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Abstract: In recent years, lithium-ion batteries (LiBs) have gained a lot of importance due to the
increasing use of renewable energy sources and electric vehicles. To ensure that batteries work
properly and limit their degradation, the battery management system needs accurate battery models
capable of precisely predicting their parameters. Among them, the state of charge (SOC) estimation is
one of the most important, as it enables the prediction of the battery’s available energy and prevents
it from operating beyond its safety limits. A common method for SOC estimation involves utilizing
the relationship between the state of charge and the open circuit voltage (OCV). On the other hand,
the latter changes with battery aging. In a previous work, the authors studied a simple function to
model the OCV curve, which was expressed as a function of the absolute state of discharge, q, instead
of SOC. They also analyzed how the parameters of such a curve changed with the cycle aging. In the
present work, a similar analysis was carried out considering the calendar aging effect. Three different
LiB cells were stored at three different SOC levels (low, medium, and high levels) for around 1000
days, and an analysis of the change in the OCV-q curve model parameters with the calendar aging
was performed.

Keywords: lithium-ion batteries; calendar aging; OCV curve; state of charge estimation

1. Introduction

The recent energy crisis and the issue of climate change are spurring governments
to incentivize the production of energy through renewable energy sources (RESs) and
electric mobility to reduce gas emissions and reliance on fossil fuels. Unfortunately, the
power produced by RESs is intermittent and unpredictable, which means that they may
not provide energy when needed or, conversely, produce it when not required. Therefore,
to make the most of them, it is convenient to install energy storage systems. Additionally,
energy storage systems are also necessary for electric mobility, preferably with high energy
density, high efficiency, and a long lifecycle. In this scenario, lithium-ion batteries (LiBs)
are currently the preferred technology due to their high energy density, relatively high
power density, and low self-discharge, making them suitable for both mobile and stationary
applications [1].

LiBs are subjected to various degradation mechanisms that limit their lifespan and
degrade their performance. These degradation mechanisms are caused by storage and
operating conditions. The former is known as calendar aging and mainly depends on
the temperature and state of charge (SOC) as a function of the time for which the battery
has been stored under those conditions. The latter, commonly referred to as cycle aging,
mainly depends on the temperature, current rate, SOC, and charging and discharging
cut-off voltages as a function of the total charge exchanged with the battery [2,3]. To
reduce the degradation and extend the lifespan of batteries, it is essential to control battery
operations properly and store them under optimal conditions. The former is ensured by
the battery management system (BMS), which predicts battery parameters such as the
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SOC, temperature, and state of health (SOH), using appropriate models and controlling the
battery accordingly. Therefore, it is crucial for the aforementioned battery models to be as
accurate as possible [4].

The estimation of the SOC is of paramount importance as it allows the determination
of the remaining available battery capacity and ensures that the battery operates within its
safety limits. In fact, properly controlling the SOC of the battery helps avoid working in an
operating area where its degradation increases. Many different SOC estimation methods
can be found in the literature. In recent years, some filter-based methods (Kalman filter [5],
unscented Kalman filter [6], etc.) together with some observer methods (sliding mode
observer [7], nonlinear observer [8], etc.) and intelligent algorithms (fuzzy logic [9], neural
networks [10], etc.) have been proposed. However, traditional methods are still preferred
in BMSs [11]. Among them, Coulomb counting remains the most widely used method due
to its simplicity and execution speed [12]. Unfortunately, this method has some drawbacks,
including heavy reliance on initial SOC values, the need for highly accurate current sensors,
and susceptibility to cumulative errors. Other traditional methods are the model-based
approaches which are quite accurate and simple [13]. On the other hand, they require a
good knowledge of the open circuit voltage (OCV) curve [14], which is typically obtained
through lengthy tests involving full charge or discharge of the battery at very low current
rates or through the hybrid pulse power characterization method [15]. Furthermore, the
model-based approaches are generally used to correct the Coulomb counting estimation
method [11].

