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Truck-based drone delivery system: An economic and environmental 
assessment 
 

Innovative solutions for last-mile delivery have sparked great interest among consumers and logistics 

operators. The combination of new technologies with existing ones can lead to new possible last-

mile delivery configurations, among which truck-drone joint delivery is one of the most promising. 

This paper evaluates the environmental and economic sustainability of a last-mile delivery solution 

involving electric trucks equipped with drones, and it provides a comparison with traditional 

logistics systems. The comparative life cycle assessment methodology is used to quantify the 

greenhouse gas emissions per parcel delivered. The total cost of ownership methodology is adopted 

for the economic analysis. Results suggest that the truck-drone alternative leads to significant 

emissions reductions, while its cost performance is primarily affected by the drone automation level. 
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1 Introduction 

Last-mile logistics is developing fast, driven by the growth of B2C e-commerce (Lim et al., 2018). 

The advent of new technologies, especially automated solutions (Joerss et al., 2016), may enable the 

disruption of the industry. Innovations will allow logistics operators to meet new customers’ 

requirements, especially regarding delivery speed and reliability. They will simultaneously reduce 

costs, which is particularly important due to the industry’s low operating margins (Allen et al., 2018). 

Drones could be among the first innovative technologies to disrupt last-mile logistics, and they are 

expected to be employed locally, mostly in rural and suburban areas (Joerss et al., 2016). However, 

future adoption of large-scale drone delivery will be influenced by technology reliability, companies’ 

business models, consumer acceptance, and regulation (Simoudis, 2020). Moreover, among barriers 

to adoption, social, political, and legal challenges are currently the most critical (Sah et al., 2020). The 

legal challenges, in particular, have historically been limitation factors for the adoption of automated 

vehicles (Hoffmann and Prause, 2018). In 2019, the European Union issued—through Regulation 

2019/947 and Regulation 2019/945—new directions and guidelines specifically for drones. The new 

regulatory framework provides detailed requirements that drones and remote pilots must abide by 

(e.g., ensure that the drone equipment is in good conditions, keep the relevant air traffic service unit 

updated, discontinue a flight in case of emergency). Under these requirements, delivery drones are 

allowed to fly beyond the visual line of sight (BVLOS) of the remote pilot after a preliminary risk 

assessment. However, current technological and legal constraints prevent fully automated drones 

from performing delivery operations BVLOS. In this regard, the current artificial intelligence (AI) 

technology level may satisfy completely or partially the legal requirements (UNIO, 2020), allowing 

the automation of some steps of drone delivery operations in the future. 

Large companies such as Google, Deutsche Post DHL, UPS, and Amazon have already started 

small-scale experiments with drone delivery systems (Stolaroff et al., 2018). Due to drones’ limited 



operating range, the end customer is not reached directly from local distribution centers, but the 

logistics network typically includes intermediate depots, which could be either mobile or fixed 

(Kirschstein, 2020). A mobile depot is typically a delivery van equipped with drones (Campbell et al., 

2018), as in the truck-drone joint delivery test performed by UPS (UPS, 2017). DHL instead tested a 

drone delivery system with fixed depots. These depots enabled the automatic loading and unloading 

of parcels from the drones, and they acted as locker stations, allowing customers to collect and 

deposit parcels up to 2.2 kg directly at the drone delivery station (DHL, 2020). 

While previous research efforts mainly focused on drones departing from fixed depots, this research 

aims to analyze a delivery system where drones are launched from delivery trucks, which act as 

mobile depots, and compare it against traditional ground-based delivery alternatives—both 

traditional diesel vans (DVs) and electric vans (EVs). Environmental sustainability will be assessed 

by performing a comparative life cycle assessment (LCA) analysis (ILCD, 2010), while economic 

sustainability will be investigated by applying the total cost of ownership (TCO) methodology.  

The remainder of the paper is organized as follows: Section 2 discusses previous studies in drone 

last-mile logistics. Section 3 describes the delivery configurations under analysis, the system 

boundaries, the methods applied, and the data inventories for both the environmental and economic 

analyses. In Section 4, the results are presented together with the sensitivity analysis. Finally, Section 

5 displays the conclusion with a critical discussion of the results obtained. 

 

2 Literature review 

Researchers’ interests have been focused mainly on operational optimization issues, providing 

methods to find depot locations for drones (Aurambout et al., 2019) or routings for both trucks and 

drones (Campbell et al., 2018; Moshref-Javadi et al., 2020; Murray and Chu, 2015; Murray and Raj, 

2020). The literature review in the present work instead discusses studies proposing environmental 



and economic assessments in drone last-mile logistics. The selected literature for the environmental 

assessments is collected in Table 1. It evidences (i) which type of emissions are considered in the 

studies (utilization and/or production and disposal emissions), (ii) which vehicles’ emissions are 

compared (e.g., drones vs. DVs or EVs), (iii) gCO2e/delivery where available, and (iv) relevant notes 

about the papers.  

Table 1. Selected literature on environmental assessments in drone logistics 

 Drones Traditional ground-based vehicles 

Notes 
Paper 

Utilization 

emissions 

[gCO2e/delivery] 

Production/ 

disposal 

emissions 

[gCO2e/delivery] 

Utilization 

emissions 

[gCO2e/delivery] 

Production/ 

disposal 

emissions 

[gCO2e/delivery] 

Figliozzi 

(2017) 
160 160  NA 30  

Drone delivery configuration: drones from fixed depots; one-

to-one route for drones, while one-to-many routes for vans 

Type of drone: quadcopter 

Type of traditional ground vehicle: diesel delivery van 

Delivery scenario: NA 

LCA phases: from cradle to grave 

Stolaroff et 

al. (2018) 

1,264*  

645** 

Diesel: 1,015  

 

Electric: 943  

Drone delivery configuration: drones from fixed depots 

Type of drone: quadcopter and octocopter 

Type of traditional ground vehicle: electric and diesel van 

Delivery scenario: urban (San Francisco, US) 

LCA phases: from cradle to grave (without considering 

drones production and recycling) 
*Value regarding “large” drone with maximum payload 8 kg 
**Value regarding “small” drone with maximum payload 0.5 kg 

 

Park et al. 

(2018) 

 

From 3.5 (urban) 

to 39 (rural) 

 

- 

Diesel: 

From 27 (urban)  

to 350 (rural) 

 

Electric: 

From 17 (urban) 

To 226 (rural) 

 

- 

Drone delivery configuration: drones from fixed depots 

(pizza restaurant since the authors analyzed a pizza delivery 

emissions) 

Type of drone: quadcopter 

Type of traditional ground vehicle: electric and diesel 

motorcycle 

Delivery scenario: urban (Yangcheon-gu, KR) and rural 

(Pyeongchang-gun, KR) 

LCA phases: use phase 

Kirschstein 

(2020) 

From 440* to 

1,300*  

 

 
*computed by the authors 

- 

Diesel:  

From 89* to 600* 

 

Electric: 

From 66* to 530* 

  
*computed by the authors 

- 

Drone delivery configuration: drones from fixed depots 

Type of drone: octocopter 

Type of traditional ground vehicle: diesel and electric van 

Delivery scenario: urban (Berlin, DE) 

LCA phases: use phase 

Yowtak et al., 

2020 

1,950* 

 
*computed by the authors 

- 

 

Diesel: 2,200* 

Electric: 830* 
*computed by the authors 

- 

Drone delivery configuration: drones from fixed depots 

Type of drone: octocopter 

Type of traditional ground vehicle: diesel delivery van 

Delivery scenario: urban (Ann Arbor, US), grocery delivery 

 

Figliozzi (2017) assessed the environmental impact of drones departing from a fixed depot using an 

LCA from cradle to grave. The study—comparing drones and DVs—concluded that DVs are the 

most eco-friendly means of delivery considering the emissions per kilogram transported and per unit 



distance. Drones can lead to an emission reduction compared to vans only when each van performs 

fewer than 10 deliveries per route. Moreover, the author highlighted the relevance of production 

phase emissions to the overall delivery system’s environmental footprint, particularly for drones due 

to the polluting disposal process of batteries. Similarly, Stolaroff et al. (2018) analyzed the life cycle 

environmental impact of a drone delivery system with multiple intermediate fixed local depots 

connecting a regional distribution center with the final customer. In this scenario, small drones—

with 0.5 kg payloads—generally lead to a reduction of CO2e emissions per package delivered (about 

