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Abstract

In this paper we study a long-haul truck scheduling problem where

a path has to be determined for a vehicle traveling from a specified ori-

gin to a specified destination. We consider refueling decisions along the

path while accounting for heterogeneous fuel prices in a road network.

Furthermore, the path has to comply with Hours of Service (HoS) reg-

ulations. Therefore, a path is defined by the actual road trajectory

traveled by the vehicle, as well as the locations where the vehicle stops

due to refueling, compliance with HoS regulations, or a combination

of the two. This setting is cast in a bi-objective optimization problem,
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considering the minimization of fuel cost and the minimization of path

duration. An algorithm is proposed to solve the problem on a road

network. The algorithm builds a set of non-dominated paths with re-

spect to the two objectives. Given the enormous theoretical size of the

road network, the algorithm follows an interactive path construction

mechanism. Specifically, the algorithm dynamically interacts with a

geographic information system to identify the relevant potential paths

and stop locations. Computational tests are made on real-sized in-

stances where the distance covered ranges from 500 to 1500 km. The

algorithm is compared with solutions obtained from a policy mimick-

ing the current practice of a logistics company. The results show that

the non-dominated solutions produced by the algorithm significantly

dominate the ones generated by the current practice, in terms of fuel

costs, while achieving similar path durations. The average number of

non-dominated paths is 2.7, which allows decision-makers to ultimately

visually inspect the proposed alternatives.

Keywords: Truck scheduling problem, hours of service regulations, fuel

costs, refueling, bi-objective optimization.

1 Introduction

Long-haul truck transportation is concerned with freight transportation

from shipments’ origins to destinations, with vehicle trips lasting from some

hours to several days. Drivers performing long-haul transportation are sub-

ject to strict rules derived from Hours of Service (HoS) regulations. The

aims of such regulations are to protect drivers and promote road safety by

preventing accidents related to excessive fatigue. Therefore, HoS regulations

typically limit the daily and weekly driving and duty times.

There exists a large body of literature integrating HoS regulations within

long-haul transportation (see the literature review in Section 2.1). The opti-

mization problems in this context generally deal with routing and scheduling

decisions aimed at determining where a driver should stop (for visiting cus-

tomers or resting) and how long a rest should be. Given the length of the

routes in long-haul transportation, vehicles may need to refuel on several

occasions. The overwhelming majority of the literature on long-haul trans-

portation ignores refueling decisions and treats fuel costs as proportional to

the traveled distance. Thus, implicitly assuming that fuel costs are uniform

throughout the road network, and that refueling can be performed without

any route deviations. However, in practice fuel prices may differ consider-

ably between countries (Santos [2017]). For example, as derived from the

European Commission - Energy [2020] weekly oil bulletin, during 2019 the
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average diesel price in Italy was 17% higher than in Germany. Moreover,

fuel prices may be substantially different within the same urban area. For

example, on the 12th of June 2020 the diesel prices in the area of Milan

ranged between 1.148 and 1.809 e per liter (see Ministero Dello Sviluppo

Economico - Osservatorio Carburanti [2020]).

Despite the fact that fuel costs are a major cost component in transporta-

tion operations, the literature accounting for variable fuel prices in trans-

portation planning decisions is very limited (Neves-Moreira et al. [2020]),

as detailed in Section 2.2. Most of the related papers have considered a

limited number of refueling stations. For example, the heuristic proposed

by Bernhardt et al. [2017] was tested on graphs with up to 353 refueling sta-

tions. The motivation for considering a limited number of refueling stations

in long-haul transportation stems from the assumption that vehicles would

predominately refuel along highways. We argue that deviations from high-

ways, to rural and possibly urban refueling stations, should be considered,

as the additional distance may be offset by fuel cost savings. Therefore, the

theoretical set of refueling stations to consider may be rather large, even

in an urban area. For instance, in the metropolitan area of Milan (about

1575 km2) there are 831 refueling stations (Open Data Regione Lombardia

[2020]). A recent study by the European Commission shows that the av-

erage distance traveled at the EU level for road transportation is between

300 and 999 km (see EuroStat [2020]). Therefore, the number of poten-

tial refueling stations is significantly amplified when considering a long-haul

origin-destination trip. For example, the shortest path (based on travel

time) of a trip from Rome to Stuttgart is about 1075 km. There are nearly

1090 refueling stations within a 5 km radius of this path (see Section 4.1 for

the details on the refuel location search along a path). However, a deviation

from the original planned path to a refueling station may lead the vehicle

to proceed on a different path, after departing from a refueling station. An

example of this is illustrated in Figure 1. Considering the origin-destination

path from Rome to Stuttgart the shortest path is highlighted in red. A re-

fueling stop at the orange refueling station may yield a modification in the

original origin-destination path, such that the orange path is followed from

the orange refueling station to the destination. This modification is due to

the fact that the orange path is shorter than the path returning from the

orange refueling station to the red path and proceeding to the destination.

Such modifications may occur in many situations, e.g., the purple modi-

fication due to visiting the purple refueling station. Thus, the theoretical

number of refueling stations can be extremely large. Indeed, there are 16,249

refueling stations in Figure 1. Fully accounting for such a number of nodes
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on a road network is impractical. This challenge is further exacerbated when

considering the road network distance between a pair of nodes, and not their

Euclidean distances. In fact, determining the distance between two points

in a road network requires querying a geographic information system (GIS),

and this might be cumbersome when the number of GIS calls increases, as

well as expensive when the company does not own a GIS license.

Stuttgart

Rome

Figure 1: Refueling stations on paths from Rome to Stuttgart

In this paper we introduce the Bi-objective Long-haul Transportation

Problem on a Road Network (BLTP-RN). This problem originates from a

collaboration with a company, Multiprotexion srl, specialized in the secu-

rity of trucks that offers to its customers fleet planning and optimization

services. The goal of the BLTP-RN is to determine a path between an

origin-destination pair complying with HoS regulations and fuel constraints.

Two objectives are considered: the minimization of the fuel cost and the

minimization of the duration of the path. While the first objective has a

clear motivation in practice, the second is related to the optimization of

the service level offered to customers, i.e., the faster is the transportation,

the better is the service level. Thus, the resulting problem is a bi-objective

optimization problem. The aim is to identify the Pareto frontier of feasible

non-dominated paths. We note that the issue of finding alternative paths

and routes in long-haul transportation applications is receiving increasing

attention, e.g., Caramia and Guerriero [2009].

We propose a heuristic solution algorithm for the BLTP-RN that builds
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a set of non-dominated paths while interacting with a GIS. The algorithm

dynamically determines a set of refueling locations and a set of rest locations

that are of interest. Such locations are identified as being ‘on the way’, i.e.,

they do not require a long detour from a considered path. The core idea

of the algorithm is the following. A set of paths from the origin to the

destination is devised and each path is individually explored starting from

the origin. Once a stop is required, a set of feasible stop locations are

considered based on the status of the vehicle and the driver. A path from

each of those stop locations to the destination is computed. The process is

repeated until the vehicle can reach the destination without violating HoS

regulations and without running out of fuel. Results are presented on a set

of instances where the origin-destination distance ranges from 500 to 1500

km and considering various initial stati for the driver rest and the vehicle

tank level.

The main contributions of the current work can be summarized as fol-

lows:

1. We introduce and define the Bi-objective Long-haul Transportation

Problem on a Road Network.

2. We introduce a heuristic algorithm that interacts with a GIS to de-

termine the relevant rest locations and refuel locations and to derive

road network travel times between the considered nodes.

3. We define a set of experiments on instances based on road networks

and show that the algorithm is capable of efficiently handling real-sized

instances.

4. We compare the algorithm with a policy mimicking the current prac-

tice of a logistics company

5. The results show that the algorithm is capable of determining a good

variety of non-dominated solutions, on one side, and provides substan-

tial fuel savings with respect to what is done in practice, on the other

side.

6. We highlight a number of managerial implications based on the ob-

tained results.

The remainder of the paper is organized as follows. In Section 2 a brief

review of the relevant literature is presented, in Section 3 the BLTP-RN is

defined. Section 4 describes the algorithm that is proposed for solving the
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BLTP-RN. Computational experiments are presented in Section 5. Specif-

ically, Section 5.1 reports the implementation details. The instance gener-

ation procedure is presented in Section 5.2 and the results are provided in

Section 5.3. Conclusions and managerial implications are drawn in Section

6.

2 Literature review

In this section, the literature related to the BLTP-RN is introduced. In

Section 2.1 we give a brief overview of the literature on optimizing long-haul

transportation. This literature overwhelmingly ignores refueling decisions.

In Section 2.2 we review the literature dealing with general routing problems

and refueling decisions. Section 2.3 is devoted to routing problems on road

networks.

2.1 Hours of service

The transportation science literature dealing with HoS regulations can be

broadly categorized as i) long-haul vehicle scheduling, and ii) long-haul ve-

hicle routing and scheduling. In the former category, a given sequence of

(customer) locations should be visited by a vehicle. The problems in this

category primarily schedule where the driver should stop and for how long

a rest should be taken, in accordance with HoS regulations (e.g., Archetti

and Savelsbergh [2009], Goel [2009]). The fixed sequence of locations as-

sumption is relaxed in the latter category, thus, simultaneously optimizing

routing and scheduling decisions.

The Truck Driver Scheduling Problem (TDSP) was first addressed by

Xu et al. [2003], and then formally introduced by Archetti and Savelsbergh

[2009] (under the name of the trip scheduling problem). Given a fixed se-

quence of locations to visit with time windows, Archetti and Savelsbergh

[2009] propose a polynomial algorithm that produces a feasible solution to

the TDSP. A more efficient polynomial algorithm for similar problem set-

tings is proposed by Goel and Kok [2012]. Both previously mentioned studies

consider the TDSP subject to HoS regulations of the USA. Extensions to

the rules associated with the legislation of other countries can be found in

Goel and Rousseau [2012], Goel et al. [2012], Goel [2012, 2010].

