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Autonomous Vision-Based Navigation for Deep-Space CubeSats: Algorithm
Development and Hardware Validation

Eleonora Andreis1, Paolo Panicucci2, Fabio Ornati3, Davide Perico4, Francesco
Topputo5

The space industry is undergoing a significant transformation, with CubeSats emerging as cost-effective and
standardized miniaturized spacecraft that reduce mission costs and development times. As the number of inter-
planetary CubeSat missions increases, traditional ground-based navigation methods are becoming unsustainable,
necessitating the development of autonomous solutions. In response, the ERC-funded EXTREMA project seeks to
enable self-driving spacecraft by challenging the current paradigm of deep-space navigation. This work aims to ad-
vance the technology readiness level (TRL) of the EXTREMA’s optical navigation algorithm for CubeSats, which
autonomously localizes spacecraft in interplanetary space using deep-space images of unresolved celestial bodies.
The algorithm is progressively validated through hardware-in-the-loop testing, incorporating optical facilities and
miniaturized processors to ensure robustness and suitability for CubeSat applications.

1 Introduction

CubeSats play a central role within the new space econ-
omy. The flourishing growth experienced so far in Earth
orbits will affect deep space soon. CubeSats allow a
democratization of space exploration and open new ex-
ploitation frontiers to minor players, thanks to their
lower production and launching costs compared to stan-
dard probes. One step further in the mission cost reduc-
tion consists of cutting down the expenses due to ground-
based GNC. Moreover, being detached from ground con-
trol avoids the problem of ground station saturation, al-
lowing the exploitation of a greater number of probes in
space.
Driven by these factors, several works have been focused
on the implementation of autonomous vision-based nav-
igation (VBN) algorithm applicable to deep-space sce-
narios [1, 2, 3, 4]. This work presents the results of the
validation process aimed at advancing the Technology
Readiness Level (TRL) of the navigation algorithm pro-
posed in [1] study by evaluating its performance through
laboratory simulations. This validation includes the in-
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tegration of Commercial Off-The-Shelf (COTS) com-
ponents into the simulation loop to ensure the algo-
rithm meets the performance requirements of miniatur-
ized hardware.
While the primary focus is on CubeSat applications, the
impact of this research extends to larger spacecraft as
well. If the proposed navigation approach proves ef-
fective with low-cost, low-performance payloads, it can
be adapted for use with larger spacecraft equipped with
higher-performance hardware.

2 Problem Statement

In deep space, a spacecraft can estimate its position by
acquiring optical information from the observations of
unresolved celestial bodies, e.g., planets and asteroids.
The LoS to the beacons are used to feed the on-board
navigation method, from which the probe state is es-
timated. When two LoSes directions associated with
different beacons are acquired simultaneously, the kine-
matic celestial triangulation problem can be solved [5, 2].
Considering the two-beacon observation scenario, the so-
lution of the triangulation problem exists as long as when
the probe and beacons are not in conjunction or oppo-
sition [6].
The method presented so far solves only for the space-
craft position at the same epoch of measurement acqui-
sition. Dynamic methods, e.g., Kalman filtering, are
however more accurate and can estimate the full state
vector, including the spacecraft velocity. For this rea-
son, they will be preferred in the development of the al-
gorithm. Moreover, the following conservative assump-
tions are made to specialize the problem to the case of
interplanetary CubeSats:
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1. Only one miniaturized optical sensor is adopted on
board. Thus, almost all the time only one beacon
at a time is tracked.

2. Because of the limited performances of the sensor,
minor bodies are not detected [7], and therefore
only the planets are used to get the measurements.

2.1 Planets Selection
When estimating the probe position, it is beneficial to
track those planets that will yield the highest accuracy
possible in state determination. This is known as the
optimal beacons selection strategy. The approach fol-
lowed for the selection of the most suitable pair of nav-
igation planets is the one in [6], which is implemented
directly into the navigation filter. It works by taking
as input the estimated position of the spacecraft and
planets ephemerides, and it returns the optimal pair of
planets to be tracked. At first, the planets observabil-
ity is assessed by checking their Solar Exclusion Angle
SEA, the apparent magnitude, and Object-to-Pixel Ra-
tio (OPR). Only the planets whose SEA and apparent
magnitude pass the threshold values imposed by the op-
tical sensor, and whose OPR< 1 can be considered avail-
able for tracking.