600 gCO2e/delivery by drone compared to 1,000 gCO2e/delivery by electric truck and to 1,200 

gCO2e/delivery by DV). On the contrary, large drones—with 8 kg payloads—display higher 

emissions (about 1,300 gCO2e/delivery) compared to EVs or DVs. The analysis considered 

emissions from battery and fuels production as well as fuels combustion and electricity production 

required for transportation. Differently from Figliozzi (2017), warehousing emissions were included, 

but emissions from production of the vehicles—except for the battery—were not considered. In the 

end, the authors highlighted the relevance of the emissions caused by the network of intermediate 

depots and the impact of the local grid’s specific electricity-production emissions. Park et al. (2018) 

compared instead the emissions of a pizza-delivery system using motorcycles or drones, both 

traveling a one-to-one route, and focused on utilization emissions only. The study revealed that 

drones have the lowest global warming potential: a drone emits 3.5 gCO2e/delivery traveling 0.8 km 

in urban areas and 40 gCO2e/delivery traveling 8.83 km in rural areas. A similar conclusion has been 

obtained by Yowtak et al. (2020), who performed an LCA analysis of grocery deliveries, comparing 

traditional ground-based vehicles with drones departing directly from the grocery store. The analysis, 

considering a drone with a high mass payload (35 kg), was focused only on the utilization phase. The 

delivery system with drones displays lower emissions compared to DVs but higher emissions 

compared to EVs. Kirschstein (2020) provided a detailed analysis of drone energy consumption, 



considering all the phases of a drone’s flight (i.e., takeoff, level flight, hovering, and landing). The 

study showed that drone delivery using fixed depots does not have an advantage in terms of energy 

consumption over a traditional truck-based delivery system in most scenarios, especially in densely 

populated areas. Drone energy consumption ranges from 440 to 1,300 gCO2e/delivery, while DV 

and EV consumption ranges instead from 89 to 600 gCO2e/delivery and from 66 to 530 

gCO2e/delivery, respectively, making vans the less polluting system in most of the scenarios 

analyzed. 

Concerning economic sustainability, various papers have taken costs into account for the 

formulation of truck-drone routing optimization problems (Campbell et al., 2018; Chiang et al., 

2019; Dorling et al., 2017). Moshref-Javadi and Winkenbach (2021), in their review of the literature, 

highlighted the lack of comprehensive cost analyses of drone last-mile delivery systems, identifying 

only one study that addressed drone delivery economic viability (Sudbury and Hutchinson, 2016). 

Sudbury and Hutchinson (2016) estimated $0.33 per delivery without considering labor costs. A 

more detailed cost analysis was performed by Doole et al. (2020) considering both capital and 

operational expenditure. The authors considered several scenarios, leading to the cost for drone 

food delivery from restaurant to customer ranging from €0.4 to €2.51. The scenario analysis is 

needed since delivery drone technology is a novelty in the industry and both capital and operational 

costs are expected to fall once delivery drones gain a critical mass (Doole et al., 2020).  Furthermore, 

Campbell et al. (2018) argued that truck-drone economic sustainability depends on drones’ operative 

costs and that multiple drones per delivery truck further improve the system cost performance. 

Overall, previous research efforts mainly focused on drones departing from fixed depots. This 

research aims to analyze a delivery system where drones are launched from delivery trucks, which act 

as mobile depots, and compare it against traditional ground-based delivery alternatives—both 

traditional DVs and EVs. Environmental sustainability will be assessed by performing a comparative 



LCA analysis (ILCD, 2010), while economic sustainability will be investigated by applying the TCO 

methodology.  

 

3 Methods and data 

A detailed understanding of the underlying logistics system is a necessary preliminary step to 

compute the life cycle emissions and costs of any delivery system. The vehicles routing model and its 

main assumptions are first described in section 3.1. The outcome of the routing model is used for 

both the environmental and economic analyses. Afterward, the main methodological steps of the 

LCA and the TCO analyses are discussed separately. 

 

3.1 Underlying logistics system 

The vehicle routing model developed by Campbell et al. (2018) has been adopted to compute the 

number of daily deliveries performed and the distance covered by both trucks and drones. The 

model aims at finding the optimal swath that minimizes the total operative cost. The optimal swath 

w, computed using a continuous approximation technique, is the maximum distance perpendicular 

to the truck trajectory that can be traveled by the truck to reach a destination. Figure 1, taken from 

Campbell et al. (2018), shows a truck-drone delivery system with n, the ratio between the number of 

parcels delivered by drone and those delivered by truck, equal to 1. While Campbell et al. (2018) also 

considered systems with n greater than 1, and thus with multiple drones per each truck, this study 

assumes only one drone per truck, consistent with the current setup of the first real-life truck-drone 

delivery systems (UPS, 2017; Workhorse, 2020). Customers are distributed randomly in the delivery 

area, with a density δ. Truck and drone are assumed to perform deliveries in parallel—in particular 

the truck follows the L-shape trajectory displayed in Figure 1, while the drone’s trajectory follows a 



straight line between the starting point and destination. Appendix A displays the formulas obtained 

from Campbell et al. (2018) as well as the input parameters’ description and values.  

 

Fig. 1. Truck and drone trajectories (Campbell et al., 2018) 

The key assumptions for the analysis are the following: 

• The delivery service by both truck and drone has 300 working days per year, with one daily 

shift lasting 7.5 hours. 

• Every parcel weighs 2.5 kg, which covers up to 86% of the products delivered by Amazon 

(Amazon, 2019). 

• All deliveries can be performed either by truck or by drone. 

• Each destination corresponds to one delivery.  

• A drone can only be launched and retrieved at two consecutive truck delivery stops 

(Campbell et al., 2018). 

• Delivery time windows are not considered. 

• For the internal combustion engine truck, no refueling time is considered.  

• The marginal fixed time for a delivery with truck is set to 180 seconds.  

• Hovering time is set to 30 seconds, as in Xu (2017). Hovering time is defined as the time 

spent by the drone remaining stationary in the air before landing at the customer destination. 



Eventually, the drone can also hover while waiting for the truck, but this is defined as drone 

waiting time, which is discussed in section 3.2.3.1. For the electric truck, one hour of battery 

fast-charging time is considered when the amount of daily energy required under that 

specific scenario is larger than the truck battery capacity. 

• The delivery speed is constant (Campbell et al., 2018). 

• Vehicle trajectory is modeled according to Campbell et al. (2018)—see Figure 1. 

• A drone trajectory follows a straight line from origin to destination, as in Campbell et al. 

(2018) and Kirschstein (2020).  

 

3.2 Life Cycle Assessment  

After defining the goal and scope of the LCA (section 3.2.1), each phase accounted for in the 

assessment will be discussed. In the end (section 3.2.4), the methodology for the emissions’ 

allocation to the functional unit will be explained. 

 

3.2.1 Goal and scope 

The comparative LCA methodology was used to compare the performance of the truck-drone joint 

delivery system with a traditional truck delivery system. The former system employed electric trucks, 

while the latter relied on both internal combustion engine and electric tucks. The LCA reference unit 

was the single delivered package, as in Stolaroff et al. (2018). The LCA system boundary was a 

“cradle to grave,” covering the whole life cycle of the assets used in the distribution system (ILCD, 

2010).  

The elements included in the LCA, ranging from the input of raw materials to the assets’ recycling 

phase, are represented graphically for the three alternatives under analysis in Figure 2. In particular, 

Figure 2 highlights the two main sections of the analysis: the production and recycling phase and the 



use phase. The unit processes were assessed in terms of their global warming potential, measured 

with the amount of greenhouse gas emissions—more specifically kg of carbon dioxide equivalent 

(CO2e). The LCA inventory included (i) secondary data; (ii) primary data from an interview 

conducted with one of the main Italian producers of drones, which provided information about the 

drone’s technical specifications, costs and performances; (iii) the outcome of quantitative models 

such as the routing model (in section 3.1 and Appendix A) and the energy consumption model for 

trucks and drones (in section 3.3.3). All data sources are disclosed, and the variables subjected to the 

sensitivity analysis are listed and explained. 

 

 

Fig. 2. LCA system boundaries 
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3.2.2 Production and Recycling Phase 

To compute the emissions caused by the production phase, we adopted the models of Yang et al. 

(2018) and Figliozzi (2017). Regarding the emissions caused by the truck body, Yang et al. (2018) 

estimated them as: 

CO2etruck= etruck ∙ mbody truck (1) 

where etruck is the emission coefficient for truck body parts [kg CO2e/kg] and mbody truck is the curb 

vehicle weight [kg]. Similarly, Figliozzi (2017) estimated the kg of CO2e caused by drone production 

as: 

CO2edrone = edrone ∙ mbody drone (2) 

where edrone is the emission coefficient for drone parts [kg CO2e/kg] and mbody drone is the weight of 

drone without payload and battery [kg].  

