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Abstract: The electrical resistivity tomography (ERT) method has been increasingly inte-
grated with hydrogeological risk mitigation strategies to monitor the internal conditions
and the stability of natural and artificial slopes. In this paper, we discuss a case study in
which numerical simulations were essential to validate the interpretation of the resistivity
images obtained from an ERT monitoring system installed on a critical slope in Italy. An
initial analysis of the monitoring data after rainfall events in the study site showed that
the resistivity values were decreased only in the central zone along the ERT line, but they
were increased in the two sides of the profile. Opposite behaviors were observed during
the drying processes following the rainfall events. Core samples show complex geology at
the study site, which might justify uneven responses of the different subsurface bodies to
meteorological events. However, we decided to investigate the possible inversion artifacts
resulting from the individual inversion of the tomographic sections. Forward modeling
simulations on simplified time-lapse models of the study site were performed to explore
this problem and to compare the individual and time-lapse inversions. Synthetic tests
confirmed the nature of these unexpected behaviors and assessed the absolute necessity
of a time-lapse approach for a correct inversion of monitoring data in the presence of a
complex geological model such as the one of this case study. By applying the time-lapse
inversion approach to the real data, the inversion artifact problem was substantially solved,
arriving after the proper calibration of the inversion parameters, mainly the time-lapse
damping factor and the spatial and temporal roughness constraints, to a reduction in the
inversion artifacts to less than 5%.

Keywords: hydrogeological risk mitigation; slope stability; ERT monitoring; time-lapse
inversion; time-lapse damping factor; water content

1. Introduction
In recent years, geophysical monitoring systems have increasingly helped in real-time

monitoring of unstable slopes to minimize the impact of hazardous events—e.g., [1–15]. The
main objective of all geophysical monitoring systems is to keep an eye on the parameters
that might result in the instability conditions of the slope (e.g., fracture development, excess
water saturation) as well as to improve the early-warning alarming strategies. Therefore,
time-lapse data acquisitions permit evaluating the time variations in the critical parameters
responsible for instability before failure occurrence.
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One critical parameter to be monitored in hydrogeological risk mitigation studies is
the subsurface water content. Among the non-invasive sensing technologies, the electrical
resistivity tomography (ERT) method is one of the most efficient geophysical techniques
to map the saturation degree of water and other liquids in the vadose zones [16–21].
The possibility to calibrate site-dependent formulations between the electrical resistivity
and water content of a material is the main reason that the ERT monitoring method is
increasingly used to monitor natural and artificial slopes—e.g., [1–3,7,22–27].

The measured data in an ERT survey are the apparent resistivity values that will then
undergo an inversion approach to obtain the real resistivity values of the subsurface. The
inversion algorithm searches for a model of the subsurface resistivity distribution for which
the calculated model response matches the measured apparent resistivity values [26,28].
The final goal of integrating an ERT monitoring system with hydrogeological risk mitigation
strategies is to transform the final resistivity model into water content maps and define
thresholds of alarm. Therefore, it is crucial to invert the ERT monitoring data as free
as possible from inversion artifacts in order to correctly interpret the results and define
thresholds of instability [23]. In this paper, Res2dinvx64 software ver. 2024.2 (Copyright
© Seequent Systems, Incorporated, Christchurch, New Zealand) was used for inverting
ERT data. In order to adequately model different subsurface structures including complex
resistivity distributions, Res2dinvx64 uses a cell-based inversion technique that subdivides
the subsurface into rectangular cells with fixed sizes and positions [29]. The inversion
algorithm starts from an initial model that is normally a homogeneous half-space using
the average measured apparent resistivity values. This is the most general model as it
does not make any assumptions about the resistivity distribution and therefore, it is less
likely to bias the final inversion model. A finite-element or finite-difference modeling
subroutine can be employed to calculate the apparent resistivity values, and the resistivity
of the model blocks is calculated using a non-linear smoothness-constrained least-squares
optimization technique [30,31]. A local optimization method is normally used for practical
reasons. A global optimization method takes days to weeks even for a single non-time-lapse
dataset [32]. While global optimization methods avoid the problem of local minima, they
are at present not practical to use for real-time monitoring problems where several datasets
might be acquired in a single day.