Different models can be found in the literature that are able to describe the dependence
of the OCV curve as a function of the SOC. They can be mainly divided into table-based
models and analytical models. In the former, pairs of OCV and SOC values are stored in a
table, and interpolation is performed between the stored values [16,17]. The main advantage
of this method is its low computational requirements, but it may require significant memory
if high precision is desired. The analytical models, instead, use mathematical functions
to describe the OCV curve and can be further classified into linear regression models
and nonlinear regression models. Linear regression models consist of a sum of products
between parameters and linear or nonlinear functions of SOC, while nonlinear regression
models involve a general function of SOC and parameters. In linear regression models,
the parameters can be determined using linear regression methods such as the linear least
square method. In contrast, nonlinear regression methods like the nonlinear least square
method are required for parameter estimation in nonlinear regression models. In some
cases, it is also possible to linearize the nonlinear regression model and employ a linear
regression method.

Among the mathematical expressions used in the OCV-SOC curve modeling, poly-
nomial functions are the most commonly employed. These polynomials can range from
the second-degree [18] to the twelfth-degree [19,20], depending on the desired accuracy
and complexity. Lower-degree polynomials are simpler but offer limited precision and
can accurately represent only a small portion of the OCV-SOC curve. Conversely, the
higher-degree polynomials can provide excellent precision and fit the entire OCV curve
well. However, they require many parameters to be fitted and may exhibit incorrect trends
outside the range or between the experimental points. Other analytical models, which are
possible to find in the literature, are based on logarithmic functions, also called Nernst mod-
els [15,21,22] or exponential functions [23]. Logarithmic functions offer a good accuracy
with only three parameters to be fitted but cannot be defined for an SOC equal to 0 or 1.
Moreover, there are a lot of different combinations of the aforementioned functions [24–28],
some of which yield higher accuracy than others. Among them, the model proposed
in [23] demonstrates high accuracy and low complexity. The latter is composed of two
exponentials and a quadratic term, with a total of five parameters.

The OCV-SOC curve changes with the battery temperature and aging. Therefore,
accurately estimating this curve and understanding its dependence on these factors is
crucial for building a reliable battery model and, consequently, a reliable BMS. In [29], the
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authors corrected the SOC estimation with the value of the actual battery capacity and
stated that the OCV curves were the same with this correction, despite different aging
conditions. A similar procedure was employed in [30], where the SOC was defined as a
function of the SOH and then used inside the OCV-SOC relation. The changes in the OCV-
SOC curve and the consequent variations in the incremental capacity of a LiB were analyzed
in [25], in which an extended Kalman filter was used for the parameter estimation. In [31], a
correction of the OCV-SOC curve based on the SOH and temperature was proposed, while
the authors in [32] used a convolutional neural network to estimate the electrode aging
parameters, which were then used for the OCV-SOC curve estimation.

In all cases, there seems to be a lack of understanding regarding how the parameters
of an OCV-SOC curve change as a function of aging. In a previous work [33], the authors
used a double exponential function to model the discharge OCV curve as a function of the
absolute state of discharge, q, instead of the SOC, and investigated the dependency of its
parameters on cycle aging at a fixed temperature.

In light of the above, the focus of the present paper was to examine the variation of
the discharge OCV-q curve as a function of the calendar aging at a fixed temperature. The
same procedure and OCV-q curve model adopted in [33] to analyze the cycle aging of a
LiB were applied to three different LiB cells of the same type. The latter were stored at
three different SOC levels (low, medium, and high levels) for a period of almost three years
under the same temperature conditions. Therefore, the parameter variation of the OCV-q
curve model was studied for different calendar aging levels (i.e., different storage times)
and three different SOC levels, developing a calendar aging model. Finally, the proposed
model was validated through a wide campaign of experimental tests.

2. Battery Model

To develop an aging model that considers how the discharge OCV-q curve changes as
a function of calendar aging, we needed to start from an equivalent electric circuit battery
model. This allowed us to model the discharge OCV-q curve and develop a test procedure
to extract it. In the literature, it is possible to retrieve many equivalent electric circuit models
able to predict both the static and dynamic behavior of batteries. They can be very simple,
as the ones reported in [34–36], or much more complex, as the ones reported in [37–39]. The
choice of the appropriate equivalent electric circuit model depends on the desired accuracy
and the specific aspects to be described for the application.

