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Abstract. Large annotated cell line collections have been proven to
enable the prediction of drug response in the pre-clinical setting.
We present an enhancement of Non-Negative Matrix Tri-Factorization
method, which allows the integration of different data types for the pre-
diction of missing associations. To test our method we retrieved a dataset
from the Cancer Cell Line Encyclopedia (CCLE), containing the connec-
tions among cell lines and drugs by means of their IC50 values, and we
integrated it by linking cell lines to their respective tissue of origin and
genomic profile. We performed two different kind of experiments: a) pre-
diction of missing values in the matrix, b) prediction of the complete
drug profile of a new cell line, demonstrating the validity of the method
in both scenarios.

Keywords: Non-Negative Matrix Tri-Factorization · Drug sensitivity ·
Data integration · Drug response prediction

1 Background

Cancer is a highly complex disease due to the enormous level of both intra- and
inter-tumor heterogeneity that often displays. Indeed, several tumors of the same
organ may vary significantly in important tumor-associated attributes. This is
the reason why patients with the same diagnosis can respond in different ways to
the same therapy, and this represents the main obstacle to effective treatments
[1]. For this reason, it becomes essential to be able to predict if a patient is
sensitive or resistant to a specific drug before the administration. Being sensi-
tive to a drug means that the drug manages to have the desired effect on the
person, with tolerable side effects; on the contrary, drug resistance represents
the inability of the active principle to perform its function. The parameter most
extensively used to characterize the response and sensitivity to a drug is the
half-maximal inhibitory concentration (IC50), that is the concentration needed
to inhibit the 50% of the targeted biological process or component [2]. In partic-
ular, in the field of anticancer therapies, the IC50 represents the concentration
of drugs needed to kill half of the cells in vitro. Since experimental approaches
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for the estimation of IC50 values are costly and time-consuming, researchers are
increasingly putting efforts into developing computer-based methods for predict-
ing the responsiveness of a patient to a drug. This was made possible thanks to
the huge amount of biological, medical and chemical data that have started to
be grouped and made publicly available through several tools and databases.
In particular, in the context of drug sensitivity, we can certainly cite the Can-
cer Cell Line Encyclopedia (CCLE) [3] and the Genomics of Drug Sensitivity
in Cancer (GDSC) [4] projects, which succeeded in collecting the genetic and
pharmacological profile of hundreds of cancer cell lines.

The work of Berrettina et al. [3] can be also considered one of the pioneering
machine learning methods proposed for the prediction of sensitive or resistant
drug response of a cell line. It exploited CCLE data for a predictive model based
on the näıve Bayes classifier. Subsequently, Dong et al. [5] used gene expression
features and drug sensitivity data to build SVM-RFE, a wrapper method that
firstly performs a feature selection operation and successively uses top features to
fit the Support Vector Machine, a supervised learning algorithm for classification.
HNMDRP, a network-based method which takes into consideration cell lines,
drugs and targets relationships, was then proposed by Zhang et al. [6]. Xu et
al. [7] developed the AutoBorutaRF model, which performs a two step feature
selection by means of a combination of an autoencoder artificial neural network
and the Boruta algorithm, and then uses random forest for classification. More
recently, Choi et al. [8] presented a deep neural network model, RefDNN, which
pairs molecular structure similarity profiles of drugs and gene expression data of
cell lines. In the meanwhile, we can also find DSPLMF, a prediction approach
presented by Emdadi et al. [9] based on logistic matrix factorization which allows
to compute the probability of cell lines to be sensitive to a drug and thus to
classify drug response. To improve the accuracy of the method, gene expression
profiles, copy number alterations and single-nucleotide mutation for cell line
similarity and chemical structures for drug similarity have been incorporated.

