

Supplementary Materials

Reduced Graphene Oxide/Waste-Derived TiO₂ Composite Membranes: Preliminary Study of a New Material for Hybrid Wastewater Treatment

Andrea Basso Peressut ^{1,*}, Cinzia Cristiani ¹, Giovanni Dotelli ^{1,*}, Anna Dotti ¹, Saverio Latorrata ¹, Ana Bahamonde ², Antonio Gascó ³, Daphne Hermosilla ³ and Riccardo Balzarotti ⁴

- ¹ Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
- ² Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Calle de Marie Curie 2, 28049 Madrid, Spain
- ³ Departamento de Ingeniería y Gestión Forestal y Ambiental, Universidad Politécnica de Madrid, Calle de José Antonio Novais 10, 28040 Madrid, Spain
- ⁴ Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Via la Santa 1, 6962 Lugano, Switzerland
- * Correspondence: and reastef ano.basso@polimi.it (A.B.P.); giovanni.dotelli@polimi.it (G.D.)

Figure S1. Metal adsorption procedure.

Figure S2. Structural formula of Imidacloprid®.

Figure S3. Experimental setup of photocatalysis tests.

Figure S4. Particle size and cumulative distribution curves of (**a**) Degussa P25 TiO₂ and (**b**) Tionite.

Element	Amount (%)	Element	Amount (mg kg ⁻¹)
Al in Al ₂ O ₃	2.99	As	2.30
Ca in CaO	12.70	В	44
C in CO ₂	29.70	Ba	482
Fe in Fe ₂ O ₃	2.48	Be	< 0.01
K in K ₂ O	0.12	Cd	< 0.01
Mg in MgO	3.00	Co	< 0.01
P in P ₂ O ₅	< 0.01	Cu	61
Si in SiO ₂	16.50	Hg	0.27
Ti in TiO ₂	30.10	Мо	< 0.01
Mn in MnO	0.34	Ni	12
S in SO ₃	9.30	Pb	0.93
Cr	0.01	Sb	0.75
V	0.14	Se	0.28
Cl	< 0.01	Sn	< 0.01
		Zn	60

Table S1. Chemical composition of Tionite, as supplied by Opigeo S.r.L.

Figure S5. Raman spectra of Degussa P25 TiO₂ and Tionite in powder form, as well as of rGO, rGO–TiO₂, and rGO–TIO membranes.

Figure S6. UV-Vis diffuse reflectance spectra of Degussa P25 TiO₂ and Tionite in powder form, as well as of rGO, rGO–TiO₂, and rGO–TIO membranes: (**a**) absorbance versus wavelength, (**b**) transformed Kubelka–Munk function versus light energy.

Membrane		Elements (%wt)								
		С	0	S	Ti	Al	Si	Fe	Cu	
rGO	pristine	61.34	38.14	0.52	-	-	-	-	-	
	after Fe	65.11	34.53	0.25	-	-	-	0.11	-	
	after Cu	63.84	35.42	0.42	-	-	-	-	0.31	
rGO-TiO2	pristine	29.75	37.43	0.23	32.60	-	-	-	-	
	after Fe	24.66	39.82	0.26	33.95	-	-	1.31	-	
	after Cu	33.33	41.20	0.26	24.48	-	-	-	0.72	
rGO-TIO	pristine	53.89	39.00	0.37	5.06	0.32	1.36	-	-	
	after Fe	57.64	33.96	0.51	4.78	0.35	1.54	1.22	-	
	after Cu	56.03	34.68	0.44	5.96	0.35	1.37	-	1.18	

Table S2. Membranes composition as measured by EDX spectroscopy.

Figure S7. EDX spectra of rGO (**left**), rGO–TiO₂ (**middle**), and rGO–TIO (**right**) membranes: (**a**) pristine state, (**b**) after Fe capture, and (**c**) after Cu capture.

Figure S8. Chemical speciation in (**a**) iron nitrate and (**b**) copper nitrate solutions, computed as a function of pH by the Hydra-Medusa software.

Figure S9. Secondary-electrons SEM pictures of rGO (**left**), rGO–TiO₂ (**middle**), and rGO–TIO (**right**) membranes: (**a**) pristine state, (**b**) after Fe capture, and (**c**) after Cu capture.