3 Deep-Space Image Generation

VBN algorithms rely on physically accurate optical im-
ages for their development and validation. However,
there is a lack of publicly available mission databases,
and those that do exist are specific to particular sensors
and missions, limited to the operational orbit covered
by the spacecraft. This limitation is particularly rele-
vant for far-range navigation.
As a result, it is clear that relying solely on real mission
images to evaluate the functionality of VBN algorithms
is not feasible. Therefore, the use of high-fidelity image
simulators becomes essential. Given the absence of a
publicly available rendering tool suitable for deep-space
applications, a new high-fidelity rendering engine has
been developed, with the initial version introduced in
[8].
The updated version of the image simulator is detailed in
[9]. It operates in two modes: software-simulation mode
and HIL-simulation mode. The software-simulation
mode is used when the generated synthetic image is di-
rectly input into the navigation filter. In contrast, the
hardware mode is used when optical test benches are
integrated into the simulation loop.
Both simulation modes share the same rendering ap-
proach regarding geometrical modeling. However, they
differ in the selection of noise sources to include in the

image simulator and in the conversion of irradiance val-
ues into pixel digital counts.
For the software-simulation mode, since the image is
used directly to correct the estimated state, it must be
as realistic as possible. Therefore, it includes all types
of noise, both external and internal. Once the geomet-
rical position of the objects is calculated, internal and
external effects that alter the location of their related
centroids are applied, such as light time, light aberra-
tion, optical distortion, and object smearing. Subse-
quently, the overall radiometric content of the image is
determined by adding the various contributing elements.
Thus, the standard deviation of the total detector noise
is added to the number of photoelectrons of the blurred
observed objects, to which the PSF has been applied,
along with environmental artifacts.
At this stage, the electron signal is converted into pixel
digital counts. Therefore, the output of the software-
simulation mode is an image as it would be captured
by the modeled sensor in deep space, with intensity ex-
pressed in pixel digital counts according to the camera
bit depth.
In contrast, for the Hardware-In-the-Loop simulation
mode, the simulator is used to conduct HIL simulations
involving optical test benches such as OSI and RETINA
described in Sec. 5. Specifically, the synthetic deep-space
scenes generated by the image simulator are projected
onto the micro-display of the optical facility and cap-
tured by its camera. The output of this rendering mode
is a raw image matrix whose intensity represents the il-
luminance of the displayed stars, celestial bodies, and
environmental artifacts, which must be converted into
digital values before being projected on the optical facil-
ity screen. This procedure is detailed in [10] and [11, 12]
for OSI and RETINA, respectively.
To correctly stimulate the facility camera, various mea-
sures need to be implemented within the image simula-
tor. First, the image displayed on the screen must match
both the screen resolution and the camera FoV, and only
external errors should be introduced, as internal ones are
already present due to the use of a real physical camera.
Furthermore, after applying the geometrical model, the
rendered scene must undergo warping to compensate for
distortion and errors introduced by the facility. Finally,
the conversion of illuminance values to digital numbers
is applied outside the simulator.

4 Navigation Algorithm

The navigation algorithm, whose validation with HIL
simulation is carried out in this work, is extensively de-
scribed in [1]. Only the major details are reported in this
section. First, the image processing (IP) pipeline ex-
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ploited to extract relevant information from deep-space
images is detailed. Then, the filter components are out-
lined.

4.1 Image Processing
In deep space, the projection of the planet position in
the 2D camera reference frame C, i.e., Crpl, or its as-
sociated LoS direction, is the only information available
to support state estimation. Therefore, the goal of the
IP procedure is to recognize the planet projections in
the image among the centroids available. The proce-
dure goes through three steps: 1) The probe attitude is
determined, 2) the light-aberration correction is applied
to bright star centroids, and 3) the planets are identified.