For the electric vehicles, mbody truck was computed as the difference between the tare weight of the 

vehicle and the battery weight: 

mbody truck = mtare - zbatt ∙ cap
batt 

 (3) 

where zbatt is the battery energy density [kg/KWh] and capbatt  is the nominal battery capacity [KWh].  

A similar approach was used by Yang et al. (2018) and Figliozzi (2017) to estimate the impact of 

battery production, using the following formula: 

CO2ebattery = ebattery∙  cap
battery 

∙ nbatteries (4) 

where ebattery is the emission coefficient for battery production, capbattery refers to the nominal battery 

capacity, and nbatteries refers to the number of batteries per vehicle. In particular–as emerged from the 

interview–two batteries are often employed in drones to increase the flight range. Following 

Stolaroff et al. (2018), we computed the usable battery capacity considering the nominal capacity and 



the safe depth of discharge. Vehicles’ weight and battery size were taken directly from the interview 

and from the truck manufacturers’ websites, more specifically, from the WorkHorse C1000 and 

Mercedes-Benz Cargo 4500 technical specifications (Workhorse, 2020; Mercedes-Benz, 2020). All 

the production phase input values can be found in Appendix B and Appendix C.  

The end-of-life phase of vehicles and batteries may lead to significant CO2e savings when the 

appropriate recycling processes are put in place. Emissions savings from recycling are computed as a 

fraction of the production phase emission (Yang et al., 2018). For instance, as reported in Appendix 

B, the percentage of Li-ion battery production emissions savings due to recycling is estimated to be 

19% (Sullivan and Gaines, 2012). 

 

3.2.3. Use Phase 

To assess the emissions caused during the use phase, it was necessary to compute the vehicles’ 

energy consumption. Section 3.2.3.1 and 3.2.3.2 respectively explain emissions of the drone and 

truck use phases.  

 

3.2.3.1 Drone  

Following Kirschstein (2020), we determined energy consumption by the sum of the energy demand 

for each step of the drone delivery journey (each notation is available in Appendix C). 

EUAV(dd,vd,m)=
ttol∙(P

UAV(m,vd,γ
tol

)+ttol∙P
UAV(m,vd,-γ

tol
))+tlf∙P

UAV(m,vd,0)+(t
hover

+tw)∙PUAV(m,vwind,0)

εcharging ∙εtransmission∙εengine
+

(2ttol+tlf+thover+tw)∙Pint  

εcharging
 

(5) 

The first addend of equation 5, adapted from Kirschstein (2020), represents the energy consumed 

during takeoff, landing, level flight, and hovering, while the second addend of the equation 

computes the energy consumed by the internal electronics devices. Both hovering before landing at 



the customer destination and waiting for the truck were considered. The average drone waiting time 

before being retrieved by the truck was computed as the difference between the average drone flight 

duration and the average time between two consecutive stops by the truck. PUAVrefers to the power 

demand of the drone and was computed for each of the four phases of a delivery flight: (i) takeoff, 

(ii) level flight, (iii) hovering, and (iv) landing (Kirschstein, 2020). The power demand, as in 

Langelaan et al. (2017), can be derived by summing the power needed to counteract the air drag 

(Pair) and the rotors’ air drag (Pprofile) as well as the power needed to lift the drone (Plift), to climb 

(Pclimb), and to keep the internal electronics devices functioning (Pint).  

PUAV= Pair + k ∙ Plift+ Pprofile+ Pclimb + Pint   (6) 

The detailed formulas to compute PUAV are displayed in Appendix C. (For an extensive study on 

drone energy consumption, see Kirschstein, 2020, and Langelaan et al., 2017.) 

All the input values–available in Appendix C.3–refer either to Kirschstein (2020) or to the the 

information gathered during the interview with the drones’ producer. Specifically, the values of 

drone weight and flight speed estimated in Kirschstein (2020) were not confirmed by the drone 

manufacturer. 

As emerged from the interview, the overall drone weight considered in this study is given by: 

(i) the drone tare without the battery, 8 kg (while Kirschstein (2020) estimated it to be only 2 kg). It 

should be noted that drone specifications are taken from a producer specialized in drones for 

photography. Despite the payload similarities, the tare of the delivery drone could be slightly higher 

due to further adaptaptions. 

(ii) the total weight of the batteries, 6.15 kg, computed as 2 batteries of 0.8 kWh each, with a density 

of 0.26 kWh/kg (while Kirschstein (2020) estimated it to be 10 kg, for a battery capacity of 1.5 kWh) 

(iii) the payload, 2.5 kg from the truck to the customer and 0 kg on the way back to the truck (in 

accordance with Kirschstein,2020). 



Regarding the average speed, Kirschstein (2020) assumed a constant speed in all phases of a drone’s 

flight, while in this research the drone speed during takeoff and landing is assumed to be lower than 

the speed during level flight, in accordance with the technical specifications of the octopeter under 

analysis. The value of the level flight speed has been set to 17 m/s (61 km/h), while the 

landing/takeoff speed is on average 2.3 m/s (8.3 km/h). Four possible wind directions were 

considered in the model, encompassing cross-, head-, and tailwind conditions. Crosswind and 

constant headwind conditions worsen drone energy requirements (Stolaroff et al., 2018; Kirschstein, 

2020), impacting the drone speed and the power to counteract the drag force. Since during a real-life 

drone delivery journey, drone flight path and wind direction are continuously changing, each 

scenario can be considered equiprobable. The average drone energy consumption, as well as the 

average flight duration, was computed by averaging the results for each of the four wind directions 

shown in Figure 3. 

 

Fig. 3. Possible wind directions representation 

 

 

3.2.3.2 Vehicle  

Following Kirschstein (2020), we started the ground vehicles’ energy consumption model from the 

computation of the vehicle power demand, as for the drones.  



PM = Pair+Proll+Pgrade+ Pinert  (7) 

Pair stands for the power to counterbalance the air drag force, Proll the rolling resistance, Pgrade the 

gravity force in case of sloped road, and Pinert the inertial force. 

The model estimated the fuel consumption for internal combustion engine vehicles (DV) and energy 

consumption of electric vehicles (EV). Kirschstein and Meisel (2015) approximated the engine 

transmission efficiency for a DV as: εDV = 0.9 - 0.72-0.077∙v1.41
. Moreover, they provided an expression 

to compute the fuel consumption given constant speed, fuel consumption rates, acceleration 

coefficients, and nominal engine power. 

FDV(dt,vt,n
acc) = 

dt

vt
∙fidle+

ffull-fidle

εDV(vt)∙P
PM(vt,dt,n

acc)  (8) 

 

Regarding EVs, the overall engine efficiency was given by the product of the charging efficiency, 

transmission efficiency, and engine efficiency: εcharging∙εtransmission ∙εengine . Given the power demand 

and the overall efficiency, the resulting energy consumption for EVs was given by: 

EEV(𝑑𝑡,𝑣𝑡,nacc) =  
d

v
∙

PM(v,𝑑𝑡,nacc)

εcharging ∙εtransmission ∙εengine
 (9) 

Van weight affects the amount of power required during delivery operations. Since the number of 

delivered parcels changes significantly among the alternatives, in this study the average van weight 

was computed as mtare+
Qtd∙mpayload

2
, where Qtd s stands for the sum of the deliveries done by truck and 

drone (if present) and mpayload is the mass of the single delivery.  

Losses in transmission and distribution, expressed as % of the electricity output lost due to 

inefficiency along the grid, should be taken into account. The value of this parameter was retrieved 

from the World Bank database (World Bank, 2018) and refers to the Italian electrical grid. It is 

worth noting that the losses along the electric grid do not differ significantly among European 

countries, where most of the countries have losses ranging between 5% and 8% of the output. 



Finally, fuel emissions were obtained by combining well-to-tank (WTT) emissions, caused by oil 

extraction, refining, and transport, and tank-to-well emission (TTW), related to the burning of oil to 

feed the combustion engine in the truck.  

 

3.2.4 Allocation to the functional unit 

In an LCA analysis, production emission values for trucks, drones, and batteries must be allocated to 

the chosen functional unit (ILCD, 2010), which is the single package delivered by either truck or 

drone.  

Concerning ground vehicles’ and drones’ production phases, we allocated emissions to single 

deliveries by dividing the overall production emission value by the total number of deliveries during 

the vehicle’s life cycle in each specific scenario.  