When the sequence of nodes to be visited is not established a-priori,

we have the Vehicle Routing Truck Driver Scheduling Problem (VRTDSP).

This problem has been extensively studied (e.g., Goel [2009], Kok et al.

[2010], Prescott-Gagnon et al. [2010], Rancourt et al. [2013], Goel and Vi-
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dal [2014], Goel and Irnich [2017]). A comprehensive survey of VRTDSP

solution methodologies is presented in Tilk and Goel [2020]. Koç et al.

[2018] account for fuel costs in the VRTDSP in the context of idling op-

tions. Idling refers to the practice of leaving the vehicle’s engine on during

breaks to maintain a comfortable temperature or to use amenities such as

television. However, the authors do not consider the decision about where

refueling operations should take place in order to minimize fuel cost. In fact,

in practical applications, fuel cost might differ remarkably on the basis of

the location where refueling is done, especially in the case of international

transportation. Furthermore, to the best of our knowledge, the VRTDSP

literature does not account for distances on a road network.

2.2 Refueling

The issue of heterogeneous fuel prices has been mainly addressed in a fixed

route context. Given a fixed sequence of nodes to visit, the Fixed Route

Vehicle Refueling Problem (FRVRP) is the problem of determining the se-

quence of refueling stops and the refueling amount for each stop in order to

minimize the refueling cost. Suzuki [2014] proposes a pre-processing tech-

nique for the FRVRP to reduce the problem size without eliminating any

optimal solution. A total of 16 instances with up to 495 refueling stations

are solved with CPLEX. Suzuki et al. [2014] consider the negative impact

of carrying excessive amounts of fuel in the vehicle’s tank. A formulation

allowing the vehicle to retain some empty space in the tank is proposed

for the FRVRP and tested on 24 instances with up to 199 refueling sta-

tions. Lin et al. [2007] propose a linear-time algorithm for finding optimal

vehicle refueling policies. The FRVRP is treated as a special case of the

inventory-capacitated lot-sizing problem.

Refueling and routing decisions have also been studied jointly. Suzuki

[2012] proposes a decision support system to tackle the traveling salesman

problem with time windows and refueling. The author proposes a heuristic

algorithm that sequentially solves a traveling salesman problem with time

windows and a FRVRP. The results are reported on instances with up to 20

customers and with a density of refuel locations up to around one station

every 39 kilometers on each arc. Khuller et al. [2011] study the Variable-

Route Vehicle-Refueling Problem (VRVRP) and propose a polynomial-time

approximation algorithm for it. Suzuki and Dai [2013] study the bi-objective

VRVRP with the aim of allowing carriers to jointly minimize fuel costs and

vehicle mileage. Bousonville et al. [2011] propose an extension of the Ve-

hicle Routing Problem with Time Windows (VRPTW) to include refueling
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decisions. A fuel optimization model is developed and embedded in an in-

sertion heuristic for the VRPTW. The proposed solution method is tested

on instances with up to 100 customers and up to 441 refueling stations.

Neves-Moreira et al. [2020] study a multi-period vehicle routing problem

with refueling decisions where detours to reach refueling stations with lower

prices are considered in order to minimize costs. A formulation is proposed

for the problem and a branch-and-cut algorithm is presented for its solution.

Computational results are presented on instances with up to 40 customers

and 6 refueling stations.

To the best of our knowledge, only one report considers refueling to-

gether with HoS regulations. Bernhardt et al. [2017] study the truck driver

scheduling problem with rest periods, breaks and vehicle refueling in the

context of international freight transportation. In particular, given a route

and a set of refueling stations with different fuel prices along the route, the

decisions relate to determining a time window to visit each customer, refuel-

ing stations to visit, refueling amounts and driver activities at stop locations.

The latter include rest and refueling. The problem is a multi-criteria opti-

mization problem with the goal of minimizing lateness, traveling time, and

fuel expenditures. A Mixed Integer Linear Programming (MILP) model is

proposed for the resulting problem, together with a pre-processing reduction

technique to reduce the considered number of refueling stations. The pro-

posed approach is tested on instances with up to 515 refueling stations. The

main difference between the work of Bernhardt et al. [2017] and the current

paper is related to the representation of the underlying network. In fact,

Bernhardt et al. [2017] consider a complete graph where vertices represent

customer and refueling station locations. Instead, we work directly on the

road network and build the set of fuel and rest locations dynamically, as

described in Section 4.

2.3 Road networks

The literature on routing problems defined on road networks is growing

(Garaix et al. [2010], Letchford et al. [2014], Ben Ticha et al. [2018], Ben Ticha

et al. [2019b], Ben Ticha et al. [2019a]). The first issue to be considered is

how to deal with the representation of the road networks. One possibil-

ity is to represent the network through a graph or a multi-graph where

nodes and arcs represent elements of the road network (Garaix et al. [2010],

Letchford et al. [2014], Ben Ticha et al. [2019a]). In particular, several

multi-objective transportation planning problems based on GIS have been

proposed (e.g., Chen et al. [2008]). For a recent overview on optimization
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applications through GIS the reader is referred to Murray [2021]. This so-

lution, however, might be not viable for long-haul transportation where the

underlying network refers to a wide area, as the size of the corresponding

graph (or multi-graph) grows extremely fast with respect to the size of the

represented area. In this case, it is preferable (and is often necessary) to

deal directly with the road network by devising a procedure that interacts

with a GIS and dynamically obtains the information needed through proper

queries. This is the approach used in the current work.

3 Problem definition

The Bi-objective Long-haul Transportation Problem on a Road Network

(BLTP-RN) is defined as follows. We are given an origin-destination pair,

where the origin is denoted as o and the destination as d. The vehicle has

to transport goods from o to d through a path. A set of refueling stations

G is dynamically constructed, where each station g ∈ G is associated with

a price pg that is the unitary (per liter) fuel price. In addition, a set of rest

locations L is dynamically constructed, where a rest location corresponds to

a place where the vehicle may stop and the driver may take a rest. In the

following, we use the term stop location to indicate either a refueling station

or a rest location. The two considered objectives pertain to the refueling

cost and the route duration. The former corresponds to the total cost of fuel

consumed while traveling, whereas the latter consists of the driving time and

rest periods. These are derived by assuming that the driver is subject to the

European Union HoS regulations (EU: Regulation (EC) No 561/2006 and

Directive 2002/15/EC, see European Commission - Mobility and Transport

[2020]). In particular, we consider the following rules:

1. Continuous driving rule: After a maximum of four and a half hours

of continuous driving, the driver has to take a break of at least 45

minutes. In the following, this is referred to as a break.

2. Maximum daily driving rule: After a maximum of nine hours of driv-

ing, the driver has to take a rest of at least 11 hours. In the following,

this is referred to as a daily rest.

3. Maximum weekly driving rule: After a maximum of 56 hours of driving,

the driver has to take a rest of at least 45 hours. In the following, this

is referred to as a weekly rest.

These rules imply the necessity for the driver to stop to rest. Four stop

types are therefore defined: for fuel, for a break, for a daily rest, and for a
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weekly rest. Note that the rules imposed by EU HoS regulations are more

complex and include special cases. However, as a starting point, in this

study we consider the subset of rules listed above. Nonetheless, our solution

methodology can be adapted to more general HoS regulations. We note that,

given the cost structure of our problem, in particular, the minimization of

the tour duration, the following two additional rules are implicitly accounted

for:

• Within each period of 24 hours after the end of the previous daily rest

period, a driver shall have taken a new daily rest period.

• A weekly rest period shall start no later than 144 hours after the end

of the previous weekly rest period.

A traveling time tij and a distance cij are associated with each pair of

locations i, j ∈ {o, d} ∪ G ∪ L. We assume that the vehicle consumes a

constant amount of fuel per kilometer, which is denoted by φ. In addition,

the initial state of both vehicle and driver are known when departing from

o. We denote as fo the fuel level in the vehicle tank when departing from

o and the capacity of its tank as τ . The number of hours remaining before

the driver has to take a break, a daily rest, and a weekly rest, are denoted

as bo, ro, and wo, respectively.

A path from o to d is feasible if it satisfies the HoS regulations and is such

that the vehicle never runs out of fuel. The BLTP-RN is an optimization

problem where the path from o to d has to be determined together with the

stops for rest and refueling. The two considered optimization objectives are:

1. The minimization of the refueling cost. This corresponds to the total

cost of fuel consumed while traveling from o to d. If we denote by

G̃ = {g0, g1, ...gn} the set of refueling stations visited along the path

(with g0 being the origin o and gn being the destination d), then the

refueling cost corresponds to
∑n−1

i=0 φcgigi+1pgi . Note that station g0 is

associated with a fuel price that corresponds to the average fuel price

over all stations.

2. The minimization of route duration. This is comprised of the driving

time, the time required for breaks, daily rests, and weekly rests, as

well as the refueling time.

Given that long-haul transportation applications typically involve large

distances, the theoretical size of G and L can be extremely large. Fur-

thermore, considering a fully connected network, as is often the case in the
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mathematical programming formulation of transportation problems, yields

an impractical problem size. The Rome to Stuttgart example presented in

Section 1 would imply computing a travel time matrix of about 264, 030, 001

entries. An input of this size is unmanageable by state-of-the-art solvers,

such as CPLEX. Indeed, some preliminary experiments showed that it was

not even possible to load the corresponding problem formulation in CPLEX,

on a 64GB workstation. Also, this might be expensive in practice for com-

panies that do not own a routing software and have to pay for querying a

GIS software. Finally, computing the entire set of paths is computationally

cumbersome. Therefore, we adopt a heuristic solution approach, which is

presented in the subsequent section. The heuristic reduces the set of rest

and refuel locations considered to those that are more likely to be part of

non-dominated routes.