In this scenario fits our work, which has the purpose to address the issue of
predicting the sensitivity of a cell line to a drug with a network-based approach
based on Non-negative Matrix Tri-Factorization (NMTF), an algorithm designed
to factorize an input positive-defined matrix (such as an association matrix of a
bipartite graph) in three matrices of non-negative elements. The decomposition
has proven to be useful also to predict missing associations. One of the main
advantages of NMTF is the possibility to expand the bipartite network inte-
grating several information and thus forming a multi-partite graph; the NMTF
algorithm is then used to decompose each of the association matrices, in such a
way that the decomposition of each matrix is influenced by the decomposition
of the others [10]. The NMTF approach has been used in several domains and
in particular it demonstrated to have elevated performances in both finding new
indications for approved drugs and new synergistic drug pairs, in particular when
including several heterogeneous data types [10,11]. The main focus of this work
is to adapt the model to predict the sensitivity of a cancer cell line to a set of
anti-tumor drugs integrating the associations between cell lines and drugs with
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tissue and gene expression-related data. In the context of precision medicine, the
prediction of drug response and sensitivity based on genetic features is becoming
of fundamental relevance to speed the emergence of ‘personalized’ therapeutic
regimens. Being able to determine a priori to which drugs a patient, with its
genomic features, is sensitive or resistant would save a lot of precious time and
improve the efficiency of the therapy.

2 Material and Methods

2.1 Datasets

For our experiments, we used the dataset retrieved from the Cancer Cell Line
Encyclopedia (CCLE) [3] which comprised the association among 1065 cell lines
and 266 antitumor drugs, measured in terms of IC50. In light of the presence of
a large amount of missing values in the dataset, we firstly performed a filtering
operation that allowed us to reduce them from 20% to 2%, by eliminating both
cell lines and drugs with more than the 50% of missing data. Subsequently, we
binarized the matrix: since the IC50 is representative of the response of a cell
line to a drug, we considered a cell line to be sensitive to a drug if the corre-
sponding IC50 value was lower than a threshold and, on the contrary, a cell line
was considered resistant if that value was higher. As threshold for classification
we selected the median of IC50 values of each drug, considering all the cell lines.
From CCLE we have been able to retrieve also further datasets containing addi-
tional information; in particular, we took into consideration tissues of origin of
the tumors and the gene expression profiles quantified by RNA-seq experiments.
After processing and integrating all these data, as described in detail in Sect. 2.2,
we obtained a final dataset containing 379 cell lines and 202 drugs.

2.2 Model

In order to integrate all the available information, we modeled the set of cell
lines C, the set of drugs D, the set of tissues T and the set of genes G as the
multipartite network in Fig. 1, where each cell line is connected to the drugs to
which it is sensitive, the tissue of origin and a set of genes, with the weight of
the edge representing the expression of the gene in the cell line.

Such network is equivalent to the set of its association matrices: a binary
matrix XCD connecting cell lines to drugs, a binary matrix XTC connecting cell
lines to tissues, and a real matrix XGC connecting cell lines to genes. We built
the three matrices as follows:

– we represented the IC50 data as a matrix X ∈ R
|C|×|D|
≥0 , being R≥0 = R≥0 ∪

{+∞}, such that X[i, j] indicates the IC50 value of the j-th drug on the i-th
cell line if a measure is available, or +∞ otherwise. We transform X into the
binary matrix XCD ∈ {0, 1}|C|×|D|, such that:

XCD[i, j] =

{
1 if X[i, j] < Mj

0 otherwise
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Fig. 1. Multipartite graph connecting Tissues, Gene expression, Cell lines and Drugs.
The three association matrices of the graph are also indicated.

where Mj is the median of the IC50 values for the j-th drug that are different
from +∞. This step is necessary as different drugs work on different scale of
dosage. In other words, we define the i-th cell line to be sensitive to the j-th
drug if the IC50 value X[i, j] is lower than the median for that particular
drug;

– we built the matrix XTC ∈ {0, 1}|T |×|C| that connects cell lines to tissues as:

XTC [c, t] =

{
1 if c belongs to the tissue t

0 otherwise

– we considered the matrix X ′
GC ∈ R

|G|×|C|, where G is a set of genes and
X ′

GC [g, c] represents the RPKM , that means reads per kilobase of transcript,
per million mapped reads, measured for the given gene g in the specific cell line
c, by a RNA-seq experiment. To select a valuable subset of genes, we retrieved
the 1,000 genes with the highest standard deviation of the expression across
the cell lines. Then, for each drug (that is each column in the matrix XCD) we
performed a LASSO [12] feature selection. Finally, we kept into consideration
only the 532 genes that are selected as predictive features for at least two
drugs and build the matrix X ′′

GC ∈ R
532×|C|. Finally we performed a minmax

scaling on the columns of the matrix and considered the XGC ∈ [0, 1]532×|C|

matrix.

2.3 Method

Let’s consider a multipartite graph G; for the purpose of this work, we can
represent the graph as a set of association matrices, that is G = {XIJ}, such
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that each association matrix XIJ ∈ R
|I|×|J|
≥0 connects nodes of a set I to nodes

of a set J .
We can apply the NMTF method to factorize each association matrix XIJ

into three matrices:
XIJ

∼= UISIJV �
J (1)

where UI ∈ R
|I|×ki

≥0 ,SIJ ∈ R
ki×kj

≥0 , and VJ ∈ R
|J|×kj

≥0 with ki, kj ∈ N and ki <
|I|, kj < |J |. The Parameters ki and kj are the factorization ranks of NMTF and
describe the number of hidden vectors into which we want to represent the XIJ

association matrix.
Furthermore, the following constraint has to hold:

∀XIJ ,XJL ∈ G, XIJ
∼= UISIJV �

J ,XJL
∼= UJSJLV �

L =⇒ VJ ≡ UJ (2)

The factorization matrices are computed so as to minimize the objective function
based on the Frobenius norm:

L(G|Θ) =
∑

Xij∈G
Xij − UiSijV

�
j

2

Fro
(3)

where Θ represents the set of all the factorization matrices.
A minimum of the objective function can be computed algorithmically by

(a) initializing the factorization matrices and (b) applying the following multi-
plicative update rules:

UI ← UI 


∑
Q

XIQVQS�
IQ +

∑
Q

X�
QIUQSQI

∑
Q

UISIQV �
Q VQS�

IQ +
∑
Q

UIS
�
QIU

�
QUQSQI

(4)

VJ ← VJ 


∑
Q

X�
QJUQSQJ +

∑
Q

XJQVQS�
JQ

∑
Q

VJS�
QJU�

QUQSQJ +
∑
Q

VJSJQV �
Q VQS�

JQ

(5)

SIJ ← SIJ 
 U�
I XIJVJ

U�
I UISIJV �

J VJ
(6)

where 
 and •
• stand for Hadamard element-wise multiplication and divi-

sion, respectively. Updating rules must be iteratively calculated. We perform
100 warm-up iteration and then we iterate until a stop criterion is met; in our
experiments we used Li−1−Li

Li−1 < 10−6, where Li−1 and Li are respectively the
values of the loss function after the last and the previous iterations [13].

For matrices initialization, which is a critical aspect of the method, we
adopted a k-means approach [14–16].
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2.4 Prediction of Novel Associations

The prediction of novel associations between two sets of nodes can be inter-
preted as a matrix completion task. The NMTF method is applied in order to
predict novel links between two classes of nodes. In particular, we focused on
the associations between cell lines and drugs. After that

X̃CD = UCSCDV �
D

has been computed with the following updating rules

UC ← UC 
 XCDVDS�
CD

UCSCDV �
D VDS�

CD

(7)

VD ← VD 
 X�
CDUCSCD

VDS�
CDU�

C UCSCD
(8)

SCD ← SCD 
 U�
C XCDVD

U�
C UCSCDV �

D VD
(9)

we applied a threshold τ , typically 0 < τ < 1, and we considered that the i-th
cell line is associated with the j-th drug if the predicted value X̃CD[i, j] > τ .

2.5 Prediction of the Whole Drug Profile for a New Cell Line

Another scenario is when a novel cell line is included in the network. In this
situation, while we know the genetic feature of the cell line and its tissue of
origin, we do not have information about the drugs to which it is sensitive.