Regarding batteries’ production emissions, the allocation followed a three-step procedure. First, we 

computed the emission per kWh used by dividing the overall production emission by the maximum 

number of cycles before a battery’s end of life. The battery life cycle is affected by the degradation of 

the battery itself, measured by the State of Health (SOH), an indicator of the battery storage 

capabilities compared to the original conditions. According to Pelletier et al. (2017), a battery’s 

operating conditions, charging operations, and environmental conditions affect the maximum 

number of cycles. The emissions caused by cycles were then divided by the battery usable capacity to 

obtain the emissions caused by each kWh used by the vehicle, as shown in the formula below: 

Emissions per kWh used =
GHGbattery

ncycles∙cap
battery

 (10) 

where ncycles is the maximum number of cycles. 

Second, the emissions per working shift were computed by multiplying the value obtained in the 

previous step by the sum of daily energy consumption of the drone and the EV.  



Third, the emissions per package can be found by dividing daily emissions by the number of 

packages delivered in a day. The LCA time span is 10 years, which is the average useful life span of a 

delivery van (Figliozzi, 2017). Drones’ and batteries’ residual useful lives at the end of the LCA time 

span were taken into consideration for the production phase emissions computation.  

Finally, use phase emissions were allocated to single parcels by dividing the daily energy 

consumption of the delivery system by the combined number of parcels delivered by the truck and 

drone. 

 

3.3 Total cost of ownership 

Following the TCO approach employed by Yang et al. (2018), we categorized the relevant cost items 

throughout the assets’ useful lives into (i) purchasing costs, also referred to as capital expenditure 

(CAPEX); (ii) operational expenses (OPEX); and (iii) end-of-life residual value. The cost of capital, 

which affects the discounted cash flows, was assumed to be 7%, obtained by averaging the weighted 

average cost of capital (WACC) of Amazon, Alphabet, and UPS (gurufocus.com, 2020).  

In accordance with Doole et al. (2020), for any cost items expected to change in the future, we 

provided conservative, optimistic, and future values. These three scenarios were used to assess the 

results’ robustness in the sensitivity analysis. The TCO value refers to the overall cost attributable to 

a delivery van, with or without a drone, throughout its life cycle. As for the LCA, to increase 

comparability between alternatives characterized by a different capacity in terms of daily deliveries, 

we allocated the overall TCO to the single delivered parcel. 

 

3.3.1 Purchasing cost 

The specific DV chosen for the analysis was the Mercedes-Benz Sprinter, whose price can be found 

on the manufacturer’s website. Since the price of Workhorse C1000, the EV chosen for the analysis, 



is not publicly available online, we estimated its cost by looking at comparable trucks, and it was 

assumed to decrease in the optimistic and future scenarios, reaching a cost value similar to the DV. 

Consistently with the LCA, the TCO analysis adopted a model of octocopter adapted to perform e-

commerce last-mile delivery. As emerged from the interview, the drone cost is estimated to be about 

€ 20,000.  A reduction of the average drone price of 50% in the optimistic scenario and 75% for the 

future scenario was assumed (Doole et al., 2020). Van battery cost was estimated by taking into 

consideration the Workhorse C1000 battery capacity and the battery cost per kWh, retrieved from 

Doole et al. (2020). Values are collected in Appendix E. 

 

3.3.2 Operational expenses 

Operational expenses are the costs occurring during the delivery system business operations. The 

cost categories considered in the analysis were taken from Yang et al. (2018) and Doole et al. (2020), 

as shown in Table 2. 

Table 2. Operative expenses cost categories 

 

(i) Fuel cost and electricity cost refer to Italy (MISE, 2020). The overall yearly fuel cost was obtained 

by multiplying the fuel cost by the daily average km traveled and by the number of workdays in a 

year. The cost of electricity was computed in the same way, considering the kWh consumed instead 

of the km traveled.  

Parameter Yang et al. (2018) Doole et al. (2020) 
Considered in this 
analysis 

(i) Fuel and Electricity Cost x x x 
(ii) Drone Battery Cost x x x 
(iii) Maintenance Cost x x x 
(iv) Insurance Cost  x x 
(v) Labor Cost x x x 
(vi) Airspace Cost   x x 



(ii) Contrary to the van battery cost, the cost for the drone battery was classified as OPEX since 

batteries are to be changed more often, even more than once per year. Drone battery cost was 

obtained by the following formula: 

Yearly battery cost = battery cost per kWh used ∙ daily energy consumption ∙ number of workdays per year  

(11) 

(iii) DVs’ maintenance cost rate [€/km] was taken from Yang et al. (2018), who referred to a study 

authored by van Vliet et al. (2010). Following Yang et al. (2018), we assumed the EV maintenance 

cost to be half that of DVs due to the lack of transmission and engine maintenance and a generally 

lower number of components (Siragusa et al., 2020). Yearly maintenance cost can be computed by 

multiplying the maintenance cost rate by the yearly kilometers traveled by truck. 

(iv) Drones’ and vans’ yearly maintenance and insurance cost values were obtained from the 

interview and IVASS (2020), respectively. 

(v) The labor cost was computed starting from the average hourly salary for logistics operators in 

Italy (Repubblica, 2016). Drone pilots, together with delivery truck drivers, were assumed to belong 

to the category of logistics operators.  

(vi) Finally, the TCO analysis included a possible future airspace cost for drones, which can be seen 

as a form of taxation aimed at controlling sky congestion. Conservative, optimistic, and future 

scenarios were considered to estimate the value of the hourly airspace cost, as in Doole et al. (2020). 

The airspace cost was computed as follows:  

Yearly airspace cost = hourly airspace cost ∙ number of working hours per day ∙ number of workdays per year (12)  

OPEX cost values are given in Appendix F. 

 

3.3.3 Residual value 



Yang et al. (2018) argued that the end of life of vehicles’ bodies and batteries should be considered a 

source of revenue since materials can be recycled and some pieces resold as spare parts. This 

research, following Yang et al. (2018), assumed a recovery rate of 5% of the initial cost for trucks’ 

bodies and batteries. The same recovery rate was assumed for drones. Asset residual value, similarly 

to the LCA end-of-life analysis, was considered for vehicles and batteries. 

 

4 Results and discussion 

During the interpretation phase, an extensive sensitivity analysis was performed. First, three 

scenarios were identified—namely, conservative, optimistic, and future. These scenarios combined 

the variables expected to change in the future: (i) the maximum number of battery charging cycles 

before battery end of life, (ii) the drone level of automation and consequently labor intensiveness, 

and (iii) the majority cost items, as in Doole et al. (2020). The battery life cycle directly impacted the 

LCA and TCO results since a shorter battery useful life increased the impact of battery cost and 

production emissions allocated to each delivery. According to Pelletier et al. (2017), for electric 

trucks with Li-ion cells batteries 1,000 cycles per battery can be assumed for a conservative scenario, 

2,000 for an optimistic scenario, and 4,000 for a future scenario. According to the interview, drones’ 

Li-ion battery lifecycles ranges from 500 cycles in the conservative scenario, to 800 and 1,000 cycle 

for the optimistic and future scenario, respectively. Concerning labor cost, a human pilot must 

monitor and guide the drone during all delivery operations in the conservative scenario. Conversely, 

in the optimistic scenario, AI manages the drone during takeoff and line-haul, but a pilot is needed 

during hovering and landing. Finally, in the future scenario, the drone is fully automated, and a 

human pilot is not needed.  

Concerning the delivery density, the sensitivity analysis encompassed two scenarios: one in a rather 

rural area with a density equal to 1 delivery/km2, and the second in a more suburban context with a 



delivery density of 20 deliveries/km2. A delivery density higher than 20 deliveries/km2 could reduce 

the distance between two consecutive delivery stops to less than 200 meters. At such a level of 

delivery density, the assumption of a single delivery per customer location may not hold since there 

can be multi-store buildings requiring more than one delivery. 

Two values for the drone utilization rate, expressed as the ratio between deliveries done by drone 

and ones done by truck, have been considered, following Campbell et al. (2018). They noted that 1 is 

the maximum value of the utilization rate since a drone cannot perform more deliveries than a truck 

due to the logistics system configuration. Indeed, the model assumes that a drone must be launched 

and retrieved at two consecutive delivery stops, while the truck is stationary. Moreover, Campbell et 

al. (2018) considered an intermediate value of 0.5, which means that a drone performs half of the 

deliveries done by a truck.  