For the scope of the present paper, the simplest model, shown in Figure 1, was suitable
for characterizing the discharge OCV-q curves. This model consists of a voltage source, E, as
a function of the absolute state of discharge, q, which models the OCV of the battery, and a
series resistor Rin, which represents the total internal resistance of the battery. This resistance
is related to the ohmic resistance of the electrode and electrolyte, charge transfer chemical
reaction resistance, solid electrolyte interface (SEI) resistance, and diffusion resistance.
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lows: 

Figure 1. Equivalent electric circuit model.

According to this model, it is possible to express the battery terminal voltage as follows:

V = E − Rin · I (1)

where I is the battery current.
The analytical expression chosen to model the discharge OCV-q curve was the same as

that reported in [33], which, in that case, was used to model the changes in the discharge
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OCV-q curve as a function of the cycle aging. This analytical expression consists of two
exponential terms and a constant one:

E(q) = a · eb·q + c · ed·q + f (2)

where a, b, c, d, and f are five parameters that, in our case, are functions of the calendar
aging, e is the Euler’s number, while q is the absolute state of discharge in Ah and defined
as follows:

q =
1

3600

t∫
0

I · dτ + q(0) (3)

where q(0) is the initial state of discharge. In this way, when q is null, the battery is fully
charged, i.e., SOC = 100%; conversely, when q equates the actual capacity of the battery,
Ca, the latter is fully discharged, i.e., SOC = 0%. Therefore, the SOC can be expressed as a
function of the absolute state of discharge, as follows:

SOC =

(
1 − q

Ca

)
· 100. (4)

To quantify calendar aging, the calendar time taging expressed in days was used. Thus,
the five parameters of (2) could be expressed as a function of this calendar time.

In this work, the procedure to obtain the discharge OCV-q curve was performed by
discharging the battery at the nominal current rate (1C) to speed up the tests, as performed
in [33]. Therefore, it was essential to correct the discharge voltage curve by eliminating
the voltage drop over the total internal resistance of the battery. Thus, it was necessary to
estimate the value of such an internal resistance. For the sake of simplicity, as assumed
in [33], the battery’s internal resistance was considered to be quite constant as a function
of the absolute state of discharge. Moreover, assuming the battery was fully charged,
when the discharge at constant current started, different phenomena, with different time
constants, led to an electrical transient. To obtain the total battery’s internal resistance, the
entire electric transient had to be extinguished. To do this, we had to consider a proper time
interval related to the largest time constant τ, which corresponds to the diffusion process
of the lithium/lithium ions into the electrodes and electrolyte. Through the procedure
reported in [26,27], it was possible to identify that time interval, considered to be five
times the largest time constant τ, in the first part of the discharge voltage curve (Figure 2).
Therefore, the resulting voltage variation related to that time interval was estimated. By
calculating the ratio between that voltage variation and the current step, the battery’s
internal resistance was calculated, and the discharge voltage curve was corrected, obtaining
the discharge OCV-q curve. Finally, the part of the OCV-q curve corresponding to the
considered electric transient was eliminated to avoid errors in the following analysis.
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3. Experimental Setup and Test Procedure

In the present work, three LiCoO2 8773160K pouch cells of the same batch, manufac-
tured by General Electronics Battery Co. Ltd. (Shenzhen, China), were employed for the
experimental tests. The main specifications of this type of cell are reported in Table 1.

Table 1. Battery cell specifications.

Parameter Value

Nominal capacity 10 Ah
Maximum voltage 4.2 V

Discharge cut-off voltage 2.75 V
Maximum continuous discharge current 100 A (10C)

The three battery cells were used to test how the discharge OCV-q curve changed as a
function of the calendar aging under three different storage conditions related to low SOC
(about 7%), medium SOC (about 50%), and high SOC (about 93%).

3.1. Experimental Setup

Figure 3 shows the experimental setup that was composed of a potentiostat (SP-150)
connected to a 100 A booster (VMP3B-100). Both instruments are manufactured by Biologic
Science Instrument, and they are connected to a PC via an ethernet cable. The PC controlled
them through the EC-Lab software. The 100 A booster was connected to the battery cell
under test through a power cable.
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The battery cell arrangement consisted of a heatsink, two fans, three Peltier cells, a dc
voltage source, a temperature probe, and a Texas Instrument DRV8303 inverter controlled
by an F28069M controller board. The three Peltier cells were put between the battery cell
under test and the heatsink to maintain the battery temperature as uniform and constant
as possible at 25 ◦C during the discharge voltage curve measurements. This was carried
out to avoid changes on the OCV-q curve due to temperature variation. To do this, they
were connected in series and powered by the inverter, which was, in turn, controlled by the
F28069M with a PI controller. Finally, the inverter was supplied using a dc voltage source.
Figure 4 shows the schematics of the temperature control.
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3.2. Test Procedure

