
APSIPA Transactions on Signal and Information Processing, 2022, 11, e36
This is an Open Access article, distributed under the terms of the Creative Commons 
Attribution licence (http:// creativecommons.org/ licenses/ by-nc/ 4.0/ ), which permits un-
restricted re-use, distribution, and reproduction in any medium, for non-commercial use, 
provided the original work is properly cited.

Overview Paper

An Overview on the Generation and
Detection of Synthetic and Manipulated
Satellite Images
Lydia Abady1∗, Edoardo Daniele Cannas2, Paolo Bestagini2, Benedetta 

Tondi1, Stefano Tubaro2 and Mauro Barni1

1Dipartimento di Ingegneria Dell’Informazione e Scienze Matematiche, 
Universitá di Siena, Siena, Italy
2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di 
Milano, Milano, Italy

ABSTRACT

Due to the reduction of technological costs and the increase of satellite
launches, satellite images are becoming more popular and easier to obtain.
Besides serving benevolent purposes, satellite data can also be used for
malicious reasons such as misinformation. As a matter of fact, satellite
images can be easily manipulated relying on general image editing tools.
Moreover, with the surge of Deep Neural Networks (DNNs) that can gen-
erate realistic synthetic imagery belonging to various domains, additional
threats related to the diffusion of synthetically generated satellite images
are emerging. In this paper, we review the State of the Art (SOTA) on
the generation and manipulation of satellite images. In particular, we
focus on both the generation of synthetic satellite imagery from scratch,
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and the semantic manipulation of satellite images by means of image-
transfer technologies, including the transformation of images obtained
from one type of sensor to another one. We also describe forensic detec-
tion techniques that have been researched so far to classify and detect
synthetic image forgeries. While we focus mostly on forensic techniques
explicitly tailored to the detection of AI-generated synthetic contents,
we also review some methods designed for general splicing detection,
which can in principle also be used to spot AI manipulate images.

Keywords: Remote sensing, generative models, fake image detection,
segmentation.

1 Introduction

As technology develops and deployment costs reduce, satellites are getting
more and more appealing for accomplishing various tasks [65]. According to
the United Nations – Office for Outer Space Affairs (UNOOSA), the number
of launched satellites increased from a few hundred in 2019 to more than a
thousand in 2020. These figures continued to grow throughout 2021, and the
trend will likely continue in the next year.

Some classical usages of satellite images include crops monitoring, urban
expansion monitoring, meteorological forecasting, and land cover mapping,
just to mention a few [91]. Other less known applications include intelligence
or military missions. For instance, satellite images have been used to fend off
misinformation campaigns or investigate the truth of events in areas that are
too menacing or difficult to reach. More often, among other things, they were
used to record military forces deployment [24] and damages that occurred to
infrastructure in conflicts [41].

Due to their strategic role, satellite images have often been the objective of
malicious manipulations [75, 94, 115]. As a matter of fact, simple manipulation
of satellite data can be obtained with standard image editing tools such as
Photoshop and GIMP. More sophisticated kinds of manipulation can be applied
by exploiting some of the latest deep learning findings.

In the last years, Deep Neural Networks (DNNs) have witnessed rapid im-
provements in their ability to forge digital contents [56, 123]. The performance
reached by these tools is such that nowadays the trustworthiness of any type
of media we come across can genuinely be questioned. Satellite images are
no exception. However, the direct application of common processing tools to
the satellite imagery domain is often not viable, due to the different nature of
these images with respect to standard images, e.g., their multi-spectral nature
and their content, and the different needs stemming from remote sensing
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applications. This has led to the development of dedicated techniques for the
generation and manipulation of satellite imagery. As a consequence, dedicated
detection techniques to reveal synthetic and manipulated images are also being
developed.

In this paper, we overview the most relevant methods developed so far for
the generation and manipulation of remote sensing imagery, with particular
attention, but not exclusively, to techniques based on DNNs. We consider both
the works focused on the generation of synthetic satellite images from scratch
using Generative Adversarial Networks (GANs), as well as those aiming at
modifying existing satellite images. Data type translations of satellite images
and techniques applied to improve the image quality such as colorization and
cloud removal, are other examples where image processing techniques and
DNN’s are used to create synthetic data that do not stem directly from the
sensors. Even though these methodologies are usually applied for benevolent
purposes, as a matter of fact, their application results in non-genuine products,
whose origin should be exposed to users. In the rest of the paper, we will
generally refer to images whose content is not the direct result of the observation
of the earth’s surface by an image sensor, as synthetic or manipulated images.
We will also loosely use terms like tampered, fake or forged images, even if the
goal of the manipulation is not a malevolent one.

In the second part of the paper, we also overview SOTA forensic techniques,
that can be used to assess whether a satellite image is a pristine one or contains
synthetically generated parts. The multimedia forensics community has a long
and rich experience in the analysis of digital pictures [89]. In recent years,
a wide variety of techniques has been proposed to detect editing operations
executed either on the whole image [14, 63, 70, 90] or locally [12, 16, 26,
27]. Moreover, the recent literature has also shown promising results in the
detection of synthetically generated content [4, 17, 39, 71]. Unfortunately, when
it comes to the analysis of satellite images, many of the methods developed for
natural images perform poorly due to the different nature of the to-be-analyzed
data. For this reason, the multimedia forensics community has started to
develop techniques specifically tailored to the analysis of imagery. In this
context, we first dig into methods strictly tailored to detect satellite contents
generated by Artificial Intelligence (AI) techniques. Then, as these areas
are still underdeveloped, we also dig into forgery detection and localization
techniques that have not been specifically proposed to spot AI-generated
satellite contents, but that can, in principle, be used for such a goal.

The paper is organized as follows: in Section 2, we provide a description
of the satellite image data types that we will consider throughout the paper,
and the most popular datasets of satellite images. We also introduce the main
DNN architectures that were used for image generation and manipulation
in Section 3. Then, in Section 4, we overview the methods that have been
proposed in the literature to generate and modify the content of satellite
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images. In Section 5 we go beyond forgeries and focus on techniques that
are meant to edit satellite images without necessarily altering their semantic
content. We follow with the detection techniques in Section 6. In Section
VII, we critically review the state of the art and highlight the open challenges
researchers are still being faced with. Lastly, we conclude our work with some
final remarks in Section 8.

2 Remote Sensing Imagery

In this section, we introduce the satellite imagery data types considered in
the various works overviewed in this paper, along with the data sources from
which the datasets were collected.