Similar to other geophysical problems, the ERT inverse problem is inherently non-
linear and ill-posed, resulting in different model parameters that produce almost the same
experimental observations [28,29,32,33]. In this paper, we present the problem of suspected
inversion artifacts in resistivity sections for a permanent ERT monitoring system that is
in operation from March 2022 on an important slope in Italy. The problem arose after the
first rainfall events occurring after installing the ERT system in the study site when we
expected that the resistivity of the shallow subsurface would decrease with time along
the profile. However, it was observed that the resistivity decreased only in the central
zone of the profile and considerably increased in the side parts of the profile. Through
synthetic modeling, we demonstrate that this unexpected behavior is due to inversion
artifacts and we show how these artifacts can be drastically attenuated by applying a
time-lapse inversion procedure with optimal setting of the constraining parameters.

2. The Case Study
The case study is a critical slope above an important infrastructure tunnel in Italy.

Reconnaissance ERT measurements were performed along two parallel lines covering the
full available length. An IRIS Syscal Pro instrument supporting 96 electrodes was used
and different electrode configurations including the Wenner, the Wenner–Schlumberger,
and the dipole–dipole arrays with the unit electrode spacing of 2 m were used for the
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preliminary surveys. Based on the results of reconnaissance surveys and discussions with
the authorities managing the study site, a 2D ERT profile using the Wenner electrode
configuration with unit electrode spacing of 3m was permanently installed in March 2022.
Figure 1a illustrates a picture of deploying the cables (protected by a robust anti-rodent
cover) connected to plate electrodes and buried inside a 0.4 m deep trench. Figure 1b
shows the central part of the ERT profile where the box containing the electronics of the
system and the battery is positioned. The customized ERT monitoring system supports
two 24-electrode cables and is accompanied by a weather station including a rain gauge
and a thermohygrometer and they are all powered by a solar panel. For seasonal analysis
of the annual data, a temperature sensor was also installed at the depth of 1.5 m to monitor
the variations in the soil temperature.
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of the brown-whitish topsoil, classified as a brown-grayish alteration of Chaotic Clays, 
which shows a remarkable thickness increase in the fourth borehole. 

Figure 1. The customized ERT monitoring system installed in the study site: (a) Protected cables and
plate electrodes with the spacing of 3 m are buried inside a trench at the depth of 0.4 m. (b) The box
containing the electronics and the battery is positioned in the middle of the ERT profile along with
the weather station and a solar panel.

Core samples were also taken at five points along the ERT line and the geological
model of the study site was reconstructed as shown in Figure 2. The boreholes were located
with almost equal distances of about 15 m and cores were recovered down to 20 m in
each borehole. Figure 2 shows a complex subsurface geology at the study site with both
horizontal and vertical changes. Analysis of the core samples and the preliminary ERT
surveys could detect a zone with considerably higher permeability. This zone is positioned
in the central part along the permanent ERT monitoring line where the core stratigraphy
indicates a large presence of calcareous gravels. The site is also characterized by a thin
superficial clayey layer inside which the electrodes of the permanent ERT system were
deployed to ensure low contact resistances. Note also another thin layer at the base of the
brown-whitish topsoil, classified as a brown-grayish alteration of Chaotic Clays, which
shows a remarkable thickness increase in the fourth borehole.



Geosciences 2025, 15, 33 4 of 17Geosciences 2025, 15, x FOR PEER REVIEW 4 of 17 
 

 

 

Figure 2. The geological model and the piezometric levels defined from the core samples recovered 
in five boreholes along the ERT profile. 

3. Inversion of ERT Monitoring Data 
We used Res2dinvx64 software for all ERT inversions (either individual or time-lapse 

inversions) discussed in this paper. The only exception is Figure 9a that presents the re-
sults of inversions obtained by the cloud software of the ERT monitoring system. Most of 
the inversion parameters were set up accepting the default values used by Res2dinvx64. 
The maximum number of iterations was set to 11 but the inversion algorithm normally 
converged in 6 iterations with an absolute error lower than 5–6%. An ERT inversion algo-
rithm tries to find a model for which the calculated apparent resistivity values (using a 
finite-difference or a finite-element subroutine) fit the measured data within a reasonable 
error. The regularized least-squares optimization method is the most common inversion 
technique to reconstruct the arbitrary subsurface resistivity distribution from ERT data 
[29]. Two of the most common constraints used in the regularized least-squares optimiza-
tion method are the robust/blocky method (L1 norm) and smooth method (L2 norm). The 
robust/blocky inversion method gives optimal results for models with sharp transitions 
in resistivity values while the smooth inversion method results in an inversion model with 
smooth variations in the subsurface resistivity [29]. 