The test procedure used for the analysis consisted of two main phases: the discharge
voltage curve measurement phase and the calendar aging phase. The former phase was
conducted at the beginning of the test and after each calendar aging phase for all three
battery cells. In this way, it was possible to assess how the discharge OCV-q curve changed
as a function of the calendar aging at different SOC levels.

3.2.1. Voltage Discharge Curve Measurement Phase

This phase consisted of fully charging and discharging the battery cell under test at
the nominal current (1C) using the well-known constant current–constant voltage (CC-CV)
protocol for the charging phase and the constant current protocol for the discharging phase.
In particular, the battery cell was charged with a constant current of 10 A (1C) until the
battery terminal voltage reached 4.2 V. After that, this voltage was applied until the battery
current dropped by 100 mA (0.01C). At that stage, the battery cell could be considered
charged at 100% of SOC. After completing the previous step, the battery cell was discharged
at a constant current of 10 A (1C) until the battery terminal voltage reached 2.75 V. This
entire procedure was repeated seven times for each of the three battery cells. In fact, for the
first use of the batteries and after each calendar aging phase, the battery cells needed to
be activated.

Finally, after each voltage discharge curve measurement phase, the three battery cells
were brought to about 7%, 50%, and 93% of SOC for the low, medium, and high SOC tests,
respectively. In particular, for the low and medium SOC tests, the cells were initially fully
discharged with the CC-CV protocol, and then a charge current of 10 A (1C) was applied
to move 0.7 Ah (7% of the nominal capacity) and 5 Ah (50% of the nominal capacity),
respectively. On the other hand, for the high SOC test, the battery cell was first fully
charged with the CC-CV protocol, and then a discharge current of 10 A (1C) was applied
to move 0.7 Ah (7% of the nominal capacity). It is worth noting that since, during the
aging, the actual capacity of the battery cells decreases, the moved charge (0.7 Ah and 5 Ah)
corresponds to different percentages of SOC. In any case, these differences are minimal
(about 5%) and do not change the SOC ranges at which the three cells were stored.

3.2.2. Calendar Aging Phase

This phase consisted of storing the three battery cells in a cabinet at a temperature
between 20 ◦C and 30 ◦C for a certain time interval. The duration of this time interval was
not constant throughout the entire analysis, but it varied according to the availability of the
experimental setup.

4. Results and Model Validation

According to the test procedure reported in the previous section, a total of twelve
calendar aging phases were evaluated at specific time intervals: 0th, 35th, 70th, 99th, 136th,
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205th, 273rd, 344th, 437th, 682nd, 743rd, and 997th day. The entire duration of the testing
period was about 1000 days. Among these twelve tests, a subset of four (at the 0th, 205th,
437th, and 997th day) was selected and used to tune the proposed aging model. As stated
before, for each calendar aging phase and battery cell under test, seven voltage discharge
curves were performed to activate the battery cells and stabilize their capacities. The latter
were estimated in Ah at the rated nominal current of 10 A (1C) by integrating the current
over the entire discharging time. Figure 5a shows an example of the battery capacity trend,
as a function of the seven voltage discharge curve measurements, for the high SOC test
battery cell on the 0th day. From this figure, it is possible to recognize that the values of
the battery capacity become quite stable after at least five full charge–discharge cycles.
Therefore, the last two voltage discharge curves were averaged and used for the analysis.
Figure 5b illustrates the related temperature profile during the entire discharge curve
measurement. Finally, according to the procedure proposed in [26,27], the time interval
related to the lithium-ion diffusion was estimated to be approximately 50 s for all discharge
curves. Therefore, for each of them, the total battery’s internal resistance was evaluated
along with the related voltage drops, and the initial section of the curve was eliminated. In
this way, the OCV-q curves for each calendar aging phase and SOC level were obtained.
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4.1. Model Characterization

In the discharge voltage curve measurements, each battery cell under test was initially
fully charged up to 4.2 V using the CC-CV protocol and then fully discharged with the
CC protocol to obtain the OCV-q curves. Consequently, we can assume that all the OCV-q
curves started from the maximum battery voltage of 4.2 V, and the parameter f of (2) can
be rearranged as follows:

f = 4.2 − a − c. (5)

Therefore, the total number of parameters to be tuned in (2) reduces to just four. At
this stage, the OCV-q curves were fitted using the proposed OCV-q analytical expression
through the nonlinear least square regression method, and the coefficients of determination
(R2) were evaluated.