4 Solution algorithm on a road network

The algorithm works by iteratively building a set of feasible o − d paths.

Considering this set, Pareto optimal paths are found. We define a temporary

path as a path between a location ō ∈ {o} ∪ G ∪ L and d, which may be

feasible or not. Initially, the algorithm constructs a set of temporary paths

between o and d. For each infeasible path, stop locations are added and

combined, and the path is updated in order to generate a feasible sub-path

between o and each inserted location. Then, temporary paths are created

between each inserted location and d, and the process is repeated until a

feasible path is obtained.

When going from o to d, the vehicle performs two activities: it travels

or it stops. Because of the huge size of the set of stop locations on a road

network, the sets G and L are heuristically built by progressively exploring

the generated paths and querying the GIS for the required stops. We define

a stop location as the position where the stop takes place and we identify

four stop types:

• F : stop for refueling;

• B: stop for a break;

• D: stop for a daily rest;

• W : stop for a weekly rest.

A daily rest (stop of type D) is also a break (stop of type B). This

means that, after a stop of type D, the driver has a maximum availability
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in terms of daily driving time of nine hours, and continuous driving time of

four and a half hours. Similarly, a weekly rest (stop of type W ) is also a

daily rest (stop of type D) and, therefore, also a break (stop of type B). A

stop of type F can be combined with a stop of type B,D or W . When this

happens, the refueling is assumed to take place during the rest. Otherwise, a

fuel stop is assumed to last 15 minutes. Refueling operations are assumed to

always fill the tank. This is consistent with what is observed by the company

which inspired this work and with carriers’ practice. A stop is defined by

its location and the subset of stop types that define the operations to be

performed at the stop, e.g., taking a daily rest and refueling.

A path between o and d may include multiple stops. We call an arc a

portion of the path between two nodes of {o, d} ∪G ∪ L. Thus, a path is a

concatenation of consecutive arcs. Each arc corresponds to a geographical

trajectory retrieved by querying the GIS. A path between Milan and Brescia

with two stops (one for refueling and one for a break), and hence three arcs,

is shown in Figure 2.

Figure 2: A path from Milan to Brescia

The solution algorithm for the BLTP-RN is outlined in Table 1. The first

step of the algorithm (line 3) is to determine a set of k temporary paths from

o to d. These correspond to the k fastest paths (in terms of travel times),

ignoring any HoS and refueling constraints. Such paths can be retrieved from

standard pathfinding libraries such as GraphHopper. Specifically, function

branchToDestination takes as input a node and provides as output the k

fastest (time) temporary paths from the node to destination d. We note

that such temporary paths from o to d are likely to be infeasible in long-

haul transportation.

After constructing the initial k temporary paths, the algorithm treats

each one independently. For each infeasible temporary path, a set of stops

12



Algorithm 1 Solution algorithm

1: Input: o, d, k

2: branchToDestination(o, k)

3: infeasibleArc := selectInfeasibleArcToDestination(tree)

4: while infeasibleArc != null do

5: S = ∅
6: ō := origin of infeasibleArc

7: Q := findStopLocations(ō, d) (Section 4.1)

8: for all q ∈ Q do

9: S := S ∪ combineStopTypes(q) (Section 4.2)

10: end for

11: for all s ∈ S do

12: create arc from the ō to s

13: branchToDestination(s, k)

14: end for

15: remove infeasibleArc (ō, d)

16: infeasibleArc := selectInfeasibleArcToDestination(tree)

17: end while

18: Identify Pareto optimal paths

19: Output: Pareto optimal paths

Table 1: The pseudo-code of the solution algorithm

are added with the aim of generating feasible paths. During this process,

several other temporary paths are generated from the newly identified stops

to the destination. The overall construction of paths follows a tree-based

procedure where the tree is rooted in o, each intermediate node is associated

with a location in G ∪ L and the operation performed in it, and all leaves

correspond to d. Each arc of the tree represents an arc of a path. When the

construction phase is finished, each path on the tree from the root (o) to a

leaf (d) corresponds to a feasible path.

The tree is initialized in line 2 by setting o as the root of the tree, with k

branches corresponding to the k temporary o - d paths and with k leaves all

corresponding to d. The function selectInfeasibleArcToDestination in line 3

and the loop in line 4 looks for an infeasible arc in the tree. If no infeasible

arc is found, the algorithm stops as all generated paths are feasible.

Otherwise, an infeasible arc of the tree is selected according to a depth-

first search algorithm. Considering an infeasible arc (ō, d), stop locations are

searched along its associated temporary path by function findStopLocations

(explained in Section 4.1). Considering each of these stop locations, the
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function combineStopTypes creates stops (specified in terms of location, type

and duration) according to the rules explained in Section 4.2. This procedure

entails duplicating stop locations in order to allow different combinations of

fueling and resting. Each found stop s is inserted in the tree, and the arc

(ō,s) is added to the tree. The travel time of this arc corresponds to the

fastest path between ō and s. The infeasible arc (ō, d) is removed from the

tree. Then k temporary paths between s and d are created through the

BranchToDestination function, and appended to the tree.

o d

o

s1
d

s2

o

s1
d

s2

Figure 3: Tree generation example with k = 3

A simplified example of the previously described procedure, without the

combine stop types option, for k = 3, is provided in Figure 3. In the top

panel, three temporary paths from o to d are identified as dashed lines. The

selected infeasible arc is black while the others are gray. In the central panel,

stop locations are found along the path. In the bottom panel, the feasible

arcs from the origin to the stop locations are marked as solid black lines and

the temporary paths from each stop to the destination d are marked as grey

dashed lines. Note that, even if paths may overlap (as in the bottom panel

of Figure 3), they are associated with different arcs in the tree.

Each node of the tree is a stop. Thus, it denotes the stop location

and stop type, from which we derive the resulting fuel level and driver
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resting conditions. Furthermore, all arcs of the tree are feasible with the

only possible exceptions being the ones ending at destination d. Thus, when

exploring the tree searching for an infeasible arc, only arcs going to d are

considered, that is, only arcs ending in a leaf of the tree. Finally, in line 18,

a Pareto frontier is created, by examining all generated feasible paths based

on the two objective functions: fuel cost and route duration.

In the next sections, we first describe how the sets G and L are generated

(Section 4.1), then describe how stops types are combined and feasible routes

are constructed (Section 4.2). Table 2 summarizes the notation used in the

following sections for the description of the algorithmic procedures.

Notation Description

Stops

sF Stop for refueling

sB Stop for making a break

sF Stop for making a daily rest

sW Stop for making a weekly rest

sFB Stop combining refueling and break

sFD Stop combining refueling and daily rest

sFW Stop combining refueling and weakly rest

Radius search

C Center of the search

ρ Radius of the search

I Length of the interval of the search

Refuel location search

βτ Upper bound on tank level for refuel location search

γτ Lower bound on tank level for refuel location search

Cβτ Location reached when the tank level is βτ

Cγτ Location reached when the tank level is γτ

Rest location search

α Next point in time when a stop due to HoS regulations is needed

δ Threshold defining the beginning of the rest location search

αδ Point in time when the rest location search starts

Cαδ Location reached at time αδ

Table 2: Summary of notation
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4.1 Defining the set of refuel and rest locations

In this section, the findStopLocations function, which finds stop locations on

the path corresponding to an infeasible arc (ō, d), is described. Regarding

the search for refuel locations, two points corresponding to fuel level βτ and

γτ are found along the path and refuel locations are looked for in the interval

defined in such a way. Regarding the search for rest locations, we denote by

α the next point in time when the driver has to stop due to HoS regulations,

whether it is due to a break, a daily stop, or a weekly stop being required.

The search for a rest location is carried out starting from the point where

the driver reaches δα driving time along the path. Choosing a value of the

percentage δ not too close to 1, e.g., 0.95, allow us not to exceed driving

time α in the search for a rest location on the road network. More details

on the refuel location search and the rest location search are reported in the

remaining part of this section.

Both searches are defined based on a radius search, which has three

inputs:

• Center of the search (C) - location on the path.

• Radius of the search (ρ) - maximum Euclidean distance.

• Stop type - type of stop to be searched.

Given these inputs, the search for a feasible stop location is performed in

the resulting area (see Figure 4). The radius search is carried out differently

according to whether a refuel location or a rest location has to be found. In

particular:

• Refuel location search: when a refuel location must be found along a

temporary path between ō and d, the search is carried out between

two locations Cβτ and Cγτ , defined on the basis of when the upper

and lower bounds on the tank level are reached. The radius search is

repeated on the path at intervals of length I km (see Figure 5), where

I is a given parameter.

• Rest location search: given a temporary path between ō and d and a

location Cδα on that path (defined on the basis of when the specified

amount of time left is reached), a radius search is performed on the

path going backward at a specified interval of length I km until at

least one feasible rest location is found (see Figure 6).
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The definition of the lower bound Cβτ (for the interval in which refuel

locations are searched for) helps in restricting the number of potential stops

considered. Indeed, if no lower bound is considered, then any refuel loca-

tion along the path (or within a certain distance from the path) could be

considered as a potential location and should be evaluated, thus making the

number of evaluations excessively large.