4.1.1 Attitude Determination

As first step, the probe determines its attitude. To this
aim, Niblack’s thresholding method [13] is adopted to re-
move the background noise to patches of the image cen-
tered on bright pixels and delimited by squared windows
with a one-pixel margin on each side. Hence, the cen-
troid of the object is computed by applying an intensity-
weighted center of gravity algorithm considering the pix-
els inside the associated squared window [14].
Then, the registration problem is solved to find the cor-
rect matching between the observed star asterism (i.e.,
stellar pattern) and the cataloged stars in the inertial
frame. This last step is performed differently according
to whether the planet is acquired for the first time or
not. In the former case, the selected lost-in-space (LIS)
strategy is the pyramid algorithm detailed in [15].
When the spacecraft is not in LIS mode, it has a rough
estimate of its orientation. Therefore, a recursive regis-
tration method can be applied.
When stars are identified, the probe attitude is deter-
mined by solving Wahba’s problem [16] between the
stars LoS directions in the camera and inertial refer-
ence frame exploiting the Singular Value Decomposition
(SVD) method [16]. Moreover, the robustness of the so-
lution to Wahba’s problem is increased thanks to the
adoption of a RANdom-SAmple Consensus (RANSAC)
procedure [17, 18]. The RANSAC algorithm aims to de-
tect the bright objects that have been misidentified by
the star identification, which can thus lead to a wrong
attitude determination.
When the recursive attitude determination fails, the
spacecraft orientation at the following image acquisition
is determined again with the LIS method. Conversely,
when the LIS algorithm succeeds in the determination
of the probe orientation, in the following image acqui-
sition the recursive attitude determination algorithm is
adopted.

4.1.2 Light-Aberration Correction

After the first attitude determination, the centroids of
the stars are corrected for the light-aberration effect,
and the probe attitude is recomputed by taking into ac-
count the corrected stars LoS directions. The procedure
adopted is described in [5, 1].

4.1.3 Beacon Identification

At this step, the planet must be identified in the image
and its projection Crpl must be extracted. The identifi-
cation is performed through the evaluation of the mean
and covariance matrix associated with the planet loca-
tion. This latter defines the Gaussian probability of find-
ing the planet in that portion of the image. At first, the
expected location of the observed planet in the image
plane is evaluated as:

C
hrpl0 = KcamAcorr(Irpl − Ir) (1)

where Ir is the predicted probe position in the inertial
reference frame I, Irpl is the planet ephemeris, Kcam

is the camera intrinsic matrix, and Acorr is the rotation
matrix from the inertial reference frame N to the camera
reference frame C corrected for the stars light aberration.
If Crpl0 falls within the boundaries of the image, its as-
sociated 3σ covariance ellipse is computed. The latter
depends on the uncertainties of the spacecraft pose and
planet position and is centered in Crpl0 . The ellipse of
Crpl0 represents the area of the image where the planet
is most likely to be found within a 3σ probability. The
spike contained in the 3σ ellipse is identified as the planet
location Crpl. If multiple spikes are located within this
ellipse, the closest one to the expected planet position
is identified as the planet, as it is most likely to be the
true planet location.
The covariance matrix of the beacon location P due to
the spacecraft pose (i.e., probe attitude and position)
and beacon position uncertainty is computed as

P = GSG⊤ (2)

G is the matrix describing the mapping between Crpl

and the spacecraft pose and beacon position. S is the
covariance matrix of the probe pose and beacon position.
A complete description of G is reported in [1].

4.2 Orbit Determination

Firstly, the dynamic and measurement models adopted
in the VBN filter are detailed. Successively, the chosen
filtering scheme is shown.
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4.2.1 Dynamics Model

The process state x is defined as

x(t) = [r(t), v(t),η(t)]⊤ (3)

where r and v are the inertial probe position and ve-
locity, respectively, and η is a vector of Gauss–Markov
(GM) processes accounting for unmodeled terms: a 3-
dimensional residual accelerations ηR and the stochastic
component of the Solar Radiation Pressure (SRP) ηSRP;
that is, η = [ηR,ηSRP]⊤ [19]. The process is modeled
using the following equation of motion