Figure 6 illustrates the experimental OCV-q curves along with the corresponding
fitting functions for the four tests chosen for the characterization of the model at each SOC
level, and Figure 7 shows the related R2. From these figures, it is possible to recognize a
very good agreement between the experimental and modeled data for the low, medium,
and high SOC tests. Moreover, the R2 is greater than 0.995 for all tests.
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Figure 6. Experimental OCV-q curves and their fitting functions obtained through the nonlinear least
square method for the characterization subset.
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Furthermore, it is worth noting that the capacity fade experienced by the battery
cells becomes more pronounced as the storage SOC level increases. In fact, for the battery
cell stored at a low SOC, the capacity fade is about 5%, while for the medium SOC, it is
about 13%, and for the high SOC, it is about 25%. This can be attributed to a significant
potential disequilibrium at the electrode/electrolyte interface resulting from a high SOC.
Therefore, secondary chemical reactions such as corrosion, electrolyte decomposition, and
SEI decomposition occur, leading to the loss of lithium inventory and active material, thus
resulting in faster capacity fade [40,41].

Figure 8 shows the behavior of the parameters a, b, c, and d of (2) as a function of the
calendar time for the three SOC levels. From this figure, it is possible to note that, similar
to the results obtained in [33] for cycle aging, the parameters a, b, and d do not present a
well-defined trend as a function of the calendar time. Therefore, following the analysis
performed in [33], we opted to consider, for each SOC level, the values of the parameters b
and d constant at their mean values obtained previously and reported in Table 2. In this
way, the function of the discharge OCV-q curve becomes linear in the parameters a and c;
thus, the linear least square regression method could be applied.

Figure 9 illustrates the comparison between the experimental OCV-q curves and the
corresponding fitting functions for the four tests chosen for the characterization of the
model and for each SOC level. Additionally, Figure 10 shows the related R2 values obtained
by maintaining parameters b and d constant. From these figures, it is possible to recognize
a good agreement between the experimental and modeled data for the low and medium
SOC tests, while the agreement for the high SOC tests is a little worse. In any case, the R2 is
greater than 0.985 for all the tests.
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Table 2. Mean values of parameters b and d.

SOC Level b [Ah−1] d [Ah−1]

Low SOC −0.2393 2.411
Medium SOC −0.2635 2.183

High SOC −0.2856 2.000
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Figure 9. Experimental OCV-q curves and their fitting functions obtained by fixing the parameters b
and d and through the linear least square method for the characterization subset.
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Figure 10. Coefficients of determination R2 obtained by fixing the parameters b and d for the
characterization subset.

In all cases, the new values of parameters a and c exhibited a well-defined behavior,
enabling them to be fitted as a function of the calendar time. For the parameter a, a linear
least square regression was performed using the following fitting function:

a = αa · taging + βa (6)

where αa and βa are the coefficients of the fitting function of the parameter a. For the
parameter c, a nonlinear least square regression was performed instead, using the follow-
ing expression:

c = αc · tδc
aging + βc. (7)

where αc, βc, and δc are the coefficients of the fitting function of the parameter c. The choice
to use the expression (7) for parameter c was made to find an analytical expression that was
suitable for all three SOC levels. Finally, Figure 11 shows the behavior of parameters a and
c of (2) as a function of the calendar time for the three SOC levels, along with their related
fitting functions. Table 3 reports the coefficients of (6) and (7). In this way, an aging model
with only two parameters that depend on calendar aging was derived.

Energies 2023, 16, x FOR PEER REVIEW 10 of 16 
 

 

 

Figure 10. Coefficients of determination R2 obtained by fixing the parameters b and d for the charac-

terization subset. 