ERT monitoring data are normally inverted using a time-lapse algorithm. There are 
two main classes of time-lapse inversion algorithms using either the older ratio or differ-
ence method [34] or the newer temporal smoothness-constrained method [35]. The differ-
ence method is normally used with only two datasets at a time (the initial dataset and one 
later-time dataset) and uses the difference or ratio of the apparent resistivity values. As 
far as the authors know, the inversion is limited to time series with only two sets of meas-
urements at a single time and in case of having more than two datasets, we suppose that 
multiple separate inversions are carried out using the initial dataset and one of the later-
time datasets. On the other hand, the newer temporal smoothness-constrained method is 
more difficult to implement but it has the advantage of being more flexible. The method 
can be used to invert more than two sets of measurements at a single time [35,36]. The 
second advantage is that the nature of the changes in resistivity values between the time-
lapse models can be modified using the temporal roughness filter, i.e., whether consider-
ing the normal L2 norm with gradual changes in time or the L1 norm with abrupt/blocky 
changes in time. Moreover, many other modifications are also possible, such as concen-
trating the changes in selected areas where more information is available [37] or setting 
the changes to only increase or decrease with time [36]. The time-lapse smoothness-con-
strained least-squares optimization method is described by Equation (1) [38]: [J𝒌𝑻𝑹𝒅J𝒌+(𝜆𝑾𝑻𝑹𝒎W + 𝛼𝑴𝑻𝑹𝒕M)]Δ𝒓𝒌=J𝒌𝑻𝑹𝒅𝒈𝒌 − (𝜆𝑾𝑻𝑹𝒎W+ 𝛼𝑴𝑻𝑹𝒕M)𝒓𝒌ିଵ (1)

Figure 2. The geological model and the piezometric levels defined from the core samples recovered
in five boreholes along the ERT profile.

3. Inversion of ERT Monitoring Data
We used Res2dinvx64 software for all ERT inversions (either individual or time-lapse

inversions) discussed in this paper. The only exception is Figure 9a that presents the
results of inversions obtained by the cloud software of the ERT monitoring system. Most of
the inversion parameters were set up accepting the default values used by Res2dinvx64.
The maximum number of iterations was set to 11 but the inversion algorithm normally
converged in 6 iterations with an absolute error lower than 5–6%. An ERT inversion
algorithm tries to find a model for which the calculated apparent resistivity values (using a
finite-difference or a finite-element subroutine) fit the measured data within a reasonable
error. The regularized least-squares optimization method is the most common inversion
technique to reconstruct the arbitrary subsurface resistivity distribution from ERT data [29].
Two of the most common constraints used in the regularized least-squares optimization
method are the robust/blocky method (L1 norm) and smooth method (L2 norm). The
robust/blocky inversion method gives optimal results for models with sharp transitions in
resistivity values while the smooth inversion method results in an inversion model with
smooth variations in the subsurface resistivity [29].

ERT monitoring data are normally inverted using a time-lapse algorithm. There are
two main classes of time-lapse inversion algorithms using either the older ratio or difference
method [34] or the newer temporal smoothness-constrained method [35]. The difference
method is normally used with only two datasets at a time (the initial dataset and one later-
time dataset) and uses the difference or ratio of the apparent resistivity values. As far as the
authors know, the inversion is limited to time series with only two sets of measurements
at a single time and in case of having more than two datasets, we suppose that multiple
separate inversions are carried out using the initial dataset and one of the later-time datasets.
On the other hand, the newer temporal smoothness-constrained method is more difficult
to implement but it has the advantage of being more flexible. The method can be used to
invert more than two sets of measurements at a single time [35,36]. The second advantage
is that the nature of the changes in resistivity values between the time-lapse models can
be modified using the temporal roughness filter, i.e., whether considering the normal L2
norm with gradual changes in time or the L1 norm with abrupt/blocky changes in time.
Moreover, many other modifications are also possible, such as concentrating the changes
in selected areas where more information is available [37] or setting the changes to only
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increase or decrease with time [36]. The time-lapse smoothness-constrained least-squares
optimization method is described by Equation (1) [38]:

[J T
kRdJk +

(
λWTRmW + αMTRtM

)
]∆rk = JT

kRdgk −
(

λWTRmW + αMTRtM
)

rk−1 (1)

where J is the Jacobian matrix that contains the partial derivatives of the apparent resistivity
values with respect to the model resistivity values (r); k is the iteration number; W is the
spatial roughness filter matrix; M is the temporal roughness filter; g is the data misfit vector;
Rd, Rm, and Rt are weighting matrices used by the L1-norm inversion method [38]; λ is the
spatial damping factor vector; and α is the temporal damping factor, which controls the
relative importance given to minimize the difference between models at different times.