ẋ(t) = f(x(t), t) + w (4)

where f is the vector field embedding the deterministic
part, while w is the process white noise:

ẋ(t) =


v

aSun + aSRP +
∑

i
apli

−ξRηR

−ξSRPηSRP


︸ ︷︷ ︸

f

+

+


03x1

ηR + ηSRP

wR

wSRP


︸ ︷︷ ︸

w

(5)

where aSun is the two-body gravitational acceleration,
aSRP is the perturbation given by the SRP, and

∑
i
apli

is the i-esimal third-body perturbation. In the Langevin
equations that govern the GM processes the coefficients
ξR and ξSRP define the reciprocal of the correlation
times, while wR and wSRP are the process noises of the
GM parameters with σR and σSRP standard deviations.
The covariance of these two process noises can be defined
as

E[wRw
⊤
R ] = σ2

RI3x3 = QR

E[wSRPw
⊤
SRP] = σ2

SRPI3x3 = QSRP

(6)

(7)
(8)

The complete process noise covariance matrix is Q:

Q = diag(03x3,03x3,QR,QSRP) (9)

4.2.2 Measurement Model

The adopted measurement model expresses the observa-
tions in pixel coordinates in the camera plane. In addi-
tion, it embeds the light effects and their dependencies
with respect to the planet and spacecraft state. There-
fore, the navigation filter takes into account these effects

during the mean and covariance update.
Once the time delay ∆t is computed by solving the
second-order linear equation reported in [1], the planet
LoS can be expressed as the unit vector for the space-
craft position at time t, the image acquisition time, to
the planet position at time τ , when the light was emitted
by the planet. Thus:

lpl/sc = (rpl(t − ∆t) − r(t))⊤ (rpl(t − ∆t) − r(t))∣∣∣∣(rpl(t − ∆t) − r(t))⊤ (rpl(t − ∆t) − r(t))
∣∣∣∣

(10)

This unit vector is warped by relativistic light aberra-
tion as the spacecraft is not fixed with respect to the
inertial reference frame. At first order, this effect can be
expressed as follows [20]:

laberr
pl/sc = lpl/sc + lpl/sc ×

(
βsc × lpl/sc

)
(11)

where βsc = v

c
.

Finally, the warped line of sight is projected in the cam-
era:

C
hrpl = Kcam Acorr l

aberr
pl/sc (12)

Crpl = 1
C
hrpl,(3)

(
C
hrpl,(1)
C
hrpl,(2)

)
(13)

where C
hrpl is the projection of the planet line of sight in

the image plane in homogeneous coordinates, Crpl is the
same vector but in non-homogeneous coordinates, and
C
hrpl,(i) is the i-esimal coordinate of vector C

hrpl.

4.2.3 Selected Filtering Strategy for the Vision-Based
Navigation Algorithm

A non-dimensionalized EKF is selected as the most ap-
propriate filtering approach for the development of a
VBN algorithm for CubeSat applications. The selection
has been performed in [21], where the behavior of five
different EKFs has been analyzed in terms of estima-
tor numerical stability and computational performance.
Indeed, it is important to remark that the autonomous
VBN algorithm has to be deployed on a miniaturized
processor characterized by limited computation capabil-
ities comparable to the one of a Raspberry Pi.
Moreover, two additional procedures are implemented
in the navigation filter to face the errors of the IP al-
gorithm: 1) When observations are not acquired due to
an IP failure, the state vector and its error covariance
matrix are simply propagated until the next step; 2) an
innovation-based outlier detection method is applied to
reject false positives [22]. In particular, when the abso-
lute value of the innovation term (||rplk − h(xpk )||) is
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greater than k
√
Mii with M = HkPpkH

⊤
k + Rk and

k = 3, the innovation term is set to zero, and the filter
correction step is not performed. Indeed, it is preferred
to keep an old but good prediction so as not to worsen
the estimation.