An additional variable for the sensitivity analysis is the truck acceleration frequency coefficient, 

which impacts the amount of energy consumed by the electric truck. According to Kirschstein 

(2020), this coefficient is affected by the type of road and traffic conditions. In medium traffic 

conditions, nacc is estimated to be 0.1, 1, and 4 in motorways, primary roads, and urban roads, 

respectively. In this study, LCA results were computed for two frequency acceleration coefficients: 

1.5 and 3. 

Another variable subjected to the sensitivity analysis was wind speed. Different values of wind speed 

were used in the sensitivity analysis—namely, 0 m/s (low wind speed scenario) and 12 m/s (high 

wind speed scenario) (Kirschstein, 2020).  

Finally, the amount of use phase emissions is affected by the electricity production mix since each 

production mix leads to a different amount of CO2e per kWh of electricity produced (see Appendix 

D). Two different electricity production mixes were considered: the French one and the German 

one. These electricity mixes were chosen because they differ significantly in terms of environmental 



impact. The French grid relies mainly on nuclear energy, which is less polluting than carbon (EEA, 

2018). The German electricity mix is more carbon-intensive, thus leading to high emissions per kWh 

produced (EEA, 2018).   

Relying on the model and input values, Table 3 shows the results of the vehicle routing, which will 

be the basis for the LCA and TCO. The data refers to the daily route of a truck (with and without a 

drone) in the conservative scenario assuming low wind speed and low traffic condition. 

 

Table 3.  Outcome of the routing, low wind speed and low traffic conditions 
 

Variable Comments Unit Values 
 

  1 customer/km2 20 customers/km2 

Tot. cust. Number of customers in the 
delivery area 

 - 3,000 60,000 

Drones per 
truck 

Number of drones per truck  - 0 1 1 0 1 1 

n Ratio between drone and truck 
deliveries 

 - 0 0.5 1.0 0 0.5 1.0 

w Swipe width km 1.7 2.0 2.2 0.4 0.4 0.5 

Daily T 
avail.  

If energy demand exceeds 
battery capacity, one hour 
charging is required 

h 7.5 7.5 7.5 7.5 7.5 7.5 

Qtd  Combined number of 
customers served by truck and 
drone  

 - 78.2 107.0 132.6 115.9 168.4 218.8 

Qt Number of customers served 
by truck 

 - 78.2 71.3 66.3 115.9 112.3 109.4 

Qd Number of customers served 
by drone 

 - 0 35.7 66.3 0 56.1 109.4 

dt 
Average distance between two 
consecutive destinations 
traveled by the truck  

km 1.15 0.95 0.82 0.26 0.21 0.18 

dd 
Average drone flight distance 
between two consecutive truck 
stops 

km 0 1.11 0.85 0 0.25 0.20 

tt Average truck traveling time 
between two consecutive 
destination 

s 129.9 106.4 92.6 29.0 23.8 20.7 



td 
Average drone flight traveling 
time between two consecutive 
truck stops 

s 0 112.8 98.0 0 62.3 59.0 

tw 

Drone waiting time (difference 
between the truck time between 
two consecutive stops and the 
drone one) 

s 0 0 0 0 0 0 

Tot dist.  Total truck route distance, 
including line-haul 

km 139.7 150.6 158.6 79.4 85.1 89.7 

 
 
 

4.1 Life cycle assessment results 

Figures 5, 6, 7, and 8 show the results, including the performance in terms of emissions per delivery 

of the different logistics alternatives, in the three scenarios with varying acceleration frequency 

coefficient, delivery density, and wind condition. In Figures 5 and 7, the German electricity 

production mix is assumed, while the French one is adopted for Figures 6 and 8. 

The outcome of the study shows that the truck-drone delivery system leads to significant savings in 

terms of CO2e per delivery regardless of delivery density, acceleration frequency coefficient, battery 

useful life duration, wind condition, and energy production mix. Nevertheless, the additional battery 

emissions for drones partially offset the gains obtained by the truck-drone system, especially in the 

conservative scenario, where batteries have the shortest useful life. Indeed, moving from a 

conservative scenario to a future scenario, EVs, with and without drones, become even more 

environmentally friendly.  As expected, EVs perform better if low-carbon-intensive electrics grids 

are used. Furthermore, the LCA analysis demonstrates that exploiting a drone up to the maximum 

utilization rate (n = 1) is environmentally more convenient than using the drone for a fraction of the 

potential drone deliveries. Figure 4 provides the system’s emissions breakdown, highlighting the 

relevance of truck use-phase emissions, which account for more than 60% of the overall emissions. 

Compared to traditional delivery, a truck equipped with drone has (i) lower use phase emissions, due 

to the route optimization enabled by the truck-drone delivery system, and (ii) lower production 



phase emission since more parcels can be delivered throughout a truck life cycle. Drone-related 

emissions are instead marginal, even for the alternative with the maximum drone utilization rate, due 

to the limited distance traveled by the drone. 

Overall, the production and recycling phase has a significant impact on the truck-drone life cycle 

emissions, often being the differentiating factor driving emissions reductions compared to ground 

vehicle delivery, as shown in Appendix H. Ground vehicles’ and drones’ energy consumption per 

unit of distance are primarily affected by traffic conditions and wind speed, respectively (see 

Appendix G.1 for more details). Appendix G.2 provides the use phase energy requirement per 

delivery for each logistics alternative, identifying delivery density and traffic condition as the two 

most impactful variables. Other variables, including wind speed, do not have a significant impact on 

the energy consumption per delivery.  

 

Fig. 4. Breakdown of LCA [gCO2/delivery] (conservative scenario, low wind speed, low traffic 
condition, low delivery density, high carbon intensive scenario) 
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The bottom right corner of Figure 5 shows the results assuming the German electricity production 

mix, high acceleration frequency coefficient, the most rural delivery area, and the highest wind 

speed. This can be considered the worst-case scenario for drones, since the German production 

energy mix is carbon-intensive and one of Europe’s most polluting in terms of kg of CO2e per kWh 

produced (EEA, 2018). Moreover, a rural delivery area, which makes the delivery route longer, 

together with a high acceleration frequency coefficient force the electric van to stop for up to 1 hour 

to recharge the battery. Indeed, the overall energy consumption for the truck exceeds the battery 

capacity only in this condition, and the battery charging time limits the number of parcels that can 

be delivered, worsening the LCA emission performance. Even in this scenario, the truck-drone joint 

system leads to a reduction of LCA CO2e of more than 10% compared to DVs.  

 

 

Fig. 5. gCO2/delivery with customer density of 1 customer/km2 (high carbon intensity scenario) 
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Fig. 6. gCO2/delivery with customer density of 1 customers/km2 (low carbon intensity scenario)  
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Fig. 7. gCO2/delivery with customer density of 20 customer/km2 (high carbon intensity scenario) 
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Fig. 8. gCO2/delivery with customer density of 20 customer/km2 (low carbon intensity scenario) 

 

4.2 Total cost of ownership results 

As in the LCA, the TCO results were assessed against the same sensitivity parameters as shown in 

Figures 10 and 11. The result interpretation highlights that the choice of the three scenarios—

conservative, optimistic, and future— and wind speed are the variables with the strongest impact on 

the variation among the different alternatives. The truck-drone joint delivery system is not 

economically beneficial in the conservative scenario leading to an increase in the last-mile delivery 

cost. Conversely, moving to the optimistic and future scenario, drones can lead to significant cost 

savings. Labor is the most relevant cost element, accounting for more than 65% of the overall cost. 

Economic savings from truck-drone delivery come mainly from the reduction of this cost item, due 

to the increased delivery capacity during the standard driver working shift, resulting in a more 

LOW wind speed HIGH wind speed

N
ac

c 
=

 1
.5

N
ac

c 
=

 3

Diesel Van (DV) Electric Van (EV) EV & one UAV n=0.5 EV & one UAV n=1 

0

100

200

300

400

500

Conservative Optimistic Future

0

100

200

300

400

500

Conservative Optimistic Future

0

100

200

300

400

500

Conservative Optimistic Future

0

100

200

300

400

500

Conservative Optimistic Future



optimal truck-filling rate. An exemplary cost breakdown is provided in Figure 9, showing the 

detailed cost items computed for one of the combinations of the various settings in the sensitivity 

analysis.  