2.1 Data Types

The term remote sensing indicates a broad variety of measurements of electro-
magnetic radiations interacting with the Earth’s atmosphere and surface, in
order to collect information about an object or phenomenon without being in
direct contact with it. On one hand, this kind of measurement can provide in-
formation on the distance between the sensors measuring the radiation and the
object interacting with it. On the other hand, by analyzing different quantities
related to the measured radiation (e.g., intensity, wavelength, polarization,
etc.) they can provide clues about the properties and characteristics of the
interacting object.

Remote sensing data can be acquired by using sensors belonging to two main
families: passive sensors (i.e., sensors relying on solar radiations to detect the
reflections from the Earth’s surface), and active sensors (i.e., sensors providing
their own source of energy to execute the measurement) [110]. Examples of
data generated by passive sensors are Electro-Optical (EO) imagery, while
examples of actively generated satellite images are Synthetic Aperture Radar
(SAR) signals. Other characteristics differentiate these sensors, the main one
being the spatial resolution of the imaged data which is related to the sensor’s
spectral sensitivity.

In the following, we describe the main satellite modalities analyzed in the
literature when it comes to the forensic analysis and synthetic generation of
remote sensing imagery, i.e., EO and SAR. Figure 1 provides some examples
of the image modalities considered in this work.

2.1.1 Electro-Optical Imagery

With this term we refer to satellite images obtained through passive sensors
capturing the solar radiations reflected by the Earth’s surface. The first images
of this kind were not too dissimilar from natural photographs: they captured
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Figure 1: Examples of different overhead image modalities from the same scene. From left
to right, Synthetic Aperture Radar (SAR), Electro-Optical (EO) and multi-spectral.

light in the visible spectrum thanks to a rigid body camera holding the optics,
and a sensor placed directly on the focal plane [110]. Today’s EO sensors are
still optical-based systems, but the technology has progressed to accommodate
greater object ground coverage and spatial resolution as required by modern
remote sensing systems [110].

EO imagery relies mainly on solid-state chip sensors such as Charge-Coupled
Devices (CCD) and Complementary Metal-Oxide Semiconductor (CMOS), but
in different configuration with respect to those usually employed in consumer
photography. Indeed, since the size of such sensors cannot achieve large ground-
coverage with a high spatial resolution, they are arranged in linear arrays or
area sensors [112] on satellites and airborne platforms.

Linear arrays acquire samples with a push-broom modality, i.e., as the
platforms moves along its trajectory, long “strips” of pixels, called pixel carpets,
are acquired and then “stitched” together to form a single image covering the
area of interest. This is the modality adopted, for instance, by Maxar satellites
like WorldView2 [107]. The second modality, which is employed, for example,
by the PlanetLab’s Skysat constellation [87], relies on one or two-dimensional
sensors that do not acquire images as pixel carpets, but as normal frames,
i.e., the scene is imaged at the same moment in time with its pixels having
the same rigid relationship with respect to each other. Coverage of areas of
interest is then obtained by shooting blocks of overlapping photos. In both
cases, strong processing follows to provide final users with more manageable
data known as products. Examples of processing are radiometric and sensor
correction [108], or orthorectification [34].

Usually, passive sensors are able to capture wavelengths in the visible
spectrum (i.e., Blue light with wavelength around 0.4µm) up to Long-Wave
Infra-Red (LWIR) (i.e., wavelength up to 20µm). These wavelengths can be
captured either together, or as different channels or bands in the acquired image
through the use of high-quality filters, leading to the formation of different
kinds of EO products. Panchromatic imagery, for instance, is a monochromatic
format of remote sensing data with no spectral information but with high
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spatial resolution. RGB data collects information in the red, green and blue
bands, that are often used, in combination with bands outside the visible
spectrum, for discriminating the land-cover content. Finally, Multi-Spectral
Imagery (MSI) can be used to collect spectral information up to the LWIR
bands divided in 8–15 channels, while Hyper-Spectral Imagery (HSI) can cover
the same spectral range but with a higher spectral resolution. HSI can reach
up to 100 spectral bands and it is usually employed in more demanding tasks
where materials signatures must be accurately identified [46].

2.1.2 Synthetic Aperture Radar (SAR) Imagery

With this term we indicate a remote sensing modality obtained through active
sensors, (i.e., imaging radars mounted on moving platforms). As the system
travels, it emits sequential high power electromagnetic pulses. These pulses,
called chirps, are characterized by constant amplitude and linearly modulated
instantaneous frequency. Chirps interact with the Earth’s surface, being
reflected as back scattered echoes with amplitude and phase changed according
to the characteristics of the objects they hit (e.g., permittivity, geometry,
roughness, etc.). The platform receives and collects these echoes, and after
a series of processing operations required to make the image interpretable
(i.e., focusing [79]), a 2D matrix of complex values is returned [79]. Since the
ground coverage of a single echo is often insufficient, SAR images are typically
acquired by collecting and concatenating different measurements together in
order to cover the whole area of interest. Other processing steps can then
follow in order to project the images on the Earth’s surface (e.g., ground-range
projection [3], orthorectification [34], etc.).

SAR data has gained a lot of popularity due to the fact that, with respect
to EO, is not affected by daylight, weather and cloud coverage conditions [82,
109]. This makes it suitable for a variety of applications in substitution and/or
integrated with EO imagery, such as Earth monitoring, change detection, or
Earth surface mapping [79].

As with EO imagery, also SAR data is distributed in different formats
with different characteristics. Each format is know as a product, and may
be useful for different applications. For instance, different frequency bands
for modulating the chirps can be used, with the most popular being L (i.e.,
from 1 to 2GHz), C (i.e., from 3:75 to 7:5GHz) and X (i.e., from 7:5 to
12GHz). Each of them is more suited for different applications, e.g., X for
military surveillance, S for medium range meteorological applications, etc
[79]. Other products can also be obtained by further processing the complex
2D matrix. Sentinel-1 Ground Range Detected (GRD) images, whose pixel
values approximate the reflectivity of the ground [82], is an example of an
amplitude-based product.
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2.2 Data Sources

The huge increase in the amount and variety of multimedia content shared
among people is a phenomenon that also affects remote sensing data. Nowadays,
there are many online platforms offering satellite data for free in the form of
easy-to-manage products [37]. The purpose of this section is to present some
of the most commonly used data collections acquired through popular data
acquisition missions and available through different online portals.

2.2.1 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Data Portal

AVIRIS refers to an optical sensor realized and operated by NASA that gathers
spectral radiance of 224 contiguous visible and Near Infrared (NIR) spectral
bands with wavelengths ranging from 400 to 2500µm [8]. The data is gathered
using four aircrafts platforms. Until now, the area of coverage is North America,
Europe, a portion of South America, and Argentina. The AVIRIS project is
focused on studies related to climate change and global environment.