5 Validation Campaign

To ensure that VBN algorithms are accurate and robust
enough for deployment on spacecraft during interplane-
tary missions, it is crucial to conduct testing in environ-
ments that closely replicate actual mission conditions
[23]. These testing campaigns simulate the hardware
characteristics and mission scenarios a spacecraft would
encounter.
While high-fidelity rendering engines help address some
of these challenges, they still rely on approximate models
that may not fully capture errors from both external and
internal sources. Therefore, incorporating real hardware
into the image generation process is essential to achieve
a more realistic error representation. Optical facilities
equipped with real sensors are used to test the naviga-
tion software, providing a more accurate assessment of
the algorithm performance when unmodeled errors are
introduced into the images [23, 24, 25, 26].
Additionally, it is important to evaluate the compati-
bility of the VBN algorithm with a CubeSat processor.
This involves implementing and testing the navigation
algorithm on a platform that mimics a CubeSat on-
board computer, demonstrating the algorithm feasibility
within the constraints of miniaturized hardware.
In this section, the procedure followed for enhancing the
TRL of the algorithm through the validation with inte-
grated hardware is described.
For what concerns the optical hardware, two facilities
characterized by an incremental levels of fidelity are
used: Jena Optronik’s OSI and DART’s RETINA. The
OSI testing was conducted at the GNC department of
DLR in Bremen, as detailed in [10], while the RETINA
validation took place at the DART LAB. The setup and
calibration of RETINA is deeply described in [23, 12, 11].
The OSI facility underwent only geometric calibration
before being used in the validation process, whereas
RETINA was both geometrically and radiometrically
calibrated. Geometric calibration ensures that objects
within the field of view are observed in a manner con-
sistent with orbital observation, while radiometric cali-
bration ensures that the light irradiance received by the
camera of the optical bench is equivalent to the one the
sensor would encounter in an actual mission. Therefore,
testing the VBN algorithm with RETINA represents a
more advanced step in validation, as the images pro-
duced are equivalent to real ones from both a radiomet-

ric and geometric point of view.
For what concerns the processor, a Raspberry Pi has
been chosen as the representative COTS On-Board-
Computer (OBC) for testing due to its affordability,
reliability, and compact size, which align well with
the CubeSat philosophy1. Although these platforms
currently outperform many state-of-the-art space-grade
processors, an increasing number of users are testing
Raspberry Pi computers in space [27, 28]. Specifically,
a Raspberry Pi 4 Model B with an ARM Cortex-A72
processor has been utilized.
The deployment of the navigation filter was accom-
plished using MATLAB Coder2, which automatically
generates optimized C/C++ code from a MATLAB
script to run on the Raspberry Pi processor. The naviga-
tion algorithm is then invoked within a C program run-
ning on the Raspberry Pi, where timing and operational
frameworks are implemented. Deep-space images and
input variables are stored in the Raspberry Pi primary
memory and transferred to the RAM when processed by
the navigation filter, as described in [29].
The validation is executed by asynchronously imple-
menting the image acquisition and the state estimation
steps. At first, deep-space images are rendered with the
rendering engine, projected on the optical facility micro-
display, and acquired by the optical facility camera. Suc-
cessively, the facility deep-space images are input into
the navigation filter deployed on the Raspberry-Pi. The
simulation loop is illustrated in Fig. 1. Specifically, the
NPU is the processor unit over which the VBN filter is
run.

Optical Facility
Raw Image

Data
Sensed
Image

Rendering Unit
Navigation

Processing Unit
(NPU)Real

 State
Estimated

State

Fig. 1: Simulation loop of EXTREMA Experiment 1

5.1 Validation with OSI and Raspberry Pi

OSI is a device designed as a testing system for Jena-
Optronik’s star sensors3. It consists of an optical head,
which comprehends a high-resolution micro-display on
which deep-space images are rendered, a collimating lens
to place the observed objects at infinity, and a control

1https://www.raspberrypi.com/for-industry/space/,
Last Visited in August 2024

2https://it.mathworks.com/products/matlab-coder.html,
Last Visited in August 2024

3https://www.jena-optronik.de/products/star-sensors/
ground-support-equipment.html, Last Visited in August
2024

https://www.raspberrypi.com/for-industry/space/
https://it.mathworks.com/products/matlab-coder.html
https://www.jena-optronik.de/products/star-sensors/ground-support-equipment.html
https://www.jena-optronik.de/products/star-sensors/ground-support-equipment.html
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box. The micro-display is an OLED with resolution
800× 600 pixels and pixel size dpixs = 15µm. The col-
limating optics has a fcoll = 30 mm, and a 20° circu-
lar FoV. The combination GC1350–Xenoplan 1.4/1712

is selected as optical system, respectively. The screen
pixel angular dimension is about 100 arcsec. This value
represents the minimum angular distance between two
adjacent features on the screen. Figure 2 shows the final
OSI configuration.