ERT monitoring systems managed by our team are mainly installed along earthen
embankments like river levees and tailings dams—e.g., [25] with homogenous material.
One exception is the monitoring site along a river levee in Colorno, Italy, where there is a
lateral inhomogeneity due to levee repair [39]. For all these sites, we initially compared
individual versus time-lapse inversion of ERT data and the results were completely similar
thanks to non-complex subsurface conditions. For the study site presented in this paper,
on the other hand, we noticed that suspected artifacts appeared in the results after the
beginning of rainfalls or dry periods when the data were inverted individually. Figure 3
illustrates an example of such inversion results for the data measured on 30–31 March
2022 before and after a rain event. This was the first rainfall event in the study site after
installing the ERT monitoring system. We know that the subsurface material in the lateral
zones along the ERT profile are composed of clay and thus, water infiltration would be
much slower in these parts compared to the higher-permeable central part. In any case,
we expect the resistivity values to be decreased along the whole profile on 31 March 2022
after the rainfall. Instead, we observe that the resistivity is only decreased (more than 50%)
in the central zone and meaningless increases occur in the resistivity values of the side
zones, approaching more than 20% on the right side. This is opposite to what should be
observed after a rainfall event and the suspected artifacts might be favored by the complex
subsurface geology of the study site. Opposite trends in the central and side zones of
the ERT profile were observed after one or two days of no rain. Instead of observing the
resistivity values to be increased along the whole profile, we observed that the resistivity
values were decreased in the side zones and only increased in the central part.
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3.1. Synthetic Tests

In order to investigate the problem, we defined a simplified geological model of the
study site on which we performed synthetic tests to compare individual versus time-lapse
inversions. The synthetic models of the study site (Figure 4) were defined in Res2dmod
(geotomosoft.com) [40] and the synthetic time-lapse ERT data were then generated for
these models. In order to be compatible with the ERT monitoring data in the study site, the
synthetic data were generated for the Wenner electrode configuration using 48 electrodes
with the unit electrode spacing of 3 m.
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Figure 4. Simplified time-lapse synthetic models of the study site. (a) Models 1 and 3 for the initial
model (defined based on coring data and resistivity values measured on samples in the laboratory)
and the return of Model 2 to Model 1 (after the rainfall stopped for a few days and the resistivity
was increased along the whole profile), respectively. The top image was obtained by inverting the
synthetic data calculated on the model. (b) Model 2 simulates the situation after a rainfall event with
resistivity values of the sand and gravel layer decreased along the whole profile (50% in the central
zone and 10% in side zones).

Model 1 illustrated in Figure 4a simulates an initial condition. This model is a sim-
plified layered model defined based on Figure 2. We remind that the purpose of synthetic
tests was only validating the presence of artifacts caused by individual inversions, and the
defined simplified model was shown to be adequate for this purpose. The resistivity values
are selected according to laboratory measurements performed on some selected samples
taken along the ERT line and at different depths. According to Model 1, the study site is
characterized by 0.5 m of a thin superficial clayey layer with the resistivity of 30 Ωm. This
superficial layer rests on a 4 m thick layer of dry sand and gravel with the resistivity of
7000 Ωm. One important characteristic of the second layer is the presence of an anomalous
central zone with considerably higher porosity and permeability. The resistivity of this
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central anomalous part is about 750 Ωm in dry conditions. The third layer in Model 1 is
another 0.5 m thick clay layer with the resistivity of 30 Ωm. As shown in the geological
model (Figure 2), the third layer becomes thicker in the central part of the profile. We thus
define a thicker part for this layer from about 80 m to 93 m along the x axis in the synthetic
model (Figure 4). More complexity is observed for deeper layers in the real geological
model (Figure 2), but we simplified the deeper parts of the synthetic model, defining a
fourth layer with the resistivity of 40 Ωm down to about 10.5 m. For what concerns the
depth-to-water table in the study site, complex behavior is observed as well (Figure 2) with
some piezometers measuring values as deep as about 13–14 m and a couple of piezometers
observing the water table as shallow as 4–5 m. Again, we simplified the synthetic model
defining the deepest layer to be below the water table for the full length of the ERT profile
and it is defined with the average resistivity of 8 Ωm. The inversion result for the synthetic
data calculated on Model 1 is also shown in Figure 4a. A comparison of this inverted
image with the examples of the inversion results shown in Figure 3 validates the model for
the purpose of this simulation since it shows that the defined synthetic model, although
simplified, is a proper representation of the main characteristics of the study site.