2.2.2 Copernicus Open Access Hub

The Copernicus Open Access Hub [25] is the online portal provided by the
European Space Agency (ESA) to download products generated by one of the
Sentinel missions. In particular, Sentinel-1 and Sentinel-2 have gained a lot of
popularity.

Sentinel-1 mission provides C-band SAR imaging [100] with two satellites,
Sentinel-1A and Sentinel-1B, with a revisit frequency of 6 days for both and
12 days for a single satellite. Sentinel-1 images are available through the
Copernicus Open Access Hub [25] in different products. For instance, different
acquisition modes (i.e., patterns of movements through which the antenna
emits electromagnetic pulses) are available. The simplest one is the Stripmap,
where pixel carpets are sensed with a fixed antenna pattern, while a more
complex variations is the Interferometric Wide swath (IW), where the system
emits three chirps steering the antenna in the platform moving direction. Other
differences between products are related to the level of processing they undergo.
The Open Access Hub offers them in 3 different levels: level 0 consists of
unfocused SAR echo signals; level 1 consists of focused SAR images, provided
either as complex signals as Simple Look Complex (SLC) or as amplitude only
signals as GRD products; additional levels offer even more processing.

Sentinel-2 mission provides MSI in 13 bands for land monitoring usage [101].
As for Sentinel-1, the images ase provided by a pair of twin satellites that has
a revisit frequency of 5 days for regular coverage areas. Table 1 shows the
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Table 1: Spatial Resolution of Sentinel-2 MSI bands.

Spatial Resolution (m) Band Number

2 - Blue
3 - Green
4 - Red10

8 - NIR

5 - Vegetation Red Edge 1
6 - Vegetation Red Edge 2
7 - Vegetation Red Edge 3
8a - Narrow NIR
11 - SWIR 1

20

12 - SWIR 2

1 - Coastal Aerosol
9 - Water vapour60
10 - SWIR Cirrus

spatial resolution of all the multi-spectral bands: 4 bands have a resolution of
10m Ground Sampling Distance (GSD), 6 of 20m GSD, and 3 of 60m GSD.
Sentinel-2 MSI is offered in 5 different products, 3 of which are not publicly
available (i.e., level-0, level-1A and level-1B). The orthorectified products level-
1C (i.e., Top-of-Atmosphere (TOA)) and level-2A (i.e., Bottom-of-Atmosphere
(BOA)) are freely available to all users.

2.2.3 Maxar DigitalGlobe Portal

The DigitalGlobe Discover portal [106] is an online platform for downloading
satellite imagery produced by Maxar technologies. Maxar counts 7 satellites
in its constellation providing EO imagery, 4 on orbit (i.e., WorldView1-2-3 and
GeoEye1) and 3 decommissioned (i.e., QuickBird, Ikonos and WorldView4),
whose images, however, are still available in the portal archive. According to
the technical guide [29], the GSD resolution can vary according to the type of
imagery produced: for panchromatic products, the ground resolution varies
from 50 cm to 2 m, while for MSI it ranges from 2 to 2.4 m.

2.2.4 U.S. Geological Survey Landsat Data Access

The United States Geological Survey (USGS) offers a portal [78] to download
all the imagery produced by the Landsat program. The Landsat program [80]
is a joint mission by NASA and USGS aiming at monitoring the Earth surface
for any remote sensing application, which has been active now for more than
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50 years. It comprehends two twin satellites (i.e., Landsat8 and Landsat9)
providing MSI in the visible, near and short-wave infrared spectra, as well as
thermal infrared wavelengths, with a ground sampling distance of 30 m.

2.2.5 SEN12MS

The SEN12MS dataset [99] is a large scale satellite dataset aimed at training
deep learning architectures for land-cover related applications (e.g., land-cover
classification, segmentation, etc.). It is made up of 180,662 256× 256 triplets
of Sentinel-1 SAR image patches, multispectral Sentinel-2 image patches,
and MODIS [81] land cover maps. The images span various locations and
seasons and have been processed to provide the information related to the
same exact location, i.e., to have similar GSD and georeference information.
In particular, since Sentinel-2 MSI is orthorectified, Sentinel-1 data has been
orthorectified too, while the MODIS land cover maps have been upsampled to
reach a resolution of 10 m Ground Sampling Distance (GSD) from the original
resolution of 500m [99].

3 Generative Models

A GAN [38] architecture provides a game theoretic framework where two
networks, namely a generator and a discriminator, are trained in an adversarial
manner. Starting from an input noise sample z, the generator synthesizes new
samples with a distribution pg that is similar to the distribution of some source
data px on which the discriminator is trained. The discriminator analyzes these
samples trying to judge whether they are real or synthesized samples produced
by the generator. The goal of the generator is to produce samples that can
not be distinguished from the real ones by the discriminator. Formally, the
generator aims at minimizing the following loss function, i.e., the adversarial
loss,

LG(ΦD,ΦG) = Ez∼pz(z)[log(1− ΦD(ΦG(z)))], (1)

where ΦG is the generator network function and ΦD is the discriminator
network function. The discriminator’s goal, instead, is to distinguish between
generated samples and real ones. Hence, it tries to minimize the following loss
function, where x is the input sample, drawn from px:

LD(ΦD,ΦG) = −Ez∼pz(z)[log(1− ΦD(ΦG(z)))]

− Ex∼px(x)
[log(ΦD(x))], (2)

where the first term makes sure that the discriminator recognizes generated
samples ΦG(z) as such, and the second term makes sure that it recognizes
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samples x as original ones belonging to px. GANs have been applied successfully
to a variety of different domains, from text [119], to biomedical images [60]
and of course natural images. In particular, a great effort has been paid
to continuously improve the quality and realism of synthetic natural images
[57–59]. Due to the impressive results they got and the high realism of the
generated images, many variants of the basic GANs framework were developed,
going beyond image generation from scratch, that are widely used in various
computer vision tasks, and also for satellite imagery applications. In the
following, we describe the most relevant architectures used in the literature.

One of the most relevant GANs-based frameworks is image-to-image trans-
lation [56, 123], wherein the input image is translated from a semantic domain
to another. Image-to-image translation is based on Conditional Generative
Adversarial Network (cGAN) [77], an evolution of the basic GAN architecture
where the training procedure is modified with the addition of a condition on
the inputs of either the generator or the discriminator or both. This condition
can derive from any kind of additional information. In [56], a popular cGAN,
named pix2pix is proposed to improve the quality of the generated images.
To train the pix2pix architecture, a paired dataset is used where each input
image has its corresponding representation in the target domain, namely a
reference image r following a distribution pxr. For example, if we want to
transfer images from summer to winter, we would need images of the same
place belonging to both the summer and winter domains where one will act as
the input (summer) to be transferred by the generator and the second is the
reference that the network will try to simulate from the input. The authors
add a term corresponding to the L1 distance between the reference images and
the generated images, to the loss of the generator, which is now expressed as:

LG(ΦD,ΦG) = Ex∼pxr(x,r)[log(1− ΦD(x,ΦG(x)))]

+ λExr∼pxr(x,r),[∥(r − ΦG(x)))∥1], (3)

where λ is a weight parameter balancing the importance of the two loss terms
LD is the same as in (2).