Fig. 2: OSI configuration

Fig. 3: Hardware setup for the OSI optical facility

The navigation algorithm is tested on the ballistic mar-
tian corridor leg shown in Fig. 4 [30]. The same scenario
has been exploited in [1], where the performance of a
desktop-simulation of the fully integrated algorithm is
presented. These results are used inside this section as
a benchmark of the performance when hardware is in-
troduced inside the simulation. The dynamics of the
reference true trajectory include the SRP perturbations,
the main attractor acceleration, third-body accelerations
due to all the planets in the Solar System, and relativis-
tic perturbations. The dynamic model selected for the
filter has a lower fidelity. The initial state uncertain-
ties are defined in Table 1, and the navigation concept
of operations is described in Sec. 2. The probe physi-
cal features adopted to model the SRP are illustrated in
Table 2.
The measurement error covariance matrix, which de-
pends on the adopted camera and size of the bright

1https://www.alliedvision.com/en/camera-selector/
detail/prosilica-gc/1350/, Last Visited in August 2024

2https://cdn.alliedvision.com/fileadmin/content/
documents/products/accessories/lenses/Schneider/
Data_sheet/1001957_Xenoplan_1.4-17.pdf, Last Visited in
August 2024

Fig. 4: Leg of the ballistic corridor towards Mars

Tab. 1: Accuracy of the state components at t0

σr [km] 104

σv [km/s] 10−1

σηSRP [km/s2] 10−10

σηR [km/s2] 10−10

Tab. 2: Spacecraft parameter for the Earth-Mars trans-
fer

As [m2] m [kg] CR [-]

0.32 24 1.2

spots, is:

R =
[

0.42 0
0 0.52

]
[px2] (14)

The measurement uncertainties have been found though
the analysis carried out on the performance of the image
processing algorithm with OSI in the loop[10].
Figures 5 and 6 show the absolute values of the posi-
tion and velocity errors, respectively. At the end of the
considered leg, the accuracy in position and velocity es-
timation is 10277 km and 2.13 m/s, respectively. The
time required to run a single filter call is 0.2 s.
In [1], the position and the velocity of the spacecraft is
estimated with a 3σ accuracy of about 4467 km and 0.97
m/s. The average time required to run one filter call is
0.05 s. With OSI in the simulation loop, the degrada-
tion in performance is strictly tied to the uncertainty
introduced during the calibration of the optical facility
and to the apparent screen pixel size. Using a more res-
olute screen with the same optical device would enhance
the VBN algorithm performance and lower the estima-
tion error, as the calibration error in arcsec would be
minimized. This will be evident in the following section.
While the navigation filter performance in this simula-
tion is conservative compared to a real-world scenario
where the same camera is used without additional cal-

https://www.alliedvision.com/en/camera-selector/detail/prosilica-gc/1350/
https://www.alliedvision.com/en/camera-selector/detail/prosilica-gc/1350/
https://cdn.alliedvision.com/fileadmin/content/documents/products/accessories/lenses/Schneider/Data_sheet/1001957_Xenoplan_1.4-17.pdf
https://cdn.alliedvision.com/fileadmin/content/documents/products/accessories/lenses/Schneider/Data_sheet/1001957_Xenoplan_1.4-17.pdf
https://cdn.alliedvision.com/fileadmin/content/documents/products/accessories/lenses/Schneider/Data_sheet/1001957_Xenoplan_1.4-17.pdf
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Fig. 5: Position error profiles with OSI and Raspberry
Pi in the simulation loop

Fig. 6: Velocity error profiles with OSI and Raspberry
Pi in the simulation loop

ibration errors, it underscores the filter robustness in
the presence of unmodeled errors such as camera mis-
alignment, which can offset the detected location of the
celestial body from its nominal position.