In order to define time-lapse synthetic models, Model 2 in Figure 4b simulates an
expected situation after a rainfall event. Considering that the central part of the profile
has a higher permeability, a rapid decrease of 50% in resistivity is modeled for this zone
while a slower decrease of 10% happens in less-permeable lateral parts of the sand and
gravel layer. The third model is defined to simulate a dry period and show the return to
the initial model after the rainfall stopped for a few days. Thus, compared to Model 2, the
resistivity values of the shallow layers in Model 3 are increased along the whole profile and
the subsurface returns to the initial situation. Therefore, Model 3 is actually Model 1 and it
is exactly the model shown in Figure 4a.

Synthetic data calculated on the models illustrated in Figure 4 were then inverted in
Res2dinvx64 software both individually and using the time-lapse algorithm. The results
showed that the problem of suspected inversion artifacts described in Section 3 was also
present when the synthetic data were individually inverted. As an example, Figure 5
illustrates the percentage resistivity changes for the resistivity images obtained using the
smooth inversion method in the x-z directions and independent inversions in the time
direction (singular inversion of each dataset). Figure 5a shows the percentage resistivity
changes between Model 2 and Model 1, i.e., how the resistivity values changed after the
rainfall. What we simulated is that going from Model 1 to Model 2 (Figure 4), the resistivity
values in the shallow layers decrease along the whole profile, but we observe significant
inversion artifacts in Figure 5a. The resistivity values are decreased in the central part of
the profile but the resistivity decrease is extended to the deepest parts as well as to the left
deep part of the image rather than occurring only in the shallow parts. Similar to field data,
the other important artifact is that instead of observing the 10% decrease in the two sides of
the profile for the shallow layers, we observe that the resistivity values are increased by
about 10% in the lateral zones. Similarly, what we simulated for a drying period after rain
going from Model 2 to Model 3 is that the resistivity increases in the shallow layers along
the whole profile. Instead, Figure 5b shows how inversion artifacts produce exaggerated
resistivity increases in the deep central and left zones rather than also modeling the increase
in the shallow two sides of the profile. These two side zones show misleading decreases of
more than 5% instead.
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synthetic data calculated on the models defined in Figure 4. (a) Resistivity changes after a rainfall
event: Model 2−Model 1. (b) Resistivity changes after a dry period: Model 3−Model 2.

Forward modeling tests confirmed the presence of significant inversion artifacts when
individually inverting the data. Time-lapse synthetic data were then inverted using the
time-lapse inversion algorithm, exploring optimal parameters that could give reasonable
results. We explored different parameters and the main parameter that showed remarkable
benefits was the time-lapse damping factor, which is the cross-time model damping factor.
The suggested common range for this parameter in Res2dinvx64 is 0.5–5. We tried different
values for the time-lapse damping factor, observing that the results were considerably
improved using values close to 5. However, some other inversion options also showed
some beneficial influence on the results. One of these options is the type of the constraint
in the time direction used in the time-lapse inversion. This temporal roughness constraint
takes into consideration how the resistivity model for the later-time dataset is related to
the model for the preceding dataset. We tried the options for the smooth changes and the
robust/blocky changes for the temporal roughness constraint, which, respectively, ensures
that time changes in the resistivity values of the corresponding model blocks are smooth
or blocky. Finally, it was important to integrate the time-lapse damping factor and the
temporal roughness constraint with the optimal inversion method in the space dimension,
i.e., the robust/blocky inversion or the smooth inversion for the changes in the model
resistivity in the x-z directions [29]. Examples of the inversion results for the synthetic
data calculated on the models illustrated in Figure 4 using different spatial roughness
constraints in x-z directions are shown in Figures 6 and 7 using the smooth inversions and
the robust/blocky inversions, respectively.

