow, we pick the fluid viscosity 𝜇

and the yield shear stress 𝜏Y equal to 50 Pa⋅ s and 2 ⋅ 103 Pa, respectively. The turbulence coefficient 𝜉 in the Voellmy
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F I G U R E 15 The Bindo-Cortenova landslide. Distribution of the material height at times t = 1 s (left), t = 5 s (center) and t = 10 s
(right). [Colour figure can be viewed at wileyonlinelibrary.com]

rheological model (2) is chosen sufficiently large in order to prevent the time step numerically go to zero. In particular,
via a trial-and-error approach, we set 𝜉 = 108 m/s2. We observe that the presence of the source term, together with the
diffusion contribution, plays an important role in the numerical approximation, in terms of stability of the scheme. A
possible remedy to this issue, although beyond the specific goal of the paper, consists in resorting to a second order
implicit treatment of the source term. According to Reference 52, this approach does not affect the efficiency of the overall
implementation.

To contain the memory effort, we adopt a saving time equal to 0.1 s, we activate the spatial adaptation every 0.04 s,
while keeping the time adaptation always switched on, using a local time tolerance 𝜏Δt = 10 m. The maximum number of
quadtree mesh elements is of the order of 10 millions, as for the ideal simulations in the previous section. The final time
is T = 10 s, while the computational domain coincides with a rectangle 820 × 870 m2 (we refer to Figure 14 to identify the
exact location of the area with respect to the DTM data). We employ a spatial resolution equal to 0.1667 m for the cells
in the wetting–drying interface region, while we set a minimum resolution equal to 0.25 m for the wet regions. Finally,
nonreflecting boundary conditions complete the problem along the boundary.

Figure 15 shows the material height distribution at three different times, by highlighting the slipping of the material
all around the initial location of the landslide, with a nonhomogeneous advancement of the wetting–drying front which
follows the complex local orography.

Figure 16 gathers some information about the space-time adaptation procedure. The left panel shows the spatial
adapted mesh, superimposed to the material height distribution, at the final time T = 10 s. The landslide front is sharply
identified in the computational mesh, with a thin refinement along the contour of the sliding material. The panel on
the right displays the evolution of the time step during the whole simulation. The temporal discretization step rapidly
reduces due to the sudden change in the dynamics of the water column, before assuming almost a constant trend (Δtn
stagnates around 0.25 ⋅ 10−3) when the landslide gradually extends. Analogously to the dam-break case study, the time
step reaches a constant value, after an initial phase when it gradually reduces (compare the right panels in Figures 6
and 16, respectively). This can be ascribed to the comparable phenomenological trend characterizing the two scenarios.

Finally, in Figure 17 we show the results of the scalability analysis, when varying the number of processors from 16 to
512, analogously to what done for the ideal simulation tests. The numerical method in Section 3 scales rather efficiently
also in this more challenging configuration, at least up to the number of cores we tested. In more detail, we obtain a
speed-up equal to 12 for the case of 512 cores with respect to the 16 core configuration. Concerning the wall time, from
the right panel in the figure we derive that the total time associated with 16 ranks turns out to be approximately 23 times
the time demanded when using 512 ranks, resulting in a parallel efficiency of roughly 70%, for a total number of mesh
elements equal to 5.97 ⋅ 106 at the final time. All the values in the two plots of Figure 17 are scaled with respect to the
solution yielded by the run based on 16 processors, analogously to Figures 11 and 13.
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F I G U R E 16 The Bindo-Cortenova landslide. Adapted spatial mesh at the final time (left); temporal evolution of the time step (right).
[Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 17 The Bindo-Cortenova landslide. Scalability test: speed-up in log2 scale (left) and total wall time in log-log scale (right)
as a function of the number of ranks. [Colour figure can be viewed at wileyonlinelibrary.com]

5 CONCLUSIONS

We have proposed a scalable multiprocessor depth-integrated finite element quadtree-based numerical method to
efficiently solve advection-dominated conservation laws, in particular for the simulation of fast landslides. We have
numerically verified the reliability of the proposed numerical method, together with the effectiveness of a parallel imple-
mentation of the approach. A suitable combination of a space-time metric-based adaptation procedure with a tracking
interface strategy guarantees a sharp and efficient modeling both for ideal configurations and real test-case scenarios,
with a parallel efficiency ranging between 70% and 80%.

Among the possible future developments of this work, we mention the enrichment of the current simulation frame-
work in order to include the activation/intermittent phase of the landslide dynamic, that is, the long-term time-scale
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dynamics. In such a context, the landslide dynamics is governed by the pore-pressure diffusion, and the landslide mate-
rial behaves roughly like a rigid body. Another improvement is represented by the implicit treatment of the source term in
order to avoid too restrictive time steps to ensure the stability of the numerical approach (see Reference 52) thus enabling
to perform uncertainty quantification, for example, by polynomial chaos expansion (see Reference 53).
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