5.2 Validation with RETINA and Raspberry
Pi

RETINA, shown in Fig. 7, is an optical test bench
conceived in the framework of the EXTREMA project,
whose architecture and design process has been outlined
in [31, 11]. The facility implementation was inspired by
the variable-magnification optical stimulator detailed in
[32]. Differently from OSI and other fixed magnifica-
tion facilities present in literature [23, 26, 24, 25], where
the collimator focal length is precisely chosen to ensure
the matching between testing hardware and screen FoV,
RETINA is featured by a multiple corrective optics that

guarantees an enhanced versatility in hardware valida-
tion. By coupling RETINA, with the Raspberry Pi, the

Fig. 7: RETINA test bench

experiment of the EXTREMA Pillar 1 is performed. Ex-
periment 1 is a building block for the ESH.
For comparison sake, the 100-sample MC run is per-
formed on the same scenario and by exploiting the same
initial state uncertainties presented in Sec. 5.1, where
the algorithm performance has been tested with OSI in
the loop.
In this case, the measurement error covariance matrix
is:

R =
[

0.452 0
0 0.452

]
[px2] (15)

The results of the MC runs are reported in Figs. 8 and
9. The blue solid lines represents the 100-sample er-
ror profiles, whereas the black dashed lines are the 3σ

filter covariance bounds. At the end of the 100 days,
the position and velocity errors are computed with a 3σ

accuracy of about 5491 km and 1.23 m/s, respectively,
which mirrors the results obtained in [1]. The mean
CPU time required to call the navigation filter on the
Raspberry Pi is 0.31 s. The achieved accuracy in state
estimation is higher than the one obtained by exploiting
OSI images. This is due to the fact that the error intro-
duced by the facility calibration step is about half than
the one introduced by OSI, i.e, about 20 arcsec versus
50 arcsec, respectively. As consequence, the estimation
error is about half the one obtained with OSI in the
loop. This demonstrates that the adoption of a screen
with a smaller apparent angular size, which introduces
a smaller deviation on the observable positions, makes
the filter achieve better performance.
In both simulations with HIL, the robustness of the VBN
algorithm in handling unmodeled errors, such as camera
misalignment, which can shift the detected position of
the celestial body from its nominal location has been
demonstrated. Moreover, the VBN algorithm has been
assessed to be compatible with a miniaturized COTS
processor.

5.3 Validation with Real Sky-Field Images
To perform a step further in the assessment of the navi-
gation performance, the IP is tested on real raw images
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Fig. 8: Position error profiles with RETINA and Rasp-
berry Pi in the simulation loop

Fig. 9: Velocity error profiles with RETINA and Rasp-
berry Pi in the simulation loop

taken from the ground. A preliminary open-sky cam-
paign has been carried out where various targets with
different exposure times have been imaged. The adopted
optical device is the RETINA camera (see Sec. 5.2) cou-
pled with two lenses of 25mm and 50mm focal length1.
The photos were taken with an aperture of F/4.
The true orientation of the spacecraft has been evaluated
through identification of stars in the image by exploiting
the tool Astrometry.net [33].
The pipeline has been tested on two different portions
of the sky, one with Jupiter and the other with Orion
constellation.

1https://www.edmundoptics.com/p/
25mm-c-series-fixed-focal-length-lens/16528/, Last
Visited in August 2024

5.3.1 Orion Constellation

In this scenario, the pipeline is tested on images with-
out planets, specifically validating the most crucial step
of the IP algorithm: attitude determination. The LIS
mode of the IP pipeline is applied to Figs. 10 and 11,
whose main features are outlined in the respective cap-
tions. In Fig. 10, the reference stars employed to com-
pute the true orientation are Betelgeuse (Be), Alnilam
(Am), and Alnitak (Ak).
The orientation errors along the pointing axis and
the orthogonal axes to the pointing direction are 234
arcsec and 78 arcsec, respectively. Better results can
be obtained by calibrating the camera before the
application of the IP. Indeed, in this way, the real
camera calibration matrix and the optical distortion
model would be known and could be used inside the
IP. In Fig. 10, the crosses represent the retroprojection
of the catalog for the reference stars. Conversely, the
squares are the extracted centroids of the reference stars.