Comparing Figure 6a with Figure 6b,c, we can notice the benefit of increasing the
time-lapse damping factor to reduce the artifacts. As the time-lapse damping factor is
increased from 1, the problem of the non-real extension of negative changes after the rainfall
(Model 2−Model 1) or the positive changes during the drying period after the rainfall
(Model 3−Model 2) is better resolved. Moreover, Figure 6a is hardly approaching the zero
changes in deeper layers. Figure 6b,c can better reconstruct the zones with zero changes
in depth, but neither of these images are still ideal. While the resistivity decrease in side
zones is better approaching the modeled value in Figure 6b, the image is suffering more
from the depth extension of the changes compared to Figure 6c. We also explored the
effect of the temporal roughness constraint. Figure 6c,d were both produced using the
smooth inversion method as the spatial roughness constraint and using the time-lapse
inversion damping factor 5. The only difference is the temporal roughness constraint, using
the blocky time constraint in Figure 6c and the smooth time constraint in Figure 6d. We
can clearly observe the benefit of using the blocky changes in the time direction because
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significant artifacts remain when using the smooth constraint for the temporal roughness
constraint (Figure 6d).
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The tests described in Figure 6 showed the benefit of combining a large time-lapse
damping factor (3–5) with the option of blocky changes in the time direction, but the results
are not still ideal. We then tried similar tests using the robust/blocky inversion method in
the x and z directions. Figure 7 shows a couple of examples obtained using the time-lapse
damping factor 5 and the robust/blocky inversion method in space. Figure 7a was obtained
using the smooth temporal roughness constraint while Figure 7b was obtained using the
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blocky changes as the temporal roughness constraint. Similar to what we observed in
Figure 6, the benefit of using the blocky changes in the time direction is again highlighted in
these tests. The difference images obtained using the smooth temporal roughness constraint
are still suffering from misleading artifacts, mainly large changes exceeding +10% in deep
layers. A comparison of Figure 7b with Figure 6b,c, on the other hand, underlines the benefit
of using the robust/blocky inversion method in the space, which improves the similarity of
the expected changes as modeled in Figure 4. In conclusion, it was observed that using the
smooth inversion method in the space domain was not proper for the synthetic tests while
satisfactory results could be obtained using the robust/blocky method in space. Figure 7b
shows the benefit of using the robust/blocky method in x-z directions combined with the
blocky changes in the time direction and tuning the time-lapse inversion damping factor,
altogether causing the artifacts to be minimized and the solution to show the best fitting
with the models of Figure 4.

Geosciences 2025, 15, x FOR PEER REVIEW 10 of 17 
 

 

obtained using the blocky changes as the temporal roughness constraint. Similar to what 
we observed in Figure 6, the benefit of using the blocky changes in the time direction is 
again highlighted in these tests. The difference images obtained using the smooth tem-
poral roughness constraint are still suffering from misleading artifacts, mainly large 
changes exceeding +10% in deep layers. A comparison of Figure 7b with Figure 6b,c, on 
the other hand, underlines the benefit of using the robust/blocky inversion method in the 
space, which improves the similarity of the expected changes as modeled in Figure 4. In 
conclusion, it was observed that using the smooth inversion method in the space domain 
was not proper for the synthetic tests while satisfactory results could be obtained using 
the robust/blocky method in space. Figure 7b shows the benefit of using the robust/blocky 
method in x-z directions combined with the blocky changes in the time direction and tun-
ing the time-lapse inversion damping factor, altogether causing the artifacts to be mini-
mized and the solution to show the best fitting with the models of Figure 4. 

 

Figure 7. The time-lapse inversion of the synthetic data calculated on the models illustrated in Fig-
ure 4 using the robust/blocky inversion method for the spatial roughness constraint: (a) time-lapse 
damping factor 5 and smooth temporal roughness constraint, (b) time-lapse damping factor 5 and 
blocky temporal roughness constraint. 

3.2. Field Data 

Once the problem of inversion artifacts was well studied through forward modeling 
simulations, we moved towards the time-lapse inversion of field data. We focused on op-
timizing the time-lapse inversion parameters that were found to be the most influential in 
synthetic tests. Time-lapse inversion parameters were tested on datasets obtained in the 
first few months of the monitoring period to be sure to remove the artifacts as efficiently 
as possible. The monitoring system calculates the standard deviation of each measure-
ment as a control on the error in datasets. The standard deviation was mostly less than 
0.5% with the maximum of 1.9% for a couple of measurements for datasets used in this 
paper. Similar to synthetic datasets, optimal results for the time-lapse inversion of field 
data were obtained using a time-lapse damping factor equal to 5 and selecting the blocky 
changes for the temporal roughness constraint. However, different to synthetic simula-
tions, the best results for field data were obtained using the smooth inversion method for 

Figure 7. The time-lapse inversion of the synthetic data calculated on the models illustrated in
Figure 4 using the robust/blocky inversion method for the spatial roughness constraint: (a) time-
lapse damping factor 5 and smooth temporal roughness constraint, (b) time-lapse damping factor 5
and blocky temporal roughness constraint.

3.2. Field Data

Once the problem of inversion artifacts was well studied through forward modeling
simulations, we moved towards the time-lapse inversion of field data. We focused on
optimizing the time-lapse inversion parameters that were found to be the most influential
in synthetic tests. Time-lapse inversion parameters were tested on datasets obtained in the
first few months of the monitoring period to be sure to remove the artifacts as efficiently as
possible. The monitoring system calculates the standard deviation of each measurement
as a control on the error in datasets. The standard deviation was mostly less than 0.5%
with the maximum of 1.9% for a couple of measurements for datasets used in this paper.
Similar to synthetic datasets, optimal results for the time-lapse inversion of field data were
obtained using a time-lapse damping factor equal to 5 and selecting the blocky changes
for the temporal roughness constraint. However, different to synthetic simulations, the
best results for field data were obtained using the smooth inversion method for the spatial
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roughness constraint. Later in the following section, we will discuss more details on
this issue.