Among the rest locations found, we keep the one with the cheapest

insertion cost between ō and d. The insertion cost is evaluated in terms of

traveling time, i.e., we keep the path that leads to the smallest increase in

traveling time. This choice is due to the fact that, when searching for a

rest location, no refueling is made so the fuel price has no impact. Also, we

assume that the distance traveled is proportional to time, so that the path

associated with the smallest increase in traveling time is the one associated

with the smallest increase in the distance traveled. A similar rule is used

for reducing the number of refuel locations, based on the two objectives of

the optimization. More precisely, a refuel location is not considered if there

exists another refuel location with the same or cheaper fuel price and with

a cheaper insertion cost. This rule limits the size of the search tree.

ρ
C

Search

C

Result

Figure 4: Radius search

ō dCβτ Cγτ
I

Figure 5: Refuel location search
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ō dCδα
I

Figure 6: Rest location search

Depending on the status of the fuel level and driving time, the execution

of the findStopLocations function may yield one of the following outcomes:

i) refueling stop locations (when the first cause of infeasibility is due to

fuel), ii) a rest stop location (when the first cause of infeasibility is due to

HoS regulations), or iii) refueling stop locations and a rest stop location

(when the arc is infeasible both with respect to fuel autonomy and HoS

regulations, and the two searches overlap). These situations are depicted in

Figure 7. Considering a path from ō to d, the part of the path in which a

fuel search is performed (the path between locations Cβτ and Cγτ in Figure

5) is represented by a thick black line. The starting point of the backward

rest location search (location Cδα in Figure 6) is represented by a triangle,

and the interval in which a rest location has been searched is represented

by a thick gray line. In the case represented on the top panel, refueling is

the first cause of infeasibility, as it is closer to ō. In the middle panel, rest is

required before refueling is. In the bottom case, rest is required within the

refueling interval. In this case, refueling stations are searched until the rest

is requested. Then, once a rest is required, a combination of fuel and rest

locations are searched.

o Cβτ Cγτ Cδα d

fuel

o Cβτ CγτCδα d

o Cβτ CγτCδα d

rest

restfuel

Figure 7: Stop location search
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4.2 Combining stops

In this section we describe how the identified stop locations, from the pre-

vious section, are duplicated and converted into stops (specified in terms of

location, type, and duration). We recall that, once a stop is determined,

the resulting fuel level and the residual driving time, according to the HoS

regulations, upon exiting the stop can be computed.

The algorithm has the capability to combine fuel and rest stops. Fur-

thermore, it considers combining rest stops. For instance, if a break has to

be taken because the driver used all the driving time, it might be advan-

tageous to take a daily rest if the daily driving time remaining is almost

over. This is particularly relevant when minimizing the route duration since

combining such stops does not influence the fuel cost.

The function combineStopTypes, used in the algorithm (see Table 1),

considers two main possibilities of combining stop types for a given location:

i) combining fuel with rest stops and ii) combining different rest stops. In

principle, the options of combining stops are performed by duplicating the

relevant stop locations.

Combining fuel with rest stops is done as follows. A fuel stop location

q ∈ G is replicated into four stops: refueling (only) and refueling with the

three resting options. In particular, the following nodes are created in the

tree:

1. sF : a stop of type F ;

2. sFB: a stop where types F and B are combined;

3. sFD: a stop where types F and D are combined;

4. sFW : a stop where types F and W are combined.

The possibility of combining different types of stops when a rest is needed

is performed as follows. When a stop location in q ∈ L is identified, i.e.,

when a rest is required, stops B, D, and W are evaluated. In particular,

when a B stop is required, stops D and W are also considered and when

a D stop is required, stop W is also considered. Based on these rules, the

following nodes are created in the tree:

1. sB: a stop of type B;

2. sD: a stop of type D;

3. sW : a stop of type W .
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An example of the resulting tree is represented in Figure 8 for a stop in

a node in G and in Figure 9 for a stop in a node in L.

o

sF sFB sFD sFW

d d d d

Figure 8: Tree-to-destination with fuel stops

o

sB sD sW

d d d

Figure 9: Tree-to-destination with rest stops when a break is required

5 Computational experiments

In this section we present the computational campaign. Specifically, Section

5.1 describes the details of the implementation of the algorithm illustrated in

Section 4. The procedure for instance generation is presented in Section 5.2

while Section 5.3 shows the results. The experiments are aimed at gaining

insights regarding the problem difficulty and solution structure. In addition,

a comparison with the current practice of the company is performed.
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5.1 Implementation details and instance generation

The algorithm has been implemented in Java, while the base maps have been

obtained through OpenStreetMap. The considered paths between locations

have been generated with GraphHopper. Locations have been detected with

OverPass (a web-based data filtering tool for OpenStreetMap) by searching

for nodes with the tag amenity equal to fuel, i.e., refuel locations. We assume

that any type of stop can take place at a refuel location and that any refuel

location can serve trucks. Furthermore, because of the lack of information

on the availability of parking for trucks in accommodation facilities, we do

not include any rest location in addition to refueling stations. In practice,

this means that L = G. While this might not reflect reality, this assumption

is consistent with the information available in the tools mentioned above.

Note that the restricted availability of data is due to the fact that the current

implementation is a prototype of the tool that the company motivating this

work aims at developing. Being in its early stage of development, the first

goal of the company was to verify whether such a tool might be beneficial

for its customers (and the following results show that it is indeed beneficial).

Thus, the company has not yet acquired a licensed map software with more

detailed information. This forced us to turn to OpenStreetMap, which is

free and thus ideal for prototype testing (despite lacking complete informa-

tion). Moreover, from a computational perspective, this assumption entails

that the algorithm is validated (as will be shown in Section 5.3) on relatively

large G and L, and thus should be effective on sets with a smaller cardinal-

ity. Fuel prices, at a country level, have been obtained from the Weekly Oil

Bulletin of the European Commission (see European Commission - Energy

[2020]). The station fuel price was generated by perturbing the average na-

tional price up to ±15%, with the perturbation sampled uniformly from the

resulting interval. This choice was made due to the absence of a consolidated

accessible source of data on European daily fuel prices at fuel stations.

The number of temporary paths k generated between ō and d was set to

three. Out of k we only consider paths which are less than σ = 1.1 times

the shortest path between ō and d. With respect to the location search, fuel

stops are searched in the surroundings of the path between locations Cβτ
and Cγτ , where β = 0.10 and γ = 0.05, that is, between the point where

the vehicle reaches 10% of the fuel tank and the point where this measure

reaches the 5%. Rest stops are searched from the point Cδα. The value was

set to δ = 0.05, that is when the driver has 5% of the allowed driving time

left since the last stop. To avoid extremely short time intervals, the value

δα was imposed to be 10 minutes minimum. The radius ρ of the search and
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the interval I of the search are both set to 5 km. These values apply for

both the rest and the refuel location search.

The travel time of each path was determined using the open-source ver-

sion of GraphHopper, which provides travel times related to car paths. We

have adjusted speeds to 100 km/h to reflect the fact that trucks adhere to

lower speed limits, compared to private vehicles on a highway. We note

that this speed was assumed on all traveled distances. This assumption

is necessary due to the difficulty of computing the travel times for various

road segments in GraphHopper. Furthermore, this assumption is reasonable

given that, in long-haul transportation, trucks predominantly use highways.

The distances are obtained by multiplying travel times by the speed. We

note that using navigation software with heavy-duty vehicle specifications

may yield more accurate travel times. This, however, will not influence the

implementation of the algorithm.

In practice, one may obtain precise truck paths through platforms like

GraphHopper by paying a cost depending on different factors. The resulting

paths, in this case, would consider roads that explicitly permit access to a

given truck type, while accounting for its specific speed limit. The cost of

such queries depends on several parameters and is difficult to assess. We

have therefore reported the number of calls to GraphHopper in Section 5.3

as an indicator of the potential cost of queries to a user not owning a truck

navigation software.

5.2 Instance generation

Instances have been generated as follows. Three values have been chosen for

the initial temporary path length, namely, 500, 1000, and 1500 km. Three

o − d pairs have therefore been selected such that the length of the fastest

path would be close to the corresponding path lengths. These pairs are:

• 500 km: Freiburg im Breisgau (DE) to Maastricht (NL);

• 1000 km: Paris (FR) to Brescia (IT);

• 1500 km: Montreux (CH) to Timisoara (RO);

The fastest and shortest paths length for the three o−d pairs are reported

in Table 3. The shortest paths could include the so-called tertiary roads,

defined in OpenStreetMap as those roads with “low to moderate traffic which

link smaller settlements such as villages or hamlets”, which are not desirable

when planning truck paths. Thus, we use the fastest paths in the proposed

algorithm.
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Instance
Fastest

path (km)

Shortest

path (km)

Freiburg - Maastricht 515.8 430.7

Paris - Brescia 929.3 862.5

Montreux - Timisoara 1488.1 1375.4

Table 3: Fastest and shortest path (in km) for each o− d pair

Three scenarios have been generated for the initial status of the driver:

• b: just after a break, with half of the day and of the week hours

remaining, i.e., bo = 4.5, ro = 4.5 and wo = 28;

• d: just after a daily rest, with half of the week hours remaining, i.e.,

bo = 9, ro = 4.5 and wo = 28;

• w: one work day remaining before a week rest, i.e., bo = 4.5, ro = 9

and wo = 9.

The capacity of the vehicle tank τ has been assumed to be 500 liters.

The fuel consumption is assumed to be 3.5 km/l. This was established by

averaging the fuel consumption for vehicles above 11.5t, as reported by the

Italian Ministry of Transportation (see Ministero delle Infrastrutture e dei

Trasporti). This value reflects the average characteristics of a long-haul

truck in different load and road conditions (empty/full trailer, slope, wind,

etc). Five scenarios have been tested with respect to the initial fuel level

fo: {10, 25, 50, 75, 100} percent of the tank capacity. Thus, a total of 45

instances have been generated. Instances are referred to by reporting each

characteristic separated by an underscore, e.g., the instance of 500 km where

the driver has taken a break before departing and the vehicle has 10% of

the tank capacity at the origin is denoted as “500 b 10”.