 

Fig. 9. Breakdown of TCO [€/delivery] (conservative scenario, low wind speed, low traffic 
condition, low delivery density) 
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Fig. 10. €/delivery with customer density of 1 customer/km2 
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Fig. 11. €/delivery with customer density of 20 customers/km2 

 

Figure 12 summarizes the economic performance of a truck-drone joint delivery system with varying 
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studied separately. The conservative scenario has the highest variability. On the contrary, the  

optimistic and future scenarios are not influenced by wind conditions, and their performance is 

stable. This demonstrates that in the future, once AI and regulations allow drones to be automated, 

wind conditions will not matter significantly as far as cost is concerned. 
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Fig. 12. Comparison between the 4 situations of the TCO sensitivity analysis [€/delivery] 

 

5 Conclusion 
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industry’s environmental footprint, the quantification of the LCA emissions provided by this 

research could be useful for logistic operators’ decision-making on potential investments in a truck-

drone delivery system.  

The TCO analysis results show that if a human pilot is needed, adding a drone to a delivery truck is 

not economically beneficial, causing losses compared to the delivery with a diesel van, which is 

around 37% more convenient. Moving to the optimistic scenario, implementing a delivery system 

with drones leads to a cost reduction ranging between 12% and 26% compared to traditional 

delivery cost. These gains become even more significant in the future scenario, where AI is capable 

of fully controlling drone operations. In this scenario, on average 36% of the total costs can be 

saved with a truck-drone joint delivery system. From a practitioner’s point of view, considering the 

last-mile delivery low margins, these savings are particularly noteworthy. 

 

5.2 Comparison with fixed-depots system 

Even if the results of the present study about truck and drone delivery are not easily comparable 

with previous studies due to different assumptions and scenarios, some considerations may arise. In 

particular, the truck-drone delivery system seems to cause lower emissions per parcel not only when 

compared to traditional systems with trucks but also when compared to drone delivery systems with 

fixed depots. Contrary to the present study, those investigating solutions with fixed depots 

concluded that, on average, deliveries with drones can cause more emissions compared to ground-

based solutions. Table 4 compares the use phase energy requirement of three fixed-depot delivery 

systems (Figliozzi, 2017; Stolaroff et al., 2018; Kirschtein, 2020) with the one in the present study 

(for a more detailed discussion on drone energy consumption models from previous studies, see 

Zhang et al., 2021).  Previous studies differ in terms of system boundaries and payload, not allowing 

a direct comparison of life cycle values. Moreover, even the boundaries of the use phase itself vary 



between studies. The present study analyzed a truck delivery journey from a distribution center to 

final customers (with an average daily traveled distance in urban areas equal to 89 km). In contrast, 

existing fixed-depot studies have focused only on the drone journey from an urban depot to final 

customers (less than 15 km delivery distance).  

Comparing the present study with studies assuming a similar payload (2.5 kg on the first the leg of 

the journey and empty paylod on the second leg), it emerges that in Kirschtein (2020) the use phase 

energy requirement is about 1,500 Wh/delivery. This study shows that the truck-drone delivery 

system leads to an average energy requirement of 429 Wh/delivery, even by including a wider scope 

of analysis (i.e., delivery from a distribution center instead of an urban depot). The truck represents a 

mobile depot for the drone along the delivery path, with the drone being employed only in the very 

last mile, increasing the total number of deliveries during a shift.  A truck-drone delivery system does 

not require additional infrastructures, resulting in higher flexibility compared to a fixed-depots 

system. There are indeed no constraints due to the availability of a physical network of depots. 

 

Table 4. Environmental comparison between fixed-depots studies and the present study 

 Delivery Scenario 
Drone details 
[Typology of drone (payload transported 
in the first leg of the journey)]* 

Energy 
requirement 
[Wh/delivery] 

Figliozzi 
(2017) 

NA (average customer distance from the 
depot is 13 km)1 

Quadcopter (5kg payload) 562 

Stolaroff 
et al. 
(2018) 

Urban area (San Francisco)2 
Large octocopter (8 kg payload) 805 

Small octocopter (0.5 kg payload) 80  

Kirschtein 
(2020) 

Urban area (Berlin)3 Octocopter ( 2.5 kg payload) About 1,500 

Present 
study 

Densely populated scenario: system 
boundaries from regional warehouse to 
customer4 

Octocopter (2.5 kg payload) 429 

1. The delivery configuration consisted of a drone delivery from a warehouse. Value computed by the authors considering a two legs drone delivery 
journey with average customer distance from the depot equal to 13 km. 

2. Results are computed in cases of a drone performing only one hop from urban warehouse to final customer (delivery range of 4.3 km). In the 
original paper, several drone alternatives were considered. For the purposes of the comparison, only the large octocopter (up to 8 kg payload) is 
provided in the table.  

3. The delivery configuration consisted of a drone delivery from an urban warehouse (delivery range of 9 km). In the original paper, several 
customer distributions and wind speed values were assumed. For the purposes of the comparison, only the scenario with uniformly distributed 
customers is provided and the result is the average of all wind conditions. 



4. The delivery journey simulated in this study starts from the regional warehouse and ends at the final customer (total distance covered by truck is 
89 km in the most densely populated scenario, and average distance traveled by drone is 0.2 km). For the purposes of the comparison, in this table 
only the most densely populated scenario is provided. The value is the average of the various traffic and wind conditions. 

* The delivery system assumption in all papers listed in Table 4 is that the drone carries an empty payload in second leg of its journey. 

 

5.3 Further research 

Due to the inherent complexity of modeling a delivery system and the novelty of the technology 

involved, several assumptions were made. These assumptions made the analysis feasible but may 

limit the results’ accuracy. 

Single delivery per destination: Only one delivery per destination is assumed, which is a relevant 

assumption that particularly affects the ground-based delivery performance since a truck can deliver 

more than one parcel per destination, as may happen for multi-story apartment buildings. This 

assumption limits the results’ application to rural or suburban areas, where it is reasonable to assume 

one delivery per destination. 

Delivery truck logistics parameters: Truck speed is assumed to be constant, and a simplified truck 

trajectory has been used, following Campbell et al. (2018). It would be interesting to perform a 

similar analysis simulating a real-world road network and changing vehicles’ speeds accordingly.  

Delivery drone logistics parameters: The assumption of a straight drone trajectory from the truck to the 

destination may not hold in real life. Drones may be required to take the route that minimizes risks 

for all the stakeholders involved. Thus, drone trajectory may not be straight, and it can change 

continuously due the dynamic nature of ground risk parameters.  

Source of data: Real-world experiments would help test the accuracy of the model, such as the 

experimental tests on small quadcopters performed by Stolaroff et al. (2018) to validate their 

assumptions.  

Drones always capable of performing delivery operations: It was assumed that drones can operate 300 days 

per year, like the ground-based alternatives. However, due to the novelty of the technology, it is 



difficult to estimate drones’ capability to perform delivery operations in harsh weather conditions. 

Yowtak et al. (2020) included in their LCA analysis the possibility that, due to adverse weather, 

drones cannot always be used, and traditional delivery vans need to compensate for the temporary 

downtime of drones. To account for this possibility, the authors adopted as unit of analysis the 

biyearly emissions of the whole delivery system. Similar consideration may be adopted by future 

researchers.  

Impact category selection: One specific impact category (i.e., gCO2e) has been used. However, it would 

be interesting to benchmark the performance of the logistics system under analysis according to 

different impact categories. 

Comparison between a truck-drone and a fixed depots drone delivery system: To further improve the 

comparison between various drone delivery systems, each logistics alternative should be assessed 

under the same assumptions, system boundaries, and delivery scenarios. Future research efforts 

should focus on both environmental and economic assessment, allowing for a comprehensive 

discussion on the tradeoffs between systems. 