As an example, Figure 8 illustrates optimal time-lapse inversion for the data measured
before and after the first rainfall event after installing the ERT monitoring system in the
study site. Compared to Figure 3, which presents the same data with inversion artifacts,
Figure 8 now presents the realistic changes in resistivity values after a rainfall event. We
can now observe realistic resistivity changes that show a reduction of about 20% in the
shallow parts along the whole profile. Deeper layers show smaller changes due to a slower
penetration of rain water at depth, but the resistivity variations always remain negative.
We observe the most important changes with resistivity reductions larger than about 50%
in the higher-permeable zone in the middle part of the profile. All these changes reflect a
realistic situation compared to the strange variations observed in Figure 3.
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4. Discussion
While some studies are reported where minor differences are observed between

individual or time-lapse inversions of long-term ERT monitoring data, several cases are also
available where a time-lapse inversion algorithm is necessary to avoid artifacts [35]. This
is because a standard inversion approach does not include any constraints on resistivity
changes in the time direction. The study site presented in this paper is one such case
where the complex subsurface geology resulted in the production of significant inversion
artifacts when using individual or non-optimal time-lapse inversion algorithms for the
ERT monitoring data. The subsurface material has a considerably higher permeability in
the central zone along the ERT line compared to the lateral zones. Therefore, although
we expect that resistivity changes with time would have the same sign along the whole
ERT profile (i.e., decrease after rainfalls and increase after dry periods), the large resistivity
contrasts in the central part result in the production of artifacts in temporal images [26]. This
problem was explored in depth through synthetic simulations. According to the time-lapse
synthetic models defined in Figure 4, the resistivity is decreased along the whole profile
after a rainfall event. The modeled changes are 50% decrease in the central zone for the
higher-permeable part and 10% decrease in less permeable lateral zones, but the artifacts
generated by the individual inversions show up to 9% of an increase in the resistivity of the
lateral zones (Figure 5a). A similar problem happened after simulating a dry period when
we expect all resistivity values to be increased (100% in the central zone and 11% in lateral
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zones), but Figure 5b shows that the inversion artifacts are produced in the lateral sides of
the model where we observe a decrease with time rather than an increase in resistivity.

We compared singular versus time-lapse inversions of the synthetic time-lapse data.
The synthetic tests were important in validating the presence of inversion artifacts caused
by individual inversions and they proved the necessity of using a time-lapse inversion
algorithm. The tests also showed the importance of optimizing the time-lapse inversion
parameters, mainly the time-lapse damping factor and the temporal and space roughness
constraints, to produce reliable images and to correctly interpret the results. However,
the synthetic tests were not aimed at finalizing optimal time-lapse inversion parameters,
because we had defined a simplified layered model of the real study site and we had
used sharp changes between different vertical and horizontal boundaries for synthetic
tests. Therefore, the robust/blocky inversion method for the spatial roughness constraint
was more suitable for synthetic simulations to reconstruct the models with homogeneous
regions separated by sharp boundaries [28]. For the real data, on the other hand, we expect
a smooth subsurface resistivity distribution in the horizontal and vertical directions rather
than sharp boundaries. As a result, the best inverted images were obtained using the
smooth inversion method for the spatial roughness constraint that gives better results for
gradual changes in subsurface resistivities [28]. For the type of the constraint in the time
direction, the best results were obtained using the blocky temporal roughness constraint
regardless of the type of the spatial roughness constraint (smooth method for field data
and robust/blocky method for synthetic data).