5.3 Computational results

In this section the computational results for the generated instances are re-

ported. Table 4 provides a summary of the total number of feasible paths

generated and the number of non-dominated paths found. Additional statis-

tics on each instance are reported in the rightmost columns of the table,

i.e., the run time of the algorithm, the percentage of run time ascribed

to GraphHopper (GH), OverPass (OP), and the algorithm, the number of

calls to GraphHopper (for one or multiple paths), the total number of non-

dominated fuel and rest stop locations found. A first observation is that the
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number of non-dominated paths is very small with respect to the number of

paths generated. The number of non-dominated paths and the run time of

the algorithm increase with the distance and tend to be lower when starting

with a full or almost full tank. A second observation is that a large percent-

age of the run times is ascribed to the handling of geographical information

(i.e., GraphHopper and OverPass). This result further highlights the cost

to be paid when dealing with complex data such as that provided by GIS.

Tables 5–8 report the details on the non-dominated paths for each in-

stance. In particular, Table 5 lists the results for the 500 km instances,

Table 6 lists the results for the 1000 km instances. Table 7 lists the results

for the 1500 km instances with b and d and Table 8 lists those for the 1500

km instances with w. We report, for each path, the length (kilometers), the

fuel cost, the liters of fuel used, the total time, the travel time, the stop

time (note that the total time corresponds to the sum of travel time and

stop time), and the number of stops made for each type.

Furthermore, the performance of the algorithm is compared against an

algorithm representing the current practice of the drivers (denoted as “CP”

in the “Path #” column). In the algorithm representing the current practice,

drivers are assumed to behave myopically. In particular:

• Drivers are not assumed to consider alternative paths to the fastest

one to the destination, i.e., k = 1.

• Drivers look for a fuel location only shortly before refueling is required,

that is, they consider refueling in locations between the points where

2% and 1% of the fuel capacity is reached. If two or more locations

are found, the one with the cheapest distance insertion is considered.

Rest locations are sought in the same way as the proposed algorithm.

• Drivers are assumed to be able to combine refueling and resting only

as follows: whenever the driver stops for fuel, if a HoS rest is required

in 30 minutes or less, the fuel and rest stops are combined at the fuel

stop location.

This representation of the current practice is justified by the knowledge

gathered by the company on the behavior of the drivers.
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Instance Paths Statistics

km HoS fuel Total
Non-

dominated

Total

Run

Time(s)

%

time

GH

%

time

OP

% time

Algorithm

# calls

to GH

Evaluated

fuel stops

Evaluated

rest stops

500 b 10 296 2 245 68 28 4 3409 220 986

500 b 25 132 5 89 47 50 3 1065 91 216

500 b 50 6 1 5 78 20 2 79 0 29

500 b 75 6 1 5 77 21 2 79 0 29

500 b 100 6 1 5 76 21 3 79 0 29

500 d 10 345 2 239 69 26 5 3317 220 895

500 d 25 132 5 74 48 49 3 783 91 108

500 d 50 9 1 5 80 17 3 88 0 29

500 d 75 9 1 5 81 16 3 88 0 29

500 d 100 9 1 5 75 22 3 88 0 29

500 w 10 345 2 260 65 31 4 3317 220 895

500 w 25 132 5 81 52 44 4 783 91 108

500 w 50 9 1 6 80 17 3 88 0 29

500 w 75 9 1 6 78 19 3 88 0 29

500 w 100 9 1 8 66 30 4 88 0 29

1000 b 10 714 2 565 73 20 7 13407 321 5394

1000 b 25 1548 5 1030 73 15 12 21263 62 8504

1000 b 50 726 3 382 57 39 4 8495 1348 1949

1000 b 75 84 1 104 35 62 3 1139 0 471

1000 b 100 84 1 46 80 17 3 1139 0 471

1000 d 10 942 2 668 70 22 8 17463 321 7122

1000 d 25 1716 5 1000 69 20 11 25514 62 10331

1000 d 50 1422 3 628 57 39 4 21496 2022 6832

1000 d 75 164 1 75 72 25 3 3004 0 1301

1000 d 100 164 1 74 73 24 3 3004 0 1301

1000 w 10 966 2 704 68 27 5 26091 321 11295

1000 w 25 1782 5 1278 62 31 7 48782 62 21407

1000 w 50 1513 3 923 52 45 3 45948 2022 18589

1000 w 75 174 1 104 68 29 3 6742 0 3116

1000 w 100 174 1 115 62 36 2 6742 0 3116

1500 b 10 36864 2 16795 39 30 31 154653 1489 30324

1500 b 25 40872 8 12800 48 41 11 161295 942 32380

1500 b 50 11240 3 3257 40 47 13 44319 214 9010

1500 b 75 9832 2 2560 26 54 20 34553 2082 4534

1500 b 100 1004 1 335 46 39 15 4109 0 902

1500 d 10 44630 4 24290 40 32 28 187349 1109 37230

1500 d 25 44032 8 14717 48 39 13 163057 942 29409

1500 d 50 20216 4 5734 43 44 13 77815 321 14975

1500 d 75 19516 2 5903 24 56 20 66685 4450 7864

1500 d 100 1832 2 854 43 40 17 7199 0 1468

1500 w 10 43938 4 20593 40 32 28 182194 805 35633

1500 w 25 45728 8 16103 48 42 10 173389 942 30894

1500 w 50 20920 4 6712 46 42 12 82577 321 15757

1500 w 75 22016 2 5567 29 49 22 74648 5083 8555

1500 w 100 1924 2 663 46 39 15 7610 0 1501

Table 4: Summary of the paths found for each instance
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Instance Fuel Time (h) Number of stops

km HoS fuel
Path

#

Distance

(km)

Cost

(e)
Liters Total Travel Stop F FB FD FW B D W

500 b 10 CP 516.5 207.0 147.6 16.42 5.17 11.25 1 0 0 0 0 1 0

1 468.8 148.4 133.9 15.69 4.69 11.00 0 0 1 0 0 0 0

2 470.9 145.0 134.5 15.96 4.71 11.25 1 0 0 0 0 1 0

500 b 25 CP 518.5 200.9 148.1 16.18 5.18 11.00 0 0 1 0 0 0 0

1 471.7 182.7 134.8 15.72 4.72 11.00 0 0 1 0 0 0 0

2 472.8 175.6 135.1 15.73 4.73 11.00 0 0 1 0 0 0 0

3 475.7 172.6 135.9 15.76 4.76 11.00 0 0 1 0 0 0 0

4 488.2 172.1 139.5 15.88 4.88 11.00 0 0 1 0 0 0 0

5 489.1 171.1 139.7 15.89 4.89 11.00 0 0 1 0 0 0 0

500 b 50 CP 516.5 206.6 147.6 16.17 5.17 11.00 0 0 0 0 0 1 0

1 472.3 188.9 134.9 15.72 4.72 11.00 0 0 0 0 0 1 0

500 b 75 CP 516.5 206.6 147.6 16.17 5.17 11.00 0 0 0 0 0 1 0

1 472.3 188.9 134.9 15.72 4.72 11.00 0 0 0 0 0 1 0

500 b 100 CP 516.5 206.6 147.6 16.17 5.17 11.00 0 0 0 0 0 1 0

1 472.3 188.9 134.9 15.72 4.72 11.00 0 0 0 0 0 1 0

500 d 10 CP 516.5 207.0 147.6 6.17 5.17 1.00 1 0 0 0 1 0 0

1 468.8 148.4 133.9 5.71 4.71 0.75 0 1 0 0 0 0 0

2 470.9 145.0 134.5 5.44 4.69 1.00 1 0 0 0 1 0 0

500 d 25 CP 518.5 200.9 148.1 5.93 5.18 0.75 0 1 0 0 0 0 0

1 471.7 182.7 134.8 5.47 4.72 0.75 0 1 0 0 0 0 0

2 472.8 175.6 135.1 5.48 4.73 0.75 0 1 0 0 0 0 0

3 475.7 172.6 135.9 5.51 4.76 0.75 0 1 0 0 0 0 0

4 488.2 172.1 139.5 5.63 4.88 0.75 0 1 0 0 0 0 0

5 489.1 171.1 139.7 5.64 4.89 0.75 0 1 0 0 0 0 0

500 d 50 CP 516.5 206.6 147.6 5.92 5.17 0.75 0 0 0 0 1 0 0

1 472.3 188.9 134.9 5.47 4.72 0.75 0 0 0 0 1 0 0

500 d 75 CP 516.5 206.6 147.6 5.92 5.17 0.75 0 0 0 0 1 0 0

1 472.3 188.9 134.9 5.47 4.72 0.75 0 0 0 0 1 0 0

500 d 100 CP 516.5 206.6 147.6 5.92 5.17 0.75 0 0 0 0 1 0 0

1 472.3 188.9 134.9 5.47 4.72 0.75 0 0 0 0 1 0 0

500 w 10 CP 516.5 207.0 147.6 6.17 5.17 1.00 1 0 0 0 1 0 0

1 468.8 148.4 133.9 5.44 4.69 0.75 0 1 0 0 0 0 0

2 470.9 145.0 134.5 5.71 4.71 1.00 1 0 0 0 1 0 0

500 w 25 CP 518.5 200.9 148.1 5.93 5.18 0.75 0 1 0 0 0 0 0

1 471.7 182.7 134.8 5.47 4.72 0.75 0 1 0 0 0 0 0

2 472.8 175.6 135.1 5.48 4.73 0.75 0 1 0 0 0 0 0

3 475.7 172.6 135.9 5.51 4.76 0.75 0 1 0 0 0 0 0

4 488.2 172.1 139.5 5.63 4.88 0.75 0 1 0 0 0 0 0

5 489.1 171.1 139.7 5.64 4.89 0.75 0 1 0 0 0 0 0

500 w 50 CP 516.5 206.6 147.6 5.92 5.17 0.75 0 0 0 0 1 0 0

1 472.3 188.9 134.9 5.47 4.72 0.75 0 0 0 0 1 0 0

500 w 75 CP 516.5 206.6 147.6 5.92 5.17 0.75 0 0 0 0 1 0 0

1 472.3 188.9 134.9 5.47 4.72 0.75 0 0 0 0 1 0 0

500 w 100 CP 516.5 206.6 147.6 5.92 5.17 0.75 0 0 0 0 1 0 0

1 472.3 188.9 134.9 5.47 4.72 0.75 0 0 0 0 1 0 0

Table 5: Details of the non-dominated paths found for the instances of 500 km
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Instance Fuel Time (h) Number of stops

km HoS fuel
Path

#

Distance

(km)