Another very popular cGAN is the Conditional Generative Adversarial
Network (CycleGAN) [123], whose general architecture is shown in Figure 2. It
replaces the L1 distance loss term of pix2pix with a so called cycle consistency
loss term, computed by resorting to two generators and two discriminators.
The cycle consistency loss is defined as

Lcyc(ΦG,ΦG2) = Ex∼px(x)[∥(ΦG2(ΦG(x)))− x)∥1]
+ Ey∼py(y)[∥(ΦG(ΦG2(y)))− y))∥1], (4)

where x (drawn from px) denotes a sample from the first domain, given as
input to the first generator ΦG and the first discriminator (ΦD), and y (drawn
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Figure 2: cycleGAN Architecture.

from py) is a sample from the second domain, given as input to the second
generator ΦG2 and the second discriminator (ΦD2).

An advantage with respect to pix2pix is that with Conditional Generative
Adversarial Network (CycleGAN) there is no need for a paired dataset for
training (that can be difficult, if not impossible, to collect in many applications).

An additional constraint, known as identity loss, can also be added to the
loss of the generator. The goal of the identity loss is to ensure that the output
of the generator is equal to its input, when a sample x of the first domain is
fed at the input of the second generator ΦG2. The same applies when a sample
of the second domain is fed to the first generator ΦG. Formally, the identity
loss has the following expression:

Lidentity(ΦG,ΦG2) = Ex∼px(x)[∥(ΦG2(x))− x)∥1]
+ Ey∼py(y)[∥(ΦG(y))− y))∥1]. (5)

A variant of CycleGAN is the No Independent Component for Encoding
GAN (NICE-GAN) [22], where, instead of designing a dedicated encoder for
the generator, the first layers of the discriminators are used as the generator
encoding layers. Hence, the generator and the discriminator share some
common layers.

Another line of research aims at improving not only the generated sample
quality, but also the training process, to mitigate the problems of convergence
instability that often affects GANs. One of the methods proposed to achieve
this goal is the Wasserstein GAN with Gradient Penalty loss (WGAN-GP)



12 Abady et al.

[42], where the Wasserstein loss formulation, in which the discriminator acts as
a critic and increase the distance between the real and fake samples instead of
classifying the images as real or fake, is considered (WGAN [6]) and a gradient
penalty is added to the discriminator’s loss to fulfill a Lipschitz constraint.
The loss for the generator and the discriminator are defined as

LG(ΦD,ΦG) = −Ez∼pz(z)[ΦD(ΦG(z))], (6)

and

LD(ΦD,ΦG) = Ez∼pz(z)[ΦD(ΦG(z))]− Ex∼px(x)
[ΦD(x)]

+ λEw∼pw(w)[(||∇wΦD(w)||2 − 1)2], (7)

where λ is the gradient penalty tradeoff and w is a random sample either
produced by the generator or taken from the distribution of real samples.

Another approach that allows to mitigate the instability of Generative
Adversarial Networks (GANs) training, to enhance the quality of the generated
images, and also to speed up the training, is the progressive training method-
ology. The main feature of the Progressive Generative Adversarial Network
(ProGAN) [57] is the incremental approach, with the size of the model increas-
ing incrementally during training. The training starts on small resolution data,
typically 4× 4 pixel images, then, during training, additional convolutional
layers are added to both the generator model and the discriminator models to
increase the resolution.

In addition to GANs, another widely used generation framework builds
upon Variational Autoencoders (VAEs) [61]. An autoencoder [51] A is a neural
network trained to reconstruct at the output the same data given as input,
after processing it with a series of operations that avoid learning the identity
function by respecting some constraints (e.g., reducing the dimensionality of
the data at some point in the network). The autoencoder is composed by two
blocks:

• The encoder Ae that maps the input x, to a hidden representation h
(i.e., h = ΦEnc(x)).

• The decoder Ad that has a specular architecture compared to the encoder,
and that maps the hidden representation to an approximate version of
the input x̃ (i.e., x̃ = ΦDec(h)).

In case of tensor data, the input can be a RGB image XRGB and the hidden
representation a vector h, with the encoder and decoder trained together to
minimize a reconstruction loss, typically, an L2 loss term, between the input
samples and the output (decoded) sample.

In VAEs, the input is not only being encoded into a vectorial representation,
but the hidden variable is forced to follow a Gaussian distribution N (f(x); g(x)),
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with mean f(·) and variance g(·) being functions of the input implemented
by the encoder network. At the decoding stage, a sample from the hidden
representation variable distribution is drawn and used as input to the decoder
which in turn outputs a reconstruction of the initial input data.The main
intuition behind this approach is to allow the decoder to generate new data
by sampling from the hidden variable distribution. From this perspective, the
hidden variable distribution can be assumed to have some desirable properties,
e.g., being a Gaussian normal distribution. In this scenario, the total loss
iused during training is equal to:

L(x, x̃) = ∥x− x̃∥22 + βLkl(N (f(x), g(x)),N (0, Id)), (8)

where the first term represents a “data fidelity term", i.e., a L2 loss between the
input sample x and the estimated sample x̃. The second term, applies a kind
of “regularization", by forcing the network to minimize the Kullback–Leibler
divergence Lkl between the learned hidden variable distribution and a de-
sired normal N (0; Id) distribution, with Id being the identity matrix of d
dimensionality, and β a hyper parameter weight.

After training the VAE, the decoder is used to generate new images by
picking random samples from the learned distribution.

4 Satellite Forgeries via Deep Neural Networks

In this section, we overview the most relevant methods for the generation and
manipulation of satellite imagery, with particular attention to those based
on GANs and VAEs. As mentioned in the introduction, due to the different
characteristics of satellite images and to the different needs of remote sensing
applications, a number of dedicated methods have been developed, which are
suited for these kind of images.

In the following, we classify the various methods based on the type of
forgery they aim at. In particular, we are considering the following types of
forgeries: (i) generation from scratch of synthetic satellite images (addressed
in Section 4.1) and (ii) modification of the semantic content of pre-existing
satellite images (Section 4.2).

Table 2 summarizes all the generation methods considered in Section 4 of
this overview, categorized according to the proposed classification. Additionally,
Figure 3 reports a visual representation of the timeline of the seminal works
related to satellite image generation for each datatype.