The optimized time-lapse inversion parameters are continuously used to invert the
datasets measured by the monitoring system. For more than 95% of datasets acquired
from March 2022 to the time of writing this paper, the time-lapse inversion resulted in
meaningful and artifact-free resistivity maps. As an example, Figure 9 illustrates the trends
of average resistivity variations for successive days in the period 25 March–29 April 2022
compared to the rainfalls accumulated in the 24 h prior to each measurement. The graphs
presented in Figure 9a are plotted from the individual inversions of datasets using the
cloud software of the monitoring system while the graphs shown in Figure 9b are obtained
from optimal time-lapse inversions performed in Res2dinvx64 software. Three types of
resistivity variations are illustrated on the graphs shown in Figure 9: the average variations
in all resistivity values distributed in the section, which indicate the sign and the amount
of the dominant variation; the average positive variations in resistivity values, which are
expected to be null after rainfalls and to be dominant during dry periods; and the average
negative variations in resistivity values, which are expected to be null during dry periods
and to be dominant after rainfalls. Comparing the trends of average resistivity changes
with rainy and dry periods in Figure 9a with Figure 9b, we can observe how effectively
the inversion artifacts are minimized to less than 3% (occurring on 31 March, after an
important rainfall) using optimal time-lapse inversions. The trends of average variations
in all resistivity values distributed in the section are well correlated with rainfalls or dry
periods for the graphs shown in Figure 9b. As expected, these average resistivity changes
and the average positive variations follow similar trends after dry periods while the trend is
similar for the average resistivity changes and the average negative variations after rainfalls.
On the contrary, in Figure 9a, we observe remarkable artifacts, especially positive variations
after rainfalls, which affect the behavior of the total resistivity variations, demonstrating
that their extension and intensity are not negligible.
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Figure 9. Percentage variations in inverted resistivity sections versus rainfalls in 24 h for the data
inverted, applying (a) individual inversions, and (b) optimized time-lapse inversion.

The benefits of the time-lapse inversions that are synthetically demonstrated by the
average resistivities in Figure 9 were also checked in detail by comparing any individual
inversion with the corresponding optimized time-lapse inversion. Some examples are
illustrated in Figure 10. Figure 10a compares the percentage changes in resistivity values
for the data measured on 6 and 7 April, before and after a negligible rainfall (see Figure 9).
While the top image in Figure 10a obtained from individual inversions demonstrates
unreal positive changes in the central zone approaching a maximum of about 15% and
exaggerated negative changes of about 10% in the lateral parts, the bottom image obtained
from time-lapse inversions successfully removed these artifacts. Figure 10b presents the
example for the data measured before and after a rainfall event that, although not intense,
happens after a dry period (see Figure 9) so that we expect negative resistivity changes
in the shallow part. In the top image, we can observe artifacts produced by individual
inversion that show positive changes mainly in the right part of the ERT line. Applying
time-lapse inversion, artifacts of positive changes are eliminated and we observe only
realistic negative resistivity changes after the rainfall. Figure 10c reports the example for
a heavier rainfall that happens between 20 and 21 April (see Figure 9). The top section
obtained from individual inversion suffers again from positive resistivity changes of about
3-13% in the lateral parts while the bottom image is free from positive artifacts and shows
only negative resistivity changes due to rainfall infiltration in superficial layers. The last
example shown in Figure 10d shows resistivity variations for 25–26 April when no rainfall
happens and the subsurface is expected to have a net positive variation due to drying of
the layers. This is an opposite situation compared to what we expect after rainfalls. The top
image in Figure 10d shows positive resistivity changes in the central zone, but artifacts of
negative changes are also present in the lateral parts. Also, in this case, we can observe how
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such artifacts are removed in the bottom image when applying a time-lapse algorithm to
invert the data. We now observe only positive changes that are reasonably stronger in the
very superficial layer. All these examples demonstrate the effectiveness of the calibrated
time-lapse inversion algorithm to produce meaningful results that are compatible with
external variations, mainly rainfall, in the study site.
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5. Conclusions
We discussed a long-term ERT monitoring case for which the time-lapse inversions

were necessary to prevent artifacts and produce meaningful resistivity models. Forward
modeling simulations were necessary to explore the problem and to confirm the nature
of the unexpected results, i.e., inversion artifacts produced by individual tomographic
inversions. Synthetic tests were also useful to test the effects of the time-lapse inversion
parameters. The time-lapse damping factor and the proper norm both for the spatial and
the temporal roughness constraint were the most important parameters to be properly
calibrated. The simplified synthetic models defined with sharp boundaries were better
described using the robust/blocky inversion method for the spatial roughness constraint
while the real subsurface with smoother boundaries was better reconstructed using the
smooth method in x-z directions. In both cases, the proper norm in the x-z directions could
produce resistivity models close to the real situations when combined with the time-lapse
damping factor 5 and constraining the time-lapse inversions using the blocky changes in the
time direction. The main objective in this paper was to validate the inversion results for the
mentioned case study. One future perspective is to apply other inversion methods where
the optimal inversion parameters can be automatically optimized and updated during
the inversion process [37,41,42] or like the method described in [26] that was applied to
a 3D time-lapse dataset. Since the method is guaranteed to eliminate artifacts, it will be
interesting to try it on the 2D time-lapse datasets of the case study presented in this paper.
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