Underlying logistics system: The present study considered a particular “mobile” depot system, which is a 

van equipped with a drone. This study assumed that trucks and drones can perform deliveries 

simultaneously. However, a variety of drone delivery configurations, present in the literature, are still 

to be assessed from both environmental and economic perspectives. These configurations range 

from variations of the truck-drone model assumed by this study (e.g., a truck waiting for its multiple 

drones to deliver parcels while the truck stops) to more diverse systems (e.g., a system where drones 

connect to the roof of autonomous cars to save energy and increase the delivery capacity [Yoo and 

Chankov, 2019] or where trucks perform delivery operations being resupplied by drones throughout 

the delivery journey [Dayarian et al., 2020]). 
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Appendix A. Underlying logistics system description 

Table A.1. Computations from Campbell et al. (2018) model 

 

Table A.2 Inputs for the Campbell et al. (2018) model 

 

 

 
 
 
 
 
 
 
 
 

 

Description Formula 

Swath width for the truck-only delivery system 𝑤 =  √
3

𝛿
  

Average distance between two destinations for the 
truck-only delivery system 

𝑑𝑡 =
𝑤

3
 + 

1

𝑤∙𝛿
  

Swath width for the truck-drone joint delivery with 
one drone per truck (0<n<=1) 𝑤 =

√𝑛+1𝑐𝑡+2𝑐𝑑

𝑐𝑡+2𝑐𝑑
∙ √

3

𝛿
  

Average distance between two destinations travelled 
by the drone in a truck-drone joint delivery system 𝑑𝑑 = 2

𝑛

𝑛+1
√(

𝑤

3
)2 + (

1

𝛿𝑤
)2  

Average distance between two destinations travelled 
by the truck in a truck-drone joint delivery system 

𝑑𝑡 =
𝑤

3
∙ (1 −

𝑛

𝑛+1
) +

1

𝑤∙𝛿
  

Overall delivery route time as function of 𝑣𝑡 , 𝑣𝑙𝑡 , w, 
Qtd, where Qtd is the overall combined daily deliveries 
performed by truck and drone 

𝑇 = 𝑄𝑡𝑑 ∙ [

1
𝑤𝛿

+
𝑤

3(𝑛+1)

𝑣𝑡 
+

𝑠𝑡

𝑛+1
] +

0.9027√𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝐴𝑟𝑒𝑎

𝑣𝑙𝑡 
  

Truck variable cost [€/km] 𝑐𝑡 =
𝐺𝑟𝑜𝑠𝑠 ℎ𝑜𝑢𝑟𝑙𝑦 𝑠𝑎𝑙𝑎𝑟𝑦

𝑣𝑡
+ 𝐹𝐷𝑉(𝑑𝑡 , 𝑣𝑡, 𝑛𝑎𝑐𝑐) ∙ 𝐹𝑢𝑒𝑙 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑙𝑖𝑡𝑒𝑟  

Drone variable cost [€/km] 𝑐𝑑 =
𝐺𝑟𝑜𝑠𝑠 ℎ𝑜𝑢𝑟𝑙𝑦 𝑠𝑎𝑙𝑎𝑟𝑦

𝑣𝑙𝑓
 

Parameter Description Unit of measure Value Source 

Delivery Area Delivery Area m2 3,200 Campbell et al. (2018) 

vt Truck Delivery Speed m/s 8.9 Campbell et al. (2018) 

vlt Truck Linehaul Speed  m/s 17.8 Campbell et al. (2018) 

T Shift Duration h 7.5 Campbell et al. (2018) 

st Average fixed time for a delivery 
stop by truck  

h 0.05 Assumption 

δ   Delivery Density Deliveries /km2  - Discussed in the sensitivity 
analysis  

n Ratio Between Drone Deliveries 
and Truck Deliveries 

 - Discussed in the sensitivity 
analysis  



Appendix B. Production and Recycling Phase  

Table B.1. Input values for vehicles and batteries production emission 

Parameter Description 
Unit of 
Measure 

Value Source 

etruck Emission coefficient for truck kg CO2e/kg 8 Lee et al. (2013) 

edrone Emission coefficient for drone kg CO2e/kg 9.3 Figliozzi (2017) 

ebattery Emission coefficient for battery   kg CO2e/kWh 141 Figliozzi (2017) 

m tare DV DV tare weight kg 2,670 Mercedes-Benz Vans  (2020) 

m tare EV EV tare weight kg 2,940 Workhorse (2020) 

m tare UAV Drone tare weight without battery kg 8 Interview  

Zbatt truck Truck battery energy density kWh/kg 0.15 Kirschstein (2020) 

Zbatt drone Drone battery energy density kWh/kg 0.26 Interview  

Capbatt truck Usable truck battery capacity kWh 105 Workhorse (2020) 

Capbatt drone Nominal drone battery capacity kWh 0.8  Interview 

nbatteries per drone Number of batteries per drone  2 Interview  

MDR 
Maximum Discharge rate for LI 
ION batteries 

% 80 Stolaroff et al. (2018) 

ULtruck Useful life for trucks years 10 Yang et al. (2018) 

ULdrone Useful life for drones years 5 Interview  

 

Table B.2. Input value for end-of-life phase 
 

 

 

 

 

 

 

 

 

 

Description 
Value (as % of production phase 
emission reduction) 

Source 

CO2e savings from vehicles’ body recycling -17% Lee et al. (2013) 
CO2e savings from Li-Ion batteries recycling -19% Sullivan & Gaines (2012) 



Appendix C. Use Phase Model and Values 

Table C.1. Formulas for drone energy consumption model 

 
Table C.2. Formulas for vehicles energy consumption model 

 

Table C.3. Input values for drone energy consumption model 
Abbreviatio
n 

Description Unit of measure Value Source 

A drone Frontal surface area m2 0.2 Interview 

vd (level flight) Drone speed during level flight m/s 17 Interview 

vd (takeoff and landing) Drone speed during takeoff and landing m/s 2.3 Interview 

P int Power internal auxiliaries kW 0.1 Kirschstein (2020) 

εeng Engine efficiency  0.9 Kirschstein (2020) 

εtrans Transmission efficiency             0.9 Kirschstein (2020) 

εchar Charging efficiency 0.9 Kirschstein (2020) 

n rotor Number of rotors  8 Interview 

n blades Number of blades 2 Interview 

r Rotor radius m 0.23 Interview 

c air drone Air drag  0.5 Kirschstein (2020) 

c bd Blade drag  0.075 Kirschstein (2020) 

Description Formula 

Power needed to 
counteract the drone body 
air drag 

𝑃𝑎𝑖𝑟 =  
1

2
∙ 𝜌 ∙ 𝜈𝑑

3 ∙ 𝐴𝑑𝑟𝑜𝑛𝑒 ∙ 𝑐𝑎𝑖𝑟 𝑑𝑟𝑜𝑛𝑒  

Power to lift the drone 𝑃𝑙𝑖𝑓𝑡 = 𝑤 ∙ 𝑘 ∙ (√𝑚2 ∙ 𝑔2 + D2  + 2 ∙ D ∙ 𝑚 ∙ 𝑔 ∙  𝜈𝑑 ∙ 𝑠𝑖𝑛𝛾) 

Air Drag coefficient 𝐷 =
1

2
∙ 𝜌 ∙ 𝑣𝑑

2 ∙ 𝐴𝑑𝑟𝑜𝑛𝑒 ∙ 𝑐𝑎𝑖𝑟 𝑑𝑟𝑜𝑛𝑒 

Downwash coefficient  
w can be computed solving the following:  

𝑇

2∙𝜌∙𝑟2∙𝜋∙𝑛𝑟𝑜𝑡𝑜𝑟𝑠
= 𝑤 ∙

√(𝑤 − 𝑣𝑑 ∙ 𝑠𝑖𝑛𝛼)2 + (𝑣𝑑 ∙ 𝑐𝑜𝑠𝛼)2 

Angle of attack 𝛼 = arctan (
−𝐷 − 𝑚 ∙ 𝑔 ∙ 𝑠𝑖𝑛𝛾

𝑚 ∙ 𝑔 ∙ 𝑐𝑜𝑠𝛾
) 

Power needed to 
counteract the rotors’ air 
drag 

𝑃𝑝𝑟𝑜𝑓𝑖𝑙𝑒 = 𝜌 ∙ 𝑟2 ∙ 𝜋 ∙ 𝑛𝑟𝑜𝑡𝑜𝑟 ∙ 𝑣𝑟
3 ∙ (1 + 2 ∙ (

𝜈𝑑

𝜈𝑟
)

2

) ∙ 𝜗 ∙
𝑐𝑏𝑑

8
 

Rotor speed 𝑣𝑟 =
6 ∙ 𝑚 ∙ 𝑔

𝑛𝑟𝑜𝑡𝑜𝑟 ∙ 𝑛𝑏𝑙𝑎𝑑𝑒𝑠 ∙ 𝑐𝑚𝑒𝑎𝑛 ∙ 𝑐𝑙_𝑚𝑒𝑎𝑛 ∙ 𝜌 ∙ 𝑟
 

Disc solidity ratio 𝜗 =
𝑛𝑏𝑙𝑎𝑑𝑒𝑠 ∙ 𝑐𝑚𝑒𝑎𝑛

𝜋 ∙ 𝑟
 

Power needed to climb 𝑃𝑐𝑙𝑖𝑚𝑏 =  𝑚 ∙ 𝑔 ∙  𝜈𝑑 ∙ 𝑠𝑖𝑛𝛾   

Description Formula 

Power needed to counteract the drone body air drag 𝑃𝑎𝑖𝑟 =
𝜌 ∙ 𝑐𝑎𝑖𝑟 𝑡𝑟𝑢𝑐𝑘

2000
∙ 𝐴𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ∙  𝜈𝑡

3 

Power needed to counteract rolling resistance, the gravity force in case 
of sloped road 