4.1 Generation of Synthetic Images from Scratch

In [43] , the authors use a conventional GAN architecture to generate synthetic
SAR images. The generator is implemented by a deconvolutional network that
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Table 2: List of techniques discussed in Section 4 and their characteristics.

Reference Year Task Data type Description

[43] 2017 Generation from
scratch

SAR Generate simulated SAR
images

[121] 2018 Generation from
scratch

Hyper-Spectral
Imagery (HSI)

Generate HSI to aid later
on in classification

[1] 2020 Generation from
scratch

Multispectral Generate multi-spectral
images

[1] 2020 Semantic Modifi-
cation

Multispectral Convert the land cover of
multi-spectral images

[95] 2021 Semantic Modifi-
cation

Multispectral Convert the land cover of
multi-spectral images

[122] 2021 Semantic Modifi-
cation

RGB Convert the landscape of
a source city to that of a
target city

Figure 3: Timeline showing the first satellite generation methods for each datatype.

takes as input observation parameters, that are directly measured from the
images, e.g., platform azimuth and target depression angle, and a latent vector
characterizing other observation conditions, that is, the target position and
environmental factors such as clouds and rain. The discriminator is fed with
real samples and generated ones having the same observation parameters. A
cluster normalization procedure is implemented to reduce the influence of the
clutter, causing convergence instability. Specifically, segmentation is applied
to the images in the training set to separate target and clutter. Then, the
images are normalized so that the clutter levels are all the same. Thanks
to normalization, the discriminator learns to ignore the clutter and focuses
on the target. The generated images are evaluated by applying to them a
Convolutional Neural Network (CNN) classifier considering 10 selected target
categories from the Moving and Stationary Target Acquisition and Recognition
(MSTAR) dataset. The classification accuracy on the synthetic images is
similar to that achieved on pristine images, thus proving the plausibility of
the synthetic images. The visual quality of the generated SAR images is also
assessed and compared with that of images simulated by means of ray tracing
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[7], and that of real samples, for specific observation parameters. The authors
show that both simulators (GAN and ray-tracing) are able to predict images
close to real ones.

In [121], the authors propose a semisupervised algorithm for HSI classi-
fication exploiting images produced by GANs, to overcome the difficulty of
gathering a large labeled HSI training dataset. The authors propose a 1D-GAN,
called hyper spectral GAN (HSGAN), inspired by the architecture described
in [93] (with a difference in the input dimension, set to 1 instead of 2). The
proposed framework enables automatic extraction of spectral features needed
for HSI classification. The HSGAN is trained by using unlabeled hyperspectral
data, so that it learns to generate hyperspectral samples similar to the pristine
samples. Once the GAN is trained, the discriminator is modified by replacing
the last sigmoid layer with a 16 class sigmoid layer and then is fine-tuned
on a small labeled dataset for hyperspectral classification. Both HSGAN
training and fine-tuning of the discriminator is performed on the Indian Pines
dataset, gathered by AVIRIS sensor in June 1992 over the Indian Pines region
in northwestern Indiana. The size of the original images is 145× 145 pixels
with 220 spectral bands. The noisy and water-absorption bands are filtered
out, getting 200 bands, that correspond to the output size of the 1D-GAN.

Figure 4 shows 128 examples of real and synthetic spectral bands, where
each line corresponds to the values assumed by one pixel on the 200 bands.
The figure also shows a real and a synthetic waveform. The authors have
shown experimentally the superior performance of the HSI classifier trained
on synthetic images with respect to state-of-the-art methods. They also
assessed the impact of the GAN training dataset size on the classification
performance, proving that the size of the HSGAN has a noticeable impact on
the classification accuracy; the more data the HSGAN is trained on, the more
accurate the classifier is.

In [1], the authors use a ProGAN architecture [57] to generate 13 bands
Sentinel-2 level-1C images of 256 × 256 resolution. For training, they have
used all 180k samples of the SEN12MS dataset. Similar to [57], a WGAN-GP
loss function is used.

4.2 Semantic Modifications

In [1], the authors propose an image-to-image translation solution tailored to
the remote sensing scenario. They trained a network for land cover transfer,
i.e., a network able to change the content of images to move them from one
land-cover class to another. In particular, the paper focuses on transferring a
sample from the vegetation class into the barren class and vice versa. They rely
on the NICE-GAN [22] architecture to perform unpaired style transfer.1 The

1For the land-cover transfer task, an unpaired dataset has to be used (given an image
from a source domain, the corresponding image in the target domain is not available).
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Figure 4: Examples of real and generated HSI bands from [121]. (a) and (c) show 128
samples of real and generated spectral lines. (b) and (d) show a sample of real and generated
spectral waveforms respectively, with 200 values each.

model was trained on 4 bands, i.e., RGB and NIR (10 meters bands) images
of size 480 × 480 cropped from Sentinel-2 level-1C products, with no cloud
coverage. For the vegetation domain, 20k images were gathered from Congo,
El Salvador, Montenegro, Gabon and Guyana, while for the barren domain 20k
images were gathered from Western Sahara. Samples were split into training
and testing. Specifically, 18K images from each domain are used for training,
while the remaining 2K are left for testing. Figure 5 shows an example of
real and GAN-transferred images for each transfer direction. The authors
also verify that the expected correlation between the bands is preserved in
the generated images, by looking at the spectral view of pixels belonging to
different land cover classes for both real and generated images.

A similar task is pursued by Ren et al. [95]. In this work, the authors
exploit a CycleGAN architecture to translate 10 bands of Sentinel-2 level-1C
image, namely the 10 and 20m bands, from drought to vegetation and vice
versa.

In [122], the CycleGAN architecture is used for a different semantic mod-
ification: the creation of synthetic images having the urban structure of a
given city (i.e., Tacoma in Washington, U.S.) but with the landscape features
of another city (i.e., Seattle in Washington, U.S. and Beijing, China). To
achieve this task, they train a CycleGAN model on a given city to generate
an image with the landscape features of this specific city, starting from an
input base-map with the desired city structure. For the map domain, the
authors use the cartoDB basemaps, which provides basic urban structural
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Figure 5: Land-cover image translation examples taken from [1].

information. As for the satellite imagery domain, they rely on Google Earth’s
satellite imagery. They use the QTile plugin in QGIS open source software
[92] to collect their datasets for both domains. All datasets have a resolution
of 256× 256. 1196 pairs of images are collected, that is satellite images and
their corresponding basemaps, for Seattle, 1122 pairs for Beijing and 758 pairs
for Tacoma. Figure 6 shows an example of a satellite image generated from a
basemap from Tacoma, showing the landscape features of Seattle and Beijing.