We here propose a slight modification of the NMTF multiplicative update
rules, in order to being able to predict the complete drug profile for the novel cell
line. Since we have no correct information in the matrix we aim to reconstruct
for the novel cell line, we do not consider the influence of XCD during the update
of UC matrix. Thus, the new rules to update U (for our network) were:

UC ← U 
 X�
TCUTSTC

UCS�
TCU�

T UTSTC
(10)

UC ← U 
 X�
GCUGSGC

UCS�
GCU�

GUGSGC
(11)

when only XTC or XGC are taken into account, while

UC ← U 
 X�
TCUTSTC + X�

GCUGSGC

UCS�
TCU�

T UTSTC + UCS�
GCU�

GUGSGC
(12)

when both XTC and XGC are added to the network. Updating rules for V and
S remained unvaried with respect to 8 and 9.
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3 Results

Here, we report the results of different trials that we performed on the dataset
illustrated in Sect. 2.1. In particular, we apply NMTF method, illustrated in
Sect. 2.3, for two different tasks: the prediction of novel cell line-drug associations
and the prediction of the drug profile for a new cell line. We evaluate our results
using the AUROC (that means area under the receiver operating characteristic
curve) and the comparison between the actual IC50 values of pairs predicted
sensitive (X̃CD > 0.6) and predicted resistant (X̃CD < 0.4).

3.1 Prediction of Novel Associations

In order to validate the model, we apply a mask that covers randomly the 5% of
the association matrix XCD. We run the method on the single matrix XCD with-
out passing other information and we compute the evaluation metrics, testing
various combination of the parameter k1 and k2. The best configuration corre-
sponds to k1 = 25 and k2 = 15. With these parameters the model performs well
and leads to a AUROC equal to 0.84417 as shown in Fig. 2a. On the best config-
uration we run also the Welch test, a two-sample location test which is used to
test the hypothesis that two populations have equal means and is more reliable
when the two samples have unequal variances and possibly unequal sample sizes.
Comparing the two box plots, the predicted sensitive and resistant associations
appear to be significantly different (p-val ≈ 0.0). Results are shown in Fig. 2b.

(a) (b)

Fig. 2. Performances using a random mask on XCD; (a) reports the ROC curve with
several values of k1 and k2, where k1 and k2 are the factorization ranks of the NMTF.
The best configuration corresponds to k1 = 25 and k2 = 15; (b) Boxplots of the IC50
values, divided by the means, of the predicted sensitive and resistant pairs using a
random mask on XCD, with the best configuration.
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3.2 Prediction of the Whole Drug Profile for a New Cell Line

In this case, we apply a mask on a single row of the matrix XCD in order to
simulate the addition of a novel cell line.

Considering only XCD matrix does not provide meaningful results, as shown
in Fig. 3a, 3b. As expected, without any additional information, the AUROC is
0.50506, and the two classes are not different. This result proves that it is impos-
sible to predict a complete drug profile for a novel cell line without considering
other data.

(a) (b)

Fig. 3. Performances using a mask on a single row of XCD with k1 = 25 and k2 = 15,
where k1 and k2 are the factorization ranks of NMTF. (a) ROC curve using a mask on
a single row on XCD. (b) Boxplots of the IC50 of the predicted sensitive and resistant
pairs using a mask on a single row of XCD.

Thus, we tested the method by also adding the XTC matrix alone, XGC

matrix alone as well as the two together.
The AUROCs in Fig. 4a proves that adding information increases the per-

formances of the predictor. Including the tissue of origin, the method is able to
reach an AUROC = 0.60244. If also gene expressions are added to the model,
we observe a significant improvement (AUROC = 0.71063). Finally, when both
gene expressions and tissues of origin are considered, and the AUROC increases
to 0.71163. In Fig. 4b the comparison between predicted resistant and sensitive
drugs, when all the information is used, is shown; the Welch test confirms the
difference in the distribution of the two classes (p-val = 9.30232 × 10−18), with
the IC50 of the predicted sensitive drugs clearly below the median.
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(a) (b)

Fig. 4. Performances using a mask on a single row of XCD considering also XTC and
XGC with k1 = 25, k2 = 15, k3 = 5, k4 = 30, where k1, k2, k3, k4 are the factorization
ranks of NMTF. (a) ROC curves using a mask on a single row of XCD considering also
XTC and XGC . (b) Boxplots of the IC50 of the predicted sensitive and resistant pairs
using a mask on a single row of XCD considering also XTC and XGC .