𝑃𝑟𝑜𝑙𝑙 = 𝑔 ∙ 𝑐𝑟𝑜𝑙𝑙 ∙  𝜈𝑡 ∙ 𝑚  

Power needed to counteract the gravity force in case of sloped road 
𝑃𝑔𝑟𝑎𝑑𝑒 = 𝑔 ∙ 𝑖 ∙  𝜈𝑡 ∙ 𝑚  

Power needed to counteract the inertial force 𝑃𝑖𝑛𝑒𝑟𝑡 =
𝑛𝑎𝑐𝑐∙0.504

2000∙3.6
∙  𝜈𝑡

3 ∙ 𝑚  



c mean Rotor mean chord 0.1 Kirschstein (2020) 

c l_mean Blade lift  0.4 Kirschstein (2020) 

k Lifting power mark-up 1.15 Kirschstein (2020) 

𝜌 Air density kg/m3 1.225 - 

mpayload Weight of the payload kg 2.5 Kirschstein (2020) 

a Altitude reached by the drone m 60 Interview 

γ Descent and ascent angle degrees 90 Interview 

thover Time for hovering s 30 Xu (2017) 

 
Table C.4. Additional notations used in the drone energy consumption model   

Abbreviation Description 
Unit of 
measure 

Expression 

ttol Time for takeoff and landing s 
𝑎

𝑣𝑙𝑓∙sin 𝛾 − 𝑣𝑤𝑖𝑛𝑑
 

vd Drone speed  m/s 
Depending on the drone journey phase, it 
can be the speed during level flight or the 
speed during takeoff and landing 

tlf Time for level flight s 
𝑑𝑑

𝑣𝑙𝑓 − 𝑣𝑤𝑖𝑛𝑑
− 2 ∙ 𝑡 𝑡𝑜𝑙  

m Overall mass of the drone kg mtare without battery+ Capbatt drone / Zbatt + mpayload 

vwind Wind speed  m/s Discussed in the sensitivity analysis  

td 
Average drone flight distance 
between two consecutive truck 
stops 

s 𝑡𝑡𝑜𝑙 ∙ 2 + 𝑡𝑙𝑓 + 𝑡ℎ𝑜𝑣𝑒𝑟  

tw 

Drone waiting time (difference 
between the truck time between 
two consecutive stops and the 
drone one) 

s 
𝑑𝑡

𝑣𝑡
− 𝑡𝑑 

 
 

Table C.5 Input values for the ground vehicles energy consumption model 
Abbreviation Description Unit of measure Value Source 

A truck Frontal Surface Area m2 6 Kirschstein (2020) 

C roll Rolling Resistance  0.008 Kirschstein (2020) 

c air truck Air Drag  0.65 Kirschstein (2020) 

eff engine Engine Efficiency  0.9 Kirschstein (2020) 

eff trans Transmission Efficiency             0.9 Kirschstein (2020) 

eff char Charging Efficiency 0.9 Kirschstein (2020) 

f full Fuel Consumption (full) 1/h 1 Kirschstein (2020) 

f idle Fuel Consumption (idle) 1/h 25 Kirschstein (2020) 

P Engine nominal power kW 140 Mercedes-Benz Vans (2020) 

nacc Acceleration frequency 
coefficient 

 Discussed in the sensitivity analysis 

 
Table C.6. Input parameter for the Electricity and Fuel Supply Chain Emissions 

Parameter Unit of Measure Value Source 

Loss transmission and distribution IT % 0.97 World Bank (2018) 

Fuel emission coefficient WTW kg CO2/liter 3.24  Schmied and Knörr (2012), 

 
 

 



 
Appendix D. Energy Production Mix 
 

Table D.1. Energy Production mix Values 

Parameter Unit of Measure Value Source 

C02e emission intensity FR g CO2/KWh 58.5 EEA (2018) referring to year 2016 

C02e emission intensity DE g CO2/KWh 440.8 EEA (2018) referring to year 2016 

 
 
 
 
 

 
 
 

Appendix E. TCO CAPEX Values 
 

Table E.1. Capital Expenses Input Values 

Parameter 
Conservative 
Scenario 

Optimistic 
Scenario 

Future 
Scenario 

Source 

Electric Van Cost 60,000 € 55,000 € 50,000 € Assumption 
Diesel Van Cost 46,229 € 46,229 € 46,229 € Mercedes-Benz Vans (2020) 
Drone cost 20,000 € 15,000 € 10,000 € Doole et al. (2020) and Interview 
Change of van battery 10,910 € 5,455 € 5,455 € Doole et al. (2020)  

 
 

 
 
 
 

 
 

Appendix F. TCO OPEX Values 
 

Table F.1. Operating Expenses Input Values 

Parameter Unit of Measure 
Conservative 
Scenario 

Optimistic 
Scenario 

Future 
Scenario 

Fuel Cost €/liter 1.226 1.226 1.226 
Electricity Cost €/kWh 0.195 0.195 0.195 
Battery Cost  €/kWh 175 87.5 43.75 
Drone Maintenance Cost €/year 1,710 427 142 
DV Maintenance Cost €/km 0.041 0.041 0.041 
EV Maintenance Cost €/km 0.021 0.021 0.021 
Truck Insurance Cost €/year 600 600 600 
Drone Insurance Cost €/year 1000 500 100 
Driver (or Pilot) salary €/hour 13.9 13.9 13.9 
Airspace Cost €/hour 2 0.5 0.25 

 
 



Appendix G. Energy consumptions 

 

Table G.1. Energy Consumption of each vehicle alternative 

Scenario 
Wind 
speed 

Density Traffic 
Energy consumption 
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DV 1 EV 1 

Drone 
level flight 

(present 
paper)2 

Drone level 
flight 

(Kirschstein, 
2020) 3 

Exemplary 
drone 1km 

flight 
(present 
paper)4 

x   x  x  x  1.129 539 66 35 233 

 X  x  x  x  0% 0% 0% 0% 0% 

  X x  x  x  0% 0% 0% 0% 0% 

x    X x  x  0% 0% +167% +129% +58% 

x   x   X x  +1% +2% 0% 0% 0% 

x   x  x   X +60% +83% 0% 0% 0% 

 
1 = measured in Wh/km 
2= drone level flight energy consumption [Wh/Km] 
3= drone level flight energy consumption from Kirschstein (2020), computed by Zhang et al. (2021) 
[Wh/Km] 
4= exemplary 1 km drone flight energy consumption, including takeoff and landing [Wh] 
 

Table G.2. Use phase energy requirement per delivery for each alternative 

Scenario Wind speed Density Traffic Energy consumption per delivery [Wh/delivery] 
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DV EV EV & Drone 

x   x  x  x  2.019 963 771 

 X  x  x  x  0% 0% -1% 

  X x  x  x  0% 0% -1% 

x    X x  x  0% 0% +8% 

x   x   X x  -62% -61% -58% 

x   x  x   X +60% +83% +78% 

 
 
 
 
 
 



Appendix H. Emissions breakdown per scenario for each last-mile logistics combination 

Scenario 
Wind 
speed 

Density Traffic 
Energy 

prod. mix 

Use phase 
emissions 

[gCO2e/ delivery] 

Production and 
recycling phase 

emissions 
[gCO2e/delivery] 

Overall LCA 
emissions  

[gCO2e/ delivery] 
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DV EV 
EV + 
UAV 
(n=1) 

DV EV 
EV + 
UAV 
(n=1) 

DV EV 
EV + 
UAV 
(n=1) 

x   x  x  x  x  654 454 364 75.6 221 191 730 675 555 

 X  x  x  x  x  0% 0% 0% 0% -31% -35% 0% -10% -12% 

  X x  x  x  x  0% 0% -1% 0% -47% -52% 0% -15% -19% 

x    X x  x  x  0% 0% +8% 0% 0% +13% 0% 0% +9% 

x   x   X x  x  -62% -61% -58% -33% -50% -47% -59% -58% -54% 

x   x  x   X x  +60% +94% +78% 0% +65% +50% +54% +84% +68% 

x   x  x  x   X 0% -87% -87% 0% 0% 0% 0% -58% -57% 
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