5 Beyond Forgeries

In this section, we overview additional methods for the generation and manip-
ulation of satellite imagery, considering techniques proposed to edit an image
content without a necessarily malevolent goal. This is the case, for example,
of image enhancement techniques. Despite the fact that these methods are not
meant to be harmful or used in a deceptive way, they still undermine image
integrity to some extent. For instance, a colorized image obtained synthetically
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Figure 6: An example of generated satellite images using the basemap image in (a) from
Tacoma, with the landscape features of Seattle (c) and Beijing (d). (b) shows the ground
truth satellite image that belongs to the basemap in (a) [122].

from a gray scale one could be considered as altered from the data integrity
point of view.

In the following, we consider two types of generation and manipulation:
(i) generation of satellite images of a given type from a different type of
data, e.g., the generation of an EO image starting from a SAR image and
vice versa (addressed in Section 5.1); and (ii) modifications aiming at quality
enhancement, such as colorization and cloud removal (see Section 5.2). Table 3
summarizes all the generation methods considered in this section, categorized
according to the proposed classification. Figure 7 shows the timeline of the
works described in this section.

5.1 Datatype Transfer

One of the main applications of remote sensing data is Earth monitoring and
change analysis. For these tasks, both EO (optical) imagery and SAR are
usually exploited, considering data captured at different times. Being able to
generate one type of data or modality from the other facilitates these tasks
since only a type of data would need to be acquired. We refer to this kind of
image translation with the term inter-modality datatype transfer. As described
in Section 5.1.1, several methods have been proposed in this category.
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Table 3: List of methods discussed in Section 5 and their characteristics.

Reference Year Task Data type Description

[49] 2018 Datatype transfer/
Inter-modality

RGB-SAR Generate optical images
from SAR input or fused
optical-SAR input

[76] 2018 Datatype transfer/
Inter-modality

SAR-RGB Simulate SAR from optical
images

[32] 2018 Datatype transfer/
Inter-modality

RGB-SAR Simulate optical images
from SAR images

[67] 2018 Datatype transfer/
Inter-modality

RGB-SAR Simulate optical images
from SAR images and vice
versa

[35] 2019 Datatype transfer/
Inter-modality

RGB-SAR Simulate optical images
from SAR images

[13] 2019 Datatype transfer/
Inter-modality

RGB-SAR Simulate optical images
from SAR images

[5] 2020 Datatype transfer/
Inter-modality

RGB Generate optical images
from historical maps

[120] 2020 Datatype transfer/
Intra-modality

Multispectral Generate NIR images from
RGB images

[113] 2020 Datatype transfer/
Intra-modality

Multispectral Generate certain bands us-
ing other bands as input

[98] 2018 Quality Improvement/
Colorization

RGB-SAR Generate colorized SAR
images from SAR-optical
fused image

[105] 2019 Quality Improvement/
Colorization

RGB Adapt color distribution of
a testing dataset to match
that of a classifier training
dataset

[31] 2017 Qaulity Improvement/
Cloud Removal

Multispectral Remove clouds from RGB
images using NIR band as
auxiliary information

[102] 2018 Quality Improvement/
Cloud Removal

RGB Remove clouds from RGB
images

[40] 2018 Quality Improvement/
Cloud Removal

Multispectral-SAR Remove thick clouds from
multispectral images

[124] 2019 Quality Improvement/
Cloud Removal

RGB Remove clouds from RGB
images

[30] 2020 Quality Improvement/
Cloud Removal

RGB-SAR Remove clouds from RGB
images

[36] 2020 Quality Improvement/
Cloud Removal

RGB-SAR Remove clouds from RGB
images

[97] 2020 Quality Improvement/
Cloud Removal

Multispectral Remove clouds using tem-
poral data of RGB and
NIR bands

[117] 2021 Quality Improvement/
Cloud Removal

RGB Remove clouds from RGB
images
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Figure 7: Timeline highlighting the main works related to synthetic image generation that
can not be categorized as malevolent forgeries.

Another remote sensing application for datatype transfer comes from land
cover classification and object detection. Typically, different spectral bands
are used for these tasks. Instead of incurring in the costs of acquiring all
the bands, only some of them are acquired while the others are synthetized
automatically. Similarly, we can generate missing spectral bands relying on
existing spectral bands. We refer to this kind of transfer as intra-modality
datatype transfer (Section 5.1.2).

5.1.1 Inter-modality Transfer

The prediction of optical images using SAR images is first considered in
[49]. Specifically, [49] addresses the problem of generating optical images
that represent a prediction of the foreseen land-cover changes using different
combinations of remote sensing data as input. Two different architectures are
proposed. The best performing method resorts to a pix2pix architecture, that
adopts a ResNet-like architecture [48] for the generator, and a patchGAN [56]
with 5 layers for the discriminator. The patchGAN classifies the patches of
an input image, providing a score matrix at the output; the final score on the
whole image is taken by the discriminator by averaging all the outputs.

Let T1 be a given acquisition time or period, and T2 the target period
(corresponding to a later time - the images are considered of the same period
if the collection dates’ difference is less than 5 days). Two combinations of the
input samples are considered in [49] and their impact on the networks’ ability
to predict the optical samples assessed. Specifically, the authors consider
providing as input: (i) only SAR images, from both T1 and T2; (ii) both
SAR and optical images from T1 and SAR images from T2. In the following,
the two networks trained with the two input combinations will be denoted as
cGAN and MTcGAN, respectively.

The data for training and testing are gathered from the Copernicus hub [25].
Three different regions are considered for the experiments: Iraq, Jianghan, and
Xiangyang. For each area, 4 images are downloaded from the Copernicus hub,
that is two Sentinel-1 images (i.e., SAR) and two Sentinel-2 images (i.e., EO),
from T1 and T2. Synthetic Aperture Radar (SAR) images were pre-processed
using Sentinel Application Platform (SNAP). For Sentinel-2 products, only
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4 bands are considered, i.e., RGB and NIR, with a Ground Sampling Distance
(GSD) of 10 m. The SAR and optical images are co-registered by reprojection
in order to provide information on the same geographical area. Then the
images were divided into 256×256 patches and split into training and test sets.

With the assessment made in [49], it is argued that using the optical data
as additional input is beneficial, leading to an improvement of the networks’
capability of predicting the optical samples corresponding to T2.

Inspired by [49], considerable research has been dedicated to the generation
of optical images from SAR images and vice versa, for a different or also the
same acquisition time. The most relevant approaches are described in the
following.

The opposite transfer with respect to that considered in [49], that is, the gen-
eration of SAR images from optical images, is addressed in [76], with the goal of
improving the matching between optical and SAR images, to improve the geolo-
cation accuracy of optical satellite images. The authors use a pix2pix architec-
ture to generate SAR patches from the corresponding optical image using three
different losses: the original GAN loss, a variation of the adversarial loss adopt-
ing the mean square error in place of the log likelihood [73], and finally the con-
ditional Wasserstein loss [6]. Training is performed on 201×201 paired patches
from TerraSAR-X (SAR) and PRISM (optical), gathered all over Europe.