The same procedure is adopted for Fig. 11 to compute
the true camera orientation. In this case, Orion 51 is
exploited instead of Betelgeuse. The LIS mode is acti-
vated, which results in attitude determination errors of
5 arcsec and 497 arcsec along the cross-boresight and
boresight directions, respectively.

Fig. 10: Real sky-field scenario. f = 25 mm, FoV =
[16◦ × 12◦], Texp = 1 s. Credits: Fabio Ornati

Eventually, Fig. 12 shows a close-up of Betelgeuse. The
diffraction effect of the camera iris is clearly visible.
This consists of an unmodeled optical behavior as it is
not considered inside the image simulator. Therefore,
the pipeline was not been tested in presence of it when
synthetic images were adopted. Despite diffraction and
other noise sources, the IP algorithm successfully deter-
mines a correct orientation, confirming its robustness.

https://www.edmundoptics.com/p/25mm-c-series-fixed-focal-length-lens/16528/
https://www.edmundoptics.com/p/25mm-c-series-fixed-focal-length-lens/16528/
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Fig. 11: Real sky-field scenario. f = 50 mm, FoV =
[8◦ × 6◦], Texp = 0.1 s. Credits: Fabio Ornati

Fig. 12: Close-up on Betelgeuse. The green square rep-
resents the centroids of the image, whereas, the red cross
is the retroprojection of the catalog

5.3.2 Jupiter

In this scenario, the IP is tested with Jupiter in the im-
age. This time the recursive mode is applied to evaluate
the camera orientation. Specifically, a perturbation up
to 600 arcsec applied to the nominal attitude is admissi-
ble for the determination of a correct attitude solution.
Figure 13 shows the results. Identified stars are marked
with white squares, while the planet is denoted with a
green square. Figure 14 provides a closer view of Jupiter,
revealing two of its moons. Here, it is clearly visible the
diffraction effect due to the camera iris. Additionally,
stray lights caused by the proximity of the Moon to the
camera FoV are evident in the upper image portion.

For this scenario, the LIS mode did not converge to any
attitude solution due to the limited number of stars in
the image, which are obscured by stray light. Moreover,
the majority of these stars are located near the edges of
the image and therefore heavily affected by optical dis-
tortions.
Anyway, the IP is demonstrated to be robust in the
planet identification even when various unmodeled er-
rors sources, such as stray-lights from external bodies
and optical effects, are present in the image.

Fig. 13: Real image with identified stars and Jupiter in
reverse colors. f = 25 mm, FoV = [16◦×12◦], Texp = 0.5
s. Credits: Fabio Ornati

Fig. 14: Close-up on Jupiter.

6 Conclusion and Open Points

The performed HIL simulations demonstrated the ro-
bustness of the filter in managing unmodeled errors from
optical devices and its compatibility with a miniaturized
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COTS processor. As a result, the overall validation with
representative hardware was deemed successful, allowing
the navigation algorithm to achieve TRL 3.
To advance further, several activities need to be per-
formed. Initially, space-grade processors, such as Zed-
board1 and LEON platforms2, should be utilized to
evaluate the feasibility of the navigation algorithm. A
preliminary assessment using the Zedboard has already
been conducted, yielding promising results. However,
further testing is required to complete the validation.
From the optical facility point of view, the camera
adopted in the optical facility should be calibrated to
decouple the deformation applied by this latter from the
one due to the optical facility, making possible to com-
pensate solely the effects due to the presence of the test
bench.
Once the algorithm is deployed in a laboratory environ-
ment with space-graded hardware, it would achieve TRL
4. Subsequently, an open-sky testing campaign that an-
alyzes the performance of the complete VBN algorithm
should be conducted to further mature the software and
elevate it to TRL 6. Another option to rapidly advance
the TRL scale may involve utilizing images from the re-
cent in-flight demonstration [34], although these are cur-
rently not publicly available.
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