In all cases, the new values of parameters a and c exhibited a well-defined behavior, 

enabling them to be fitted as a function of the calendar time. For the parameter a, a linear 

least square regression was performed using the following fitting function: 

 =  +
a aging a

a t  (6) 

where αa and βa are the coefficients of the fitting function of the parameter a. For the pa-

rameter c, a nonlinear least square regression was performed instead, using the following 

expression: 


 =  + .c

c aging c
c t  (7) 

where αc, βc, and δc are the coefficients of the fitting function of the parameter c. The choice 

to use the expression (7) for parameter c was made to find an analytical expression that 

was suitable for all three SOC levels. Finally, Figure 11 shows the behavior of parameters 

a and c of (2) as a function of the calendar time for the three SOC levels, along with their 

related fitting functions. Table 3 reports the coefficients of (6) and (7). In this way, an aging 

model with only two parameters that depend on calendar aging was derived. 

  

Figure 11. Parameters a and c as a function of the calendar time (with b and d fixed) and their fitting 

functions for the characterization subset. 

  

Figure 11. Parameters a and c as a function of the calendar time (with b and d fixed) and their fitting
functions for the characterization subset.



Energies 2023, 16, 4869 11 of 16

Table 3. Coefficients of the parameters a and c.

SOC Level αa [V/Days] βa [V] αc [V/Days] βc [V] δc

Low SOC 2.580 × 10−5 0.5580 −6.017 ×
10−14 1.1 −7.362 ×

10−11

Medium SOC 1.072 × 10−4 0.5258 −1.420 ×
10−12 1.3 −9.443 ×

10−10

High SOC 1.833 × 10−4 0.4875 −4.808 ×
10−19 4.0 −4.551 ×

10−9

4.2. Model Validation

The validation of the model was assessed by evaluating the absolute error (errOCV,abs)
and relative percentage error (errOCV,rel%) between the estimated discharge OCV-q curves
and the corresponding experimental curves, using all twelve experimental tests at different
calendar times for each SOC level. They were evaluated as follows:

errOCV,abs =
∣∣∣Emod(q)− Eexp(q)

∣∣∣ (8)

errOCV,rel% =
errOCV,abs

Eexp(q)
· 100 (9)

where Eexp(q) and Emod(q) are, respectively, the experimental and modeled values of the
OCV-q curves. Moreover, to have an overall indicator of the goodness of fit, the R2 was
also calculated.

Figure 12 shows the maximum and mean values of the relative percentage error of the
OCV-q curves as a function of calendar aging. From this figure, it is possible to note that
the highest maximum relative percentage errors are about 5%, 7%, and 6.5% for the low,
medium, and high SOC tests, respectively. Instead, the mean relative percentage errors for
the low, medium, and high SOC tests are lower than 0.45%, 0.65%, and 0.9%, respectively,
across all calendar aging levels. On the other hand, the relative percentage error can have
different weights for different states of discharge because the OCV curve changes as a
function of q. For this reason, Figure 13 shows the maximum and mean values of the
absolute error. The maximum value of the latter is about 165 mV for the low SOC tests and
220 mV for the medium and high SOC tests, while the mean values of the absolute error
are lower than 15 mV, 22 mV, 30 mV for the low, medium, and high SOC tests, respectively,
across all aging levels. Finally, Figure 14 reports the experimental OCV-q curves compared
with the ones obtained through the proposed model for all tests and SOC levels, while
Figure 15 shows the related R2. The latter are larger than 0.9763, 0.9542, and 0.9490 for the
low, medium, and high SOC tests, respectively.

The knowledge of the variation law of the OCV-q curve as a function of calendar aging
can be employed to estimate the actual battery capacity. This, in turn, allows the correction
of the SOC estimation and updating of the SOH in terms of capacity fade. In particular, the
actual battery capacity, Ca, can be calculated by equating the (2) to the minimum cut-off
voltage Emin of the battery. This is due to the fact that when the open circuit voltage E of
the battery equals its minimum cut-off voltage, the absolute state of discharge q is equal
to the actual battery capacity. The percentage relative error of the capacity was evaluated
as follows:

errcapacity,rel% =

∣∣qmod(Emin)− qexp(Emin)
∣∣

qexp(Emin)
· 100 (10)