Finally, they assess the matching between the SAR images and the gener-
ated SAR images using three SOTA image-matching techniques: Normalized
cross-correlation (NCC), Scale Invariant Feature Transform (SIFT) and Binary
Robust Invariant Scalable Key (BRISK). All metrics prove that the generated
SAR images were beneficial to improve the matching.

Other methods have been proposed addressing similar tasks. In [32], the
pix2pix architecture is used to address the transfer from SAR images to optical
images. A CycleGAN architecture, instead of a pix2pix, is used in [35] for
the same task of translating SAR into optical images. In [67], a CycleGAN
architecture is proposed to perform both translation, from optical to SAR
images, and vice versa. Finally, in [13], the authors address the generation of
optical images from SAR images at different times, to mitigate the impact
of heavy clouds on optical images (i.e., generating optical images that do
not contain clouds). The same approach introduced in [49] is used, with
the difference that a pix2pix architecture is considered instead of the cGAN
architecture that is adopted in [49].

A last application of inter-modality transfer is the generation of optical
images starting from maps or auxiliary raster data. In [5], the authors generate
satellite-like imagery from historical maps using a pix2pix network. They
train the pix2pix architecture on satellite images extracted from Google and
the corresponding segmented images, providing the optical image and the
segmented image as input images from the two domains. During testing,
segmentation is applied to the historical maps, then the generator is fed with
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the segmented image to get the optical image representing the area (what the
area might have looked like). They train two models, one on urban areas and
the second on rural and natural areas. They argue that merging the output of
the two models based on the label (that is, taking the urban labeled pixels
from the model trained on urban area, and the rural labels from the model
trained on rural areas) yields a better representation of the area.

In [10], the authors generate optical RGB and SAR imagery from land
cover segmentation maps and auxiliary raster data, To this purpose, they
use a variation of the pix2pix architecture where all the normalization layers
are replaced by spatially adaptive normalization (SPADE) layers [85]. The
auxiliary data is used as an input to the generator while the land cover is passed
as an input to all SPADE layers. For training and testing, two datasets are
used: (i) GeoNRW [9], containing aerial photographs, terraSAR-X, DEMs and
land cover with 10 classes; (ii) DFC2020 [45], containing Sentinel-1, Sentinel-2
and land cover data with 10 classes. For the GeoNRW, SAR images or optical
images is generated from land cover maps and Digital Elevation Models (DEM)
[44] used as auxiliary data, while for the DFC2020 (that lacks DEM data),
SAR and optical imagery are generated using either solely land cover maps
or a combination of land cover with optical (for SAR generation) or SAR
imagery (for optical generation) as auxiliary input. To judge the effectiveness
of the generation in terms of land cover coverage, the authors analyze the
land cover segmentation maps obtained by a U-Net trained on real data and
compare the land cover map obtained from the generated images with the
ground truth map, that is used for the generation. The results show that the
generated images are comparable to the real images in term of land cover maps.
Moreover, the authors show that this type of image-to-image translation can
also be used to modify the semantic content of an image. For instance, by
applying a threshold to a certain height in the DEM image, and modifying
the pixels of the land cover map with a value in the DEM image below that
height and labeling them as water, we can get a modified image with a larger
area covered by water. An example of this semantic modification obtained
with the transfer network in [10] is shown in Figure 8.

5.1.2 Intra-modality Transfer

A different kind of datatype transfer regards the generation of a subset of EO
bands starting from a different subset of bands. In [120], the authors resort to
a pix2pix network for generating the NIR band of Sentinel-2 samples using the
RGB bands as input. The model is trained using a subset of SEN12MS dataset.

In [113], the authors synthesize multiple spectral bands from other bands,
using unsupervised image-to-image transfer [68]. More specifically, they rely
on a VAE-GAN, that is a combination between a VAE and a GAN, proposed
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Figure 8: An example of generated datatype with semantic modification [10]. The first
column shows a real DEM, optical and SAR image. The second column shows the original
land cover map with the corresponding generated optical and SAR image. The third and
fourth column show the modified land cover with threshold set to height 32m and 33m
respectively with the corresponding generated optical and SAR images.

in [66], where a discriminator is used to learn to differentiate between VAE
output and real samples, and is used in an adversarial fashion to improve
the reconstruction error of the VAE. To improve the reconstruction, the
authors introduce skip connections in the network and a shared spectral
reconstruction loss, encouraging the decoder to reconstruct identical spectral
wavelengths with similar distributions while still synthesizing dissimilar bands.
The shared reconstruction loss exploits the availability of shared spectral bands
from different satellites. Data for training and testing are gathered from 3
geostationary satellites: GOES-16, GOES-17, and Himawari-8, with 16 spectral
bands, 15 of which overlap, with similar information content (GOES-16 and
GOES-17 include two visible -blue, red-, four near-infrared -including cirrus-,
and ten thermal infrared bands. H8 captures three visible -blue, green, red-,
three near-infrared -missing cirrus band -, and the same ten thermal infrared
bands as GOES-16 and GOES-17). The authors first evaluate the ability of the
network to generate an individual band from the other 15 bands acquired by
the same satellite and the full set of bands from the other two satellites. This
approach is applied to GOES-16, hence each model takes 15 bands of GOES-16
and 16 of GOES-17 and Himawari-8. The improvement in the reconstruction
error brought by the modifications introduced by the authors, with respect to
the use of a standard VAE, is proven experimentally. The reconstruction mean
absolute error (MAE) obtained with the proposed solution is then compared
against the use of cross sensor and UNIT [69] as a baseline proving the superior
performance of the proposed method in terms of MAE and precision. They also
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assess the capability of the network to generate multiple missing bands from
satellites with a limited number of spectral bands (older generation satellites
often have fewer channels hence being able to generate additional frequency
bands can be very useful). Models are trained on GOES-16, removing bands
one by one until just one band was left, and reconstructing the missing bands.
All 16 GOES-17 and Himawari-8 bands were kept. They observe that the
reconstruction MAE decreases monotonically (approximately) as more bands
are given as inputs. These results show that few bands (3–4) are needed to
synthesize images with an acceptable MAE.

5.2 Quality Improvement

Editing remote sensing images using deep learning is not confined to changes
in the semantic content or in the datatype. Methods have also been developed
to change the properties of the image itself, e.g., performing colorization or
reduction of cloud coverage.