4 Discussion and Concluding Remarks

One of the main obstacles in the treatment of cancer is its heterogeneity, which
leads to a difference in the response of patients with the same cancer to the same
drug [17,18]. In this context, computer-based approaches can be very powerful
tools in order to identify in advance which drugs a patient is sensitive to and
to which drugs does not respond instead [19]. To reach this goal, we proposed
a network-based method which exploits Non-Negative Matrix Tri-Factorization
algorithm for the prediction of the sensitiveness of a patient, which is repre-
sented by the cell line extracted from his tumor mass, to a drug. We performed
the experiments on a dataset retrieved from CCLE, which contains cell lines
and antitumor drugs linked by means of their IC50 values. In our work, we
demonstrated that predicting the sensitivity of a specific drug for a given cell
line for which many IC50 experiments are available is a rather easy task. In our
experiments, using plain NMTF method without additional information for this
task allows to reach high performances (AUROC = 0.84417). On the contrary,
predicting drug sensitivity profile for a novel cell line is more complex: indeed,
NMTF method without other data scores as bad as a random predictor.

To overcome this limitation, we proposed a two-fold solution: (a) we devel-
oped an improved version of NMTF algorithm, which generates predictions tak-
ing into account only meaningful information, and (b) we integrated other infor-
mation, namely the tissues of origin and the gene expressions of the corpus of
cell lines. When all the available data are provided, the proposed method shows
much better performances: the resulted AUROC is equal to 0.71163.

Our results suggest that NMTF is a valid method for the prediction of sensi-
tiveness and resistance of a patient to a drug. In particular, the method gives very
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high results for the matrix completion task, meaning that with this approach is
easy to predict novel sensitivity or resistance associations to missing drugs, even
without adding further information to the primary association matrix. Instead,
for new cell lines with no previous connections to drugs the prediction is a little
more complicated and the link with more data matrices is needed. Indeed, the
initial value of prediction is quite low, but it increases adding patient related
data. In particular, it has only a 5% increase adding just the tissues matrix,
while the addition of gene expression data leads to a higher 10% increase of
the AUROC value. However, the employment of both matrices causes a slight
increase of the AUROC value with respect to the use of gene expression data
alone. This confirms the hypothesis that, since each cell line is linked only to
one tissue, information about tissues are poorly informative and supply a minor
contribution to the prediction compared to gene expression data.

Finally, to test the effect and the need of NMTF with respect to a baseline
method, we computed a leave-one-out validation for 202 binary logistic regressors
(one for each drug). Each predictor uses as feature the gene expression of a cell
and the one-hot-encoding of the tissues, and as label the response of the cell for
the drug associated to the regressor. The average AUROC of this experiment is
0.69128, thus performing almost the 3% worse than NMTF.

As future development we would like to enlarge the network to further
improve the performance. Moreover, we want to implement a regression method
in order to being able to predict also the weight of the connection, that means
the IC50 value.

To conclude, we believe that our method could certainly help to find more
rapidly the right therapy for the patient, saving time and providing the best
treatment from the start, which is one of the most critical part in the discovery
of the correct therapeutic plan of a person. Indeed, for a patient with cancer,
time is the most important resource and a “trial-and-error” approach is not the
most advantageous way to proceed in finding the right cure. A priori knowledge
of which drug will work and which will not on each specific patient should become
one of the fundamental strongholds in the context of precision medicine based
treatments.
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Genomic Computing” (GeCo).
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