Cost

(e)
Liters Total Travel Stop F FB FD FW B D W

1000 b 10 CP 930.2 388.7 265.8 21.30 9.30 12.00 1 0 0 0 1 1 0

1 899.8 322.5 257.1 21.50 9.00 12.50 0 0 1 0 2 0 0

2 911.9 326.9 260.5 21.12 9.12 12.00 1 0 0 0 1 1 0

1000 b 25 CP 929.8 411.7 265.7 21.05 9.30 11.75 0 0 1 0 1 0 0

1 929.7 392.8 265.6 21.05 9.30 11.75 0 0 1 0 1 0 0

2 929.8 346.1 265.6 21.30 9.30 12.00 1 0 0 0 1 1 0

3 931.7 372.7 266.2 21.07 9.32 11.75 0 0 1 0 1 0 0

4 933.4 352.6 266.7 21.08 9.33 11.75 0 0 1 0 1 0 0

5 936.5 348.5 267.6 21.11 9.36 11.75 0 0 1 0 1 0 0

1000 b 50 CP 927.0 373.6 264.8 21.02 9.27 11.75 0 1 0 0 0 1 0

1 926.1 371.6 264.6 21.01 9.26 11.75 0 1 0 0 0 1 0

2 927.1 365.4 264.9 21.02 9.27 11.75 0 1 0 0 0 1 0

3 928.8 363.4 265.4 21.04 9.29 11.75 0 1 0 0 0 1 0

1000 b 75 CP 927.0 370.8 264.8 21.02 9.27 11.75 0 0 0 0 1 1 0

1 928.9 371.6 265.4 21.04 9.29 11.75 0 0 0 0 1 1 0

1000 b 100 CP 927.0 370.8 264.8 21.02 9.27 11.75 0 0 0 0 1 1 0

1 928.9 371.6 265.4 21.04 9.29 11.75 0 0 0 0 1 1 0

1000 d 10 CP 930.2 388.7 265.8 22.05 9.30 12.75 1 0 0 0 2 1 0

1 899.8 322.5 257.1 21.50 9.00 12.50 0 0 1 0 2 0 0

2 911.9 326.9 260.5 21.12 9.12 12.00 1 0 0 0 1 1 0

1000 d 25 CP 929.8 411.7 265.7 21.80 9.30 12.50 0 1 0 0 1 1 0

1 929.7 392.8 265.6 21.05 9.30 11.75 0 0 1 0 1 0 0

2 929.8 346.1 265.6 21.30 9.30 12.00 1 0 0 0 1 1 0

3 931.7 372.7 266.2 21.07 9.32 11.75 0 0 1 0 1 0 0

4 933.4 352.6 266.7 21.08 9.33 11.75 0 0 1 0 1 0 0

5 936.5 348.5 267.6 21.11 9.36 11.75 0 0 1 0 1 0 0

1000 d 50 CP 927.0 373.6 264.8 21.02 9.27 11.75 0 0 1 0 1 0 0

1 926.1 371.6 264.6 21.01 9.26 11.75 0 1 0 0 0 1 0

2 927.1 365.4 264.9 21.02 9.27 11.75 0 1 0 0 0 1 0

3 928.8 363.4 265.4 21.04 9.29 11.75 0 1 0 0 0 1 0

1000 d 75 CP 927.0 370.8 264.8 21.77 9.27 12.50 0 0 0 0 2 1 0

1 928.9 371.6 265.4 21.04 9.29 11.75 0 0 0 0 1 1 0

1000 d 100 CP 927.0 370.8 264.8 21.77 9.27 12.50 0 0 0 0 2 1 0

1 928.9 371.6 265.4 21.04 9.29 11.75 0 0 0 0 1 1 0

1000 w 10 CP 930.2 388.7 265.8 56.05 9.30 46.75 1 0 0 0 2 0 1

1 899.8 322.5 257.1 55.50 9.00 46.50 0 0 0 1 2 0 0

2 911.9 326.9 260.5 55.12 9.12 46.00 1 0 0 0 1 0 1

1000 w 25 CP 929.8 411.7 265.7 55.80 9.30 46.50 0 1 0 0 1 0 1

1 929.7 392.8 265.6 55.05 9.30 45.75 0 0 0 1 1 0 0

2 929.8 346.1 265.6 55.30 9.30 46.00 1 0 0 0 1 0 1

3 931.7 372.7 266.2 55.07 9.32 45.75 0 0 0 1 1 0 0

4 933.4 352.6 266.7 55.08 9.33 45.75 0 0 0 1 1 0 0

5 936.5 348.5 267.6 55.11 9.36 45.75 0 0 0 1 1 0 0

1000 w 50 CP 927.0 373.6 264.8 55.02 9.27 45.75 0 0 0 1 1 0 0

1 926.1 371.6 264.6 55.01 9.26 45.75 0 1 0 0 0 0 1

2 927.1 365.4 264.9 55.02 9.27 45.75 0 1 0 0 0 0 1

3 928.8 363.4 265.4 55.04 9.29 45.75 0 1 0 0 0 0 1

1000 w 75 CP 927.0 370.8 264.8 55.77 9.27 46.50 0 0 0 0 2 0 1

1 928.9 371.6 265.4 55.04 9.29 45.75 0 0 0 0 1 0 1

1000 w 100 CP 927.0 370.8 264.8 55.77 9.27 46.50 0 0 0 0 2 0 1

1 928.9 371.6 265.4 55.04 9.29 45.75 0 0 0 0 1 0 1

Table 6: Details of the non-dominated paths found for the instances of 1000 km
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Instance Fuel Time (h) Number of stops

km HoS fuel
Path

#

Distance

(km)