5.2.1 Colorization

Being unaffected by weather and daylight conditions, SAR images are a
valuable asset in many applications. However, with respect to EO imagery,
SAR images are more difficult to interpret visually, as the frequency range
they capture does not cover the visible part of the spectrum. For this reason,
an explored research topic in the remote sensing community is the colorization
of SAR images, i.e., the fusion of information from SAR and EO imagery,
through the use of matching image pairs.

Recently, the use of DNN for colorizing SAR images has been investigated.
In [98], the authors propose to colorize SAR images by means of an architecture
derived from [28], which encompasses a VAE along with a MDN [15]. They
first train the VAE to learn low dimensional embeddings of images obtained
by fusing SAR and optical images through color space transform [86]. Then,
they train MDN to learn the relationship between the original grey-scale SAR
image and the low dimensional latent variable embedding of the corresponding
SAR-optical fused image generated by the VAE. During testing, given a SAR
image as input, the low dimensional latent variable embedding of the SAR-
optical fused image is obtained from the MDN, and is then forwarded to the
decoder of the VAE to get the final colorized SAR image. Figure 9 shows a
couple of examples of the SAR input image, the desired optical-SAR fused
image, the optical image and the synthetic colorized SAR image.

Another application of image colorization considers the correction of EO
images to mitigate the effect of acquisition conditions (e.g., atmospheric
effects). This problem affects the generalization capability of deep learning
tools based on the semantic content, given that training and testing datasets
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Figure 9: Examples of SAR image (left column), target fused optical-sar image (second
column), corresponding optical image (third column), and generated colored example (right
column) [98].

might present different distributions of the spectral bands values because of
different acquisition conditions. For instance, very often there exists a large
difference between spectral bands of satellite images collected from different
geographic locations. To overcome the impact of spectral distribution diversity
due to acquisition conditions, in [105], the authors propose a new GAN, named
ColorMapGAN, able to generate images semantically identical to the images in
the training dataset, but with spectral distribution similar to the test dataset.
To preserve the exact semantics, the authors avoided the use of convolutional
and pooling layers, that are part of traditional CNN-based GAN architectures.
Instead, ColorMapGAN simply transforms the colors of the training images
into the colors of the test images without introducing any structural changes
on the objects of the training images. The colorMapGAN is then used to
finetune semantic classifiers by generating samples whose spectral distribution
targets that of a desired testing dataset.

5.2.2 Cloud Removal

Another common quality improvement to reduce the impact of atmospheric
conditions in the acquired images is the removal of clouds from EO images.
This problem has been addressed in many works.

In [31], the authors propose to use a pix2pix architecture to remove thin
clouds from images. They consider the RGB bands and the NIR band as
input, where the NIR band is regarded to as additional (auxiliary) information
provided to the network. The cloud-free RGB image and a binary mask,
indicating the cloudy pixels in the original input image, are returned as output.
Due to the difficulty of gathering paired images of the same location with and
without clouds, the cloud coverage is simulated using Perlin noise [88] and
then merged into the RGB image by alpha blending to get the synthetized
cloudy image. Finally, color correction is applied to both classes of images
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(i.e., images free of clouds and not) to improve the quality of the images. The
network is trained on images gathered from WorldView2, where the RGB
bands and the NIR band are used as a multi-spectral input, and the L1 loss is
computed between the 4-dim output (consisting of the generated cloud-free
RGB images and the cloud mask), and the corresponding ground truth (the
real RGB image with no clouds and the ground truth mask of cloudy pixels).
Figure 10 shows some examples of generated cloud-free RGB image and the
generated cloud mask.

Figure 10: Some examples obtained by the cloud removal method in [31]. From left to right:
input cloudy RGB images, the corresponding NIR band, the generated cloud-free RGB
images, the ground truth RGB images with no clouds, and finally the generated cloud mask.

Several methods have been proposed to extend [31]. In [116] the authors
propose to use a novel objective function to train the pix2pix network, to the
purpose of improving the quality of the generated cloud-free images. In [102],
the authors propose to substitute the pix2pix architecture with a CycleGAN to
avoid the need for a paired dataset. In this way it is possible to use real cloudy
images instead of synthesized cloudy images for training the GAN. Moreover,
only RGB bands are considered, without the need of auxiliary information. A
similar approach is followed in [124].

Later works performing cloud removals with GANs focus on the generation
of different spectral bands, using different data types as auxiliary input data.
In [40], the authors resort to the same pix2pix architecture and the clouds
synthesis procedure described in [31], to train a GAN on 10 bands of Sentinel-2
level-1C images, i.e., the bands with 10m and 20m GSD, and are used the
SAR images as additional input. Relying on SAR instead of just NIR as
auxiliary information, they are able to remove also thick clouds and dehaze
the image.
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Another work where SAR images are used as auxiliary information for the
generation of cloud-free optical images is [30]. The only difference between
this work and [40] is that a cycleGAN is adopted, instead of pix2pix, to avoid
the need of a paired dataset. In [36], the authors propose to further improve
declouding of optical images by exploiting datatype transfer Specifically, they
first transfer from SAR to optical images. Then, a GAN is used to fuse the
simulated optical image, the SAR image and the optical image corrupted by
clouds. The simulated optical image provides the reference for the cloudy
pixels. Fusion allows to inject accurate spectral information and high-frequency
texture in the cloudy area.

Other works focused on the use of more complicated network architectures
and training procedures. For instance, in [97], the authors propose a GAN
that exploits temporal sequences of cloudy images, namely Spatio-Temporal
Generative Adversarial Network (STGAN). Training is performed on a dataset
of RGB and NIR bands extracted from Sentinel-2 examples. A temporal
sequence of three cloudy images is considered as an input, with a cloud-free
image used as reference. The three cloudy images and the cloud-free image are
captured from the same location at different times. The proposed STGAN rely
on a PatchGAN discriminator. For the generator, two architectures have been
considered, a branched ResNet-based and branched U-Net based architecture.
The branched ResNet processes each of the three cloudy image through a
separate encoder-decoder. Then, the output features from the three branches
are concatenated in pairs, and each pair is fed into another encoder-decoder;
the outputs of the second block of encoders-decoders are concatenated into one
vector that is fed as input to a last encoder-decoder block. The architecture
of the branched ResNet generator is illustrated in Figure 11.

Figure 11: Branched Resnet Architecture in [97].

The U-Net, instead, processes each image in the input sequence through a
separate encoder, and then all the outputs of the encoders are concatenated
and fed to a single decoder.

The proposed solution is compared against the baseline method in [31].
The results shown in [97] prove that, when using either branched Resnet
or branched U-Net, STGAN provides better quality for the final generated
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cloud-free images (slightly better results are obtained when using the branched
ResNet). In addition, it is shown that the cloud-free images generated using