where qmod (Emin) and qexp (Emin) are the estimated and experimental actual battery capaci-
ties, respectively.
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Theoretically, the minimum cut-off voltage for the battery used in this work would
be 2.75 V. However, due to the elimination of the voltage drop over the internal resistance,
the actual cut-off voltage was higher and depended on the amplitude of that voltage drop
itself. Nonetheless, since the last experimental point of each discharge OCV-q curve is
close to the minimum cut-off voltage, this experimental point was considered as Emin, and
the related value of the actual battery capacity, Ca, was compared with the modeled one.
Figure 16 shows the capacity percentage errors for the three SOC levels. From this figure,
it is possible to recognize that the capacity error is lower than 1.5% for all the aging and
SOC levels.
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Finally, once the actual capacity of the battery is obtained, it becomes possible to correct
the SOC estimation according to (4) and update the value of SOH in terms of capacity fade
as follows:

SOH =

(
1 − Ca

Ci

)
· 100 (11)

where Ci is the initial battery capacity. The results highlight the significant impact of storing
the battery at a high SOC, as it degrades much faster. Specifically, the battery stored at a
high SOC reached the end of its life in less than three years, whereas the one stored at a low
SOC experienced minimal capacity fade.

5. Conclusions

In this work, a simple analytical function composed of two exponential terms and a
constant one with five parameters was used to model the behavior of the discharge OCV-q
curves of three LiCoO2 batteries of the same batch stored at three different levels of SOC
(low, medium, and high levels) for different calendar aging levels. Twelve discharge OCV-q
experimental curves were performed over about 1000 days at different calendar times.

The proposed model was characterized using a subset of four discharge OCV-q experi-
mental curves at the 0th, 205th, 437th, and 997th day. Firstly, the proposed analytical model,
being nonlinear in its parameters, was fitted using the nonlinear regression least square
method. Moreover, one of the parameters, namely f, was expressed as a function of the
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other two parameters, a and c, with the constraint that all the OCV-q curves started from
the maximum cut-off voltage of 4.2 V. This reduced the number of parameters to be found
to four. The fitting procedure yielded modeled data for the three SOC levels that showed
good agreement with the experimental ones. This agreement was further confirmed by the
high value of the R2 for all the tests. The four parameters a, b, c, and d were reported as a
function of the calendar time. On the other hand, the parameters a, b, and d did not exhibit
a well-defined trend. Following the analysis performed in [33], we considered the value of
the parameters b and d fixed at their mean values obtained previously for all the SOC levels.
Therefore, the analytical model became linear in its parameters, and the fitting procedure
was performed again using the linear least square method. In this way, the parameters a
and c could be fitted using simple analytical expressions for the three SOC levels, and the
OCV-q model considering the calendar aging was obtained.

Afterward, the model was validated through all twelve experimental OCV-q curves,
and the absolute error, percentage relative error, and coefficients of determination R2 were
evaluated as indicators of the goodness of fit. Through the analysis of the results, it is
possible to recognize that the mean relative percentage errors of the low, medium, and high
SOC tests are, respectively, lower than 0.45%, 0.65%, and 0.9% for all the calendar aging
levels. Additionally, the R2 values are greater than 0.9763, 0.9542, and 0.9490 for the low,
medium, and high SOC tests, respectively.

Finally, the proposed model can also be used to estimate the battery capacity for
all storage SOC and aging levels. The estimated battery capacity values were compared
with the corresponding experimental ones, and the capacity relative percentage error was
calculated. This error is lower than 1.5% for all the tests. The battery capacity obtained
can then be used to correct the SOC estimation and evaluate the capacity fade. Based on
the results, it is possible to confirm that the worst storage condition for these kinds of
LiBs occurs at high SOCs. Indeed, the battery stored at a high SOC reached its end of life
before three years. On the other hand, the batteries stored at lower SOCs are still usable
considering the same time span. This can be due to a notable imbalance that arises between
the electrode and electrolyte interface caused by a high SOC. As a consequence, secondary
chemical reactions such as corrosion, electrolyte decomposition, and SEI decomposition
take place, resulting in the depletion of lithium inventory and active material.

In light of the above, it is possible to claim that the proposed calendar aging model is
simple yet quite accurate in modeling the OCV-q curve. Moreover, it can be valuable for
correcting SOC estimations and evaluating the actual battery capacity as an indicator of
the SOH.
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