Cost

(e)
Liters Total Travel Stop F FB FD FW B D W

1500 b 10 CP 1508.9 640.2 431.1 38.84 15.09 23.75 1 0 0 0 2 2 0

1 1445.3 525.4 413.0 37.95 14.45 23.50 0 0 1 0 2 1 0

2 1448.4 526.5 413.8 37.48 14.48 23.00 1 0 0 0 1 2 0

1500 b 25 CP 1505.8 560.1 430.2 38.56 15.06 23.50 0 0 1 0 2 1 0

1 1447.2 627.5 413.5 37.22 14.47 22.75 0 0 1 0 1 1 0

2 1448.0 589.9 413.7 37.23 14.48 22.75 0 0 1 0 1 1 0

3 1451.0 539.7 414.6 37.51 14.51 23.00 1 0 0 0 1 2 0

4 1452.8 537.1 415.1 37.53 14.53 23.00 1 0 0 0 1 2 0

5 1464.3 544.5 418.4 37.39 14.64 22.75 0 0 1 0 1 1 0

6 1466.0 541.9 418.9 37.41 14.66 22.75 0 0 1 0 1 1 0

7 1478.9 489.5 422.5 37.54 14.79 22.75 0 0 1 0 1 1 0

8 1490.7 485.0 425.9 37.66 14.91 22.75 0 0 1 0 1 1 0

1500 b 50 CP 1508.9 574.9 431.1 38.59 15.09 23.50 0 1 0 0 1 2 0

1 1412.6 547.9 403.6 37.13 14.13 23.00 1 0 0 0 1 2 0

2 1427.8 512.9 407.9 37.78 14.28 23.50 0 1 0 0 1 2 0

3 1445.9 518.5 413.1 37.21 14.46 22.75 0 0 1 0 1 1 0

1500 b 75 CP 1507.5 593.6 430.7 37.82 15.07 22.75 0 0 1 0 1 1 0

1 1448.4 565.2 413.8 37.23 14.48 22.75 0 1 0 0 0 2 0

2 1477.1 560.2 422.0 37.52 14.77 22.75 0 1 0 0 0 2 0

1500 b 100 CP 1508.9 603.6 431.1 38.59 15.09 23.50 0 0 0 0 2 2 0

1 1448.4 579.4 413.8 37.23 14.48 22.75 0 0 0 0 1 2 0

1500 d 10 CP 1495.1 634.3 427.2 28.45 14.95 13.50 1 0 0 0 3 1 0

1 1445.0 525.3 412.9 38.70 14.45 24.25 0 0 1 0 3 1 0

2 1445.3 525.4 413.0 37.95 14.45 23.50 0 0 1 0 2 1 0

3 1446.7 526.0 413.4 27.72 14.47 13.25 0 1 0 0 2 1 0

4 1448.4 526.5 413.8 27.23 14.48 12.75 1 0 0 0 2 1 0

1500 d 25 CP 1495.4 556.3 427.3 28.20 14.95 13.25 0 1 0 0 2 1 0

1 1447.2 627.5 413.5 26.97 14.47 12.50 0 1 0 0 1 1 0

2 1448.0 589.9 413.7 26.98 14.48 12.50 0 1 0 0 1 1 0

3 1451.0 539.7 414.6 27.26 14.51 12.75 1 0 0 0 2 1 0

4 1452.8 537.1 415.1 27.28 14.53 12.75 1 0 0 0 2 1 0

5 1464.3 544.5 418.4 27.14 14.64 12.50 0 1 0 0 1 1 0

6 1466.0 541.9 418.9 27.16 14.66 12.50 0 1 0 0 1 1 0

7 1478.9 489.5 422.5 27.29 14.79 12.50 0 1 0 0 1 1 0

8 1490.7 485.0 425.9 27.41 14.91 12.50 0 1 0 0 1 1 0

1500 d 50 CP 1507.5 574.4 430.7 27.57 15.07 12.50 0 0 1 0 2 0 0

1 1412.6 547.9 403.6 26.88 14.13 12.75 1 0 0 0 2 1 0

2 1427.8 512.9 407.9 37.78 14.28 23.50 0 1 0 0 1 2 0

3 1445.9 518.5 413.1 26.96 14.46 12.50 0 0 1 0 2 0 0

4 1498.3 517.8 428.1 27.48 14.98 12.50 0 0 1 0 2 0 0

1500 d 75 CP 1495.1 598.7 427.2 28.20 14.95 13.25 0 1 0 0 2 1 0

1 1448.4 565.2 413.8 26.98 14.48 12.50 0 1 0 0 1 1 0

2 1477.1 560.2 422.0 27.27 14.77 12.50 0 1 0 0 1 1 0

1500 d 100 CP 1495.1 598.0 427.2 28.20 14.95 13.25 0 0 0 0 3 1 0

1 1447.2 578.9 413.5 37.97 14.47 23.50 0 0 0 0 2 2 0

2 1448.4 579.4 413.8 26.98 14.48 12.50 0 0 0 0 2 1 0

Table 7: Details of the non-dominated paths found for the instances of 1500 km

with b and d
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Instance Fuel Time (h) Number of stops

km HoS fuel
Path

#

Distance

(km)

Cost

(e)
Liters Total Travel Stop F FB FD FW B D W

1500 w 10 CP 1495.1 634.3 427.2 62.45 14.95 47.50 1 0 0 0 3 0 1

1 1445.0 525.3 412.9 72.70 14.45 58.25 0 0 0 1 3 1 0

2 1445.3 525.4 413.0 71.95 14.45 57.50 0 0 0 1 2 1 0

3 1446.7 526.0 413.4 61.72 14.47 47.25 0 1 0 0 2 0 1

4 1448.4 526.5 413.8 61.23 14.48 46.75 1 0 0 0 2 0 1

1500 w 25 CP 1495.4 556.3 427.3 62.20 14.95 47.25 0 1 0 0 2 0 1

1 1447.2 627.5 413.5 60.97 14.47 46.50 0 1 0 0 1 0 1

2 1448.0 589.9 413.7 60.98 14.48 46.50 0 1 0 0 1 0 1

3 1451.0 539.7 414.6 61.26 14.51 46.75 1 0 0 0 2 0 1

4 1452.8 537.1 415.1 61.28 14.53 46.75 1 0 0 0 2 0 1

5 1464.3 544.5 418.4 61.14 14.64 46.50 0 1 0 0 1 0 1

6 1466.0 541.9 418.9 61.16 14.66 46.50 0 1 0 0 1 0 1

7 1478.9 489.5 422.5 61.29 14.79 46.50 0 1 0 0 1 0 1

8 1490.7 485.0 425.9 61.41 14.91 46.50 0 1 0 0 1 0 1

1500 w 50 CP 1507.5 574.4 430.7 61.57 15.07 46.50 0 0 0 1 2 0 0

1 1412.6 547.9 403.6 60.88 14.13 46.75 1 0 0 0 2 0 1

2 1427.8 512.9 407.9 71.78 14.28 57.50 0 1 0 0 1 1 1

3 1445.9 518.5 413.1 60.96 14.46 46.50 0 0 0 1 2 0 0

4 1498.3 517.8 428.1 61.48 14.98 46.50 0 0 0 1 2 0 0

1500 w 75 CP 1495.1 598.7 427.2 62.20 14.95 47.25 0 1 0 0 2 0 1

1 1448.4 565.2 413.8 60.98 14.48 46.50 0 1 0 0 1 0 1

2 1477.1 560.2 422.0 61.27 14.77 46.50 0 1 0 0 1 0 1

1500 w 100 CP 1495.1 598.0 427.2 62.20 14.95 47.25 0 0 0 0 3 0 1

1 1447.2 578.9 413.5 71.97 14.47 57.50 0 0 0 0 2 1 1

2 1448.4 579.4 413.8 60.98 14.48 46.50 0 0 0 0 2 0 1

Table 8: Details of the non-dominated paths found for the instances of 1500 km

with w
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The results obtained with the algorithm mimicking the real-life behavior

of the truck drivers show that the solution found is generally dominated by

all the solutions found by the proposed algorithm. A detailed comparison of

the solutions found by the two algorithms is presented in Table 9. For each

instance, the table reports the maximum savings obtained by the proposed

algorithm with respect to the current practice both in terms of absolute

value and percentage. Furthermore, the ratio of solutions that dominate

the current practice, in both criteria, is reported. For such solutions, the

four rightmost columns report the average savings, both in terms of absolute

value and percentage over the current practice. It can be observed that the

proposed algorithm provides fuel cost savings up to around 115 e (instance

1500 b 10) and a time saving of up to one hour and 30 minutes (instance

1500 b 50). In terms of percent deviations, we observe fuel cost savings up

to 30% (e.g., instance 500 b 10) and time savings of up to 12% (e.g., instance

500 d 10). Thus, benefits in some instances are indeed significant, especially

in terms of fuel cost savings. It is also important to note that another valu-

able benefit provided by the algorithm is the fact that it generally produces

different non-dominated solutions. This is especially valuable when carriers

may be interested to evaluate not only the cheapest option (in terms of fuel

cost) but other solutions, leading to possibly faster routes.

A note must be made on the results found in the 1000 km instances with

fo ∈ {75, 100}. In particular, it can be observed that in instances 1000 b 75

and 1000 b 100, the solutions found by the two algorithms are practically

equivalent, with the difference that, because of its slightly more conservative

nature, the proposed algorithm finds different rest locations that are slightly

further away from the highway than those found by the CP algorithm. In

the remaining instances, i.e., those of the “d” and “w” scenarios, the same

explanation applies for the fuel cost of the solutions, while the substantial

time saving of the solutions found by the presented algorithm is due to its

ability to smartly combine different kinds of rest stops.

Given the nature of the generated instances, we see fit to report a few sta-

tistical measures related to the savings reported in Table 9. Since the initial

fastest paths have different lengths, we have scaled the savings reported in

Table 9 to represent averages over 500 km. Considering these scaled savings

over the 122 non-dominated paths (found in the 45 instances), the average

fuel savings and time savings are 17.7 e and 0.08 hours. In this case, the

95% confidence intervals of the average fuel savings and time savings are

[14.9, 20.6] and [−0.06, 0.22]. To further explore these results, we performed

a paired t-test (with a 0.05 significance level) to compare the mean differ-

ence between the fuel costs of the non-dominated paths and those of the
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current practice. We conclude that the difference between the two means is

statistically significant. We have also performed a similar test between the

duration of the non-dominated paths and those of the current practice. We

conclude that there is no significant difference in the means of these samples.
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Instance
Max absolute

saving

Max percentage

saving

Avg. absolute

saving over CP

Avg. percentage

saving over CP

km HOS fuel
Fuel

(e)

Time

(h)

Fuel

(%)

Time

(%)

Routes

Dom.

CP

Fuel

(e)

Time

(h)

Fuel

(%)

Time

(%)

500 b 10 −62.06 −0.73 −29.98 −4.43 2/2 −60.33 −0.59 −29.14 −3.61

500 b 25 −29.79 −0.47 −14.83 −2.89 5/5 −26.08 −0.39 −12.98 −2.41

500 b 50 −17.70 −0.44 −8.57 −2.74 1/1 −17.70 −0.44 −8.57 −2.74

500 b 75 −17.70 −0.44 −8.57 −2.74 1/1 −17.70 −0.44 −8.57 −2.74

500 b 100 −17.70 −0.44 −8.57 −2.74 1/1 −17.70 −0.44 −8.57 −2.74

500 d 10 −62.06 −0.73 −29.98 −11.80 2/2 −60.33 −0.59 −29.14 −9.60

500 d 25 −29.79 −0.47 −14.83 −7.89 5/5 −26.08 −0.39 −12.98 −6.57

500 d 50 −17.70 −0.44 −8.57 −7.48 1/1 −17.70 −0.44 −8.57 −7.48

500 d 75 −17.70 −0.44 −8.57 −7.48 1/1 −17.70 −0.44 −8.57 −7.48

500 d 100 −17.70 −0.44 −8.57 −7.48 1/1 −17.70 −0.44 −8.57 −7.48

500 w 10 −62.06 −0.73 −29.98 −11.80 2/2 −60.33 −0.59 −29.14 −9.60

500 w 25 −29.79 −0.47 −14.83 −7.89 5/5 −26.08 −0.39 −12.98 −6.57

500 w 50 −17.70 −0.44 −8.57 −7.48 1/1 −17.70 −0.44 −8.57 −7.48

500 w 75 −17.70 −0.44 −8.57 −7.48 1/1 −17.70 −0.44 −8.57 −7.48

500 w 100 −17.70 −0.44 −8.57 −7.48 1/1 −17.70 −0.44 −8.57 −7.48

1000 b 10 −66.13 −0.18 −17.01 −0.86 1/2 −61.81 −0.18 −15.90 −0.86

1000 b 25 −65.65 0.00 −15.95 −0.01 1/5 −18.92 0.00 −4.60 −0.01

1000 b 50 −10.11 −0.01 −2.71 −0.04 1/3 −1.96 −0.01 −0.53 −0.04

1000 b 75 0.77 0.02 0.21 0.09 0/1

1000 b 100 0.77 0.02 0.21 0.09 0/1

1000 d 10 −66.13 −0.93 −17.01 −4.23 2/2 −63.97 −0.74 −16.46 −3.37

1000 d 25 −65.65 −0.75 −15.95 −3.45 5/5 −49.20 −0.68 −11.95 −3.10

1000 d 50 −10.11 −0.01 −2.71 −0.04 1/3 −1.96 −0.01 −0.53 −0.04

1000 d 75 0.77 −0.73 0.21 −3.36 0/1

1000 d 100 0.77 −0.73 0.21 −3.36 0/1

1000 w 10 −66.13 −0.93 −17.01 −1.66 2/2 −63.97 −0.74 −16.46 −1.33

1000 w 25 −65.65 −0.75 −15.95 −1.35 5/5 −49.20 −0.68 −11.95 −1.21

1000 w 50 −10.11 −0.01 −2.71 −0.02 1/3 −1.96 −0.01 −0.53 −0.02

1000 w 75 0.77 −0.73 0.21 −1.31 0/1

1000 w 100 0.77 −0.73 0.21 −1.31 0/1

1500 b 10 −114.76 −1.36 −17.93 −3.49 2/2 −114.20 −1.12 −17.84 −2.88

1500 b 25 −75.10 −1.34 −13.41 −3.47 6/8 −37.15 −1.05 −6.63 −2.73

1500 b 50 −62.07 −1.46 −10.80 −3.79 3/3 −48.53 −1.22 −8.44 −3.16

1500 b 75 −33.41 −0.59 −5.63 −1.56 2/2 −30.89 −0.45 −5.20 −1.18

1500 b 100 −24.20 −1.36 −4.01 −3.51 1/1 −24.20 −1.36 −4.01 −3.51

1500 d 10 −109.00 −1.22 −17.18 −4.28 2/4 −108.04 −0.98 −17.03 −3.43

1500 d 25 −71.34 −1.23 −12.82 −4.37 6/8 −33.38 −0.95 −6.00 −3.36

1500 d 50 −61.57 −0.70 −10.72 −2.54 3/4 −46.40 −0.47 −8.08 −1.70

1500 d 75 −38.57 −1.22 −6.44 −4.32 2/2 −36.04 −1.07 −6.02 −3.81

1500 d 100 −19.15 −1.22 −3.20 −4.32 1/2 −18.68 −1.22 −3.12 −4.32

1500 w 10 −109.00 −1.22 −17.18 −1.95 2/4 −108.04 −0.98 −17.03 −1.56

1500 w 25 −71.34 −1.23 −12.82 −1.98 6/8 −33.38 −0.95 −6.00 −1.52

1500 w 50 −61.57 −0.70 −10.72 −1.14 3/4 −46.40 −0.47 −8.08 −0.76

1500 w 75 −38.57 −1.22 −6.44 −1.96 2/2 −36.04 −1.07 −6.02 −1.73

1500 w 100 −19.15 −1.22 −3.20 −1.96 1/2 −18.68 −1.22 −3.12 −1.96

Table 9: Summary of the savings as differences with the current practice solution
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We further illustrate the differences between the obtained paths from

the proposed algorithm and the path obtained by current practice through

an example. Figure 10 reports the Pareto front of the solutions found by

the algorithm for instance 1500 b 25 and, in red, the solution found by the

current practice. The figure clearly shows the gap between the solution from

practice and all non-dominated solutions found by the algorithm. Two of

the obtained paths (#1 and #8) are illustrated in Figures 11 and 12. We

observe that the paths follow very different trajectories. As observed in

Table 7, while #8 is shorter than #1 by about 20 minutes, because of the

higher fuel prices, #1 is about 139 e cheaper than #8. The path obtained

by current practice is presented in Figure 13. While the CP path follows

a road itinerary somewhat similar to that of path #1, the ability of the

proposed algorithm to evaluate stops at different fuel and rest locations leads

to cheaper refueling prices and shorter detours from the main highways.
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Figure 10: Pareto front and practice solution (red) for instance 1500 b 25

6 Managerial implications and conclusions

In Section 6.1 we draw managerial insights derived from the algorithm, ex-

periments, and discuss the main steps towards a practical implementation

of our methodology. In Section 6.2 we present the overall conclusions of the

paper and discuss future research directions.
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Figure 11: Path # 1 for the 1500 b 25 instance

Figure 12: Path # 8 for the 1500 b 25 instance

6.1 Managerial implications

The variability of fuel prices from one fuel station to another entails that

gains can be achieved by route deviations. Such gains grow with the increase

in the planned route length. Indeed, our results show that the maximum

fuel savings achieved with the 1500 km routes is about 1.85 times more than

the maximum fuel savings achieved with the 500 km routes. Therefore,

accounting for fuel prices is particularly important in the context of long-

haul transportation. Fuel savings are mostly observed when deviations from

the fastest routes occur, which increase travel times. Therefore, having

a bi-objective planning tool is instrumental in accounting for fuel prices.

However, we note that the number of non-dominated paths is generally

rather limited. In our experiments, the average number of non-dominated
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Figure 13: Path CP for the 1500 b 25 instance

paths is 2.7. Such a limited number of paths allows visually inspecting them,

and thus further facilitates managerial decisions.

Our algorithm resulted in substantial savings when compared to the cur-

rent practice of the company involved. Considering all non-dominated paths,

the average savings are 35.7 e, while the average path duration increases

by 3.5 minutes. However, as shown in Section 5.3, the latter increase is

not statistically significant. Moreover, in 91 out of the 122 cases, the non-

dominated paths dominate the current practice path on both criteria.

We aimed at developing a prototype tool that is based on free readily

available information and interfaces. In particular, our algorithm interacts

in a seamless fashion with GIS tools, i.e., routing libraries, servers, and

web-based data filtering tools. By doing so, we traded simplicity and af-

fordability with speed and location accuracy. Indeed, on average more than

90% of the runtime is spent retrieving the relevant information from the

GIS tools. However, we note that in a practical context, if the algorithm is

interfaced with commercial and properly configured GIS tools, its run times

would substantially decrease. For example, simply running our algorithm

with an alternative OverPass server (among those provided by the open-

source community) almost doubles the runtimes. Another point that would

require careful considerations is the search strategy for the stop locations.

In particular, the trade-off between a more accurate search strategy yielding

fewer stop locations (such as isodistance or isochrone searches), potentially

reducing the running time of the algorithm, and a simple and rapid search

such as the presented radius search, leaving the assessment of the quality and

feasibility of the candidate stop locations to the algorithm, would need to be

carefully evaluated. We believe that an isochrone search strategy becomes
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highly relevant in dynamic settings.

Our prototype tool was designed to work with open-source data. How-

ever, acquiring two sources of input data may produce more accurate results,

and thus improve practical applications of the prototype tool. First, obtain-

ing rest locations, which are not refueling stations, could enhance the results.

Second, procuring daily fuel prices at stations across a number of countries

would certainly render the results more applicable.

6.2 Conclusions

Fuel cost is one of the major cost components in long-haul transportation.

However, the overwhelming majority of the scientific literature on optimiz-

ing long-haul truck transportation ignores refueling decisions. By doing so,

this literature implicitly assumes that fuel prices are equal throughout the

road network, and thus vehicles should not deviate from their fastest paths.

This is a simplistic assumption as fuel prices may vary substantially from

one refueling station to another. Therefore, possible detours for refueling

operations may yield substantial cost savings. Moreover, such detours may

entail a change in the trajectory of the planned path.

In this paper, we studied the long-haul truck scheduling problem on

a road network where fuel is accounted for as a cost component and the

driver is subject to HoS regulations. An origin-destination path has to

be determined. This path includes the locations where the driver should

stop either for HoS compliance, refueling or a combination of the two. Two

objectives are considered: the minimization of fuel cost and of path duration.

Given the size of long-haul routes, the number of possible paths, the number

of potential refueling stations and the number of potential rest locations, the

algorithm we designed interacts with a GIS to identify relevant paths and

stop locations. For a set of real-sized instances with distances ranging from

500 to 1500 km, non-dominated paths are generated and compared with the

path generated by the current practice of a logistics company.

The problem and the solution approach proposed in this paper concerns

HoS regulations coming from the European Union legislation. However, the

approach can be modified to take into account different regulations associ-

ated with other legislations. In fact, it suffices to modify the parameters

associated with maximum driving and duty time. Rest locations will be

then identified accordingly.

This paper opens a new direction for research in transportation, oriented

to considering the refueling cost, that differs from station to station. In par-

ticular, given that in some countries fuel prices may change during the day,
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an extension of our algorithm to handle dynamic prices is a highly relevant

research avenue. Considering a dynamic setting also applies to traveling

times on the road network. Planning routing and stopping according to

traffic conditions could provide substantial benefits. Another relevant re-

search direction to which this paper contributes is related to the design of

optimization algorithms on road networks that interact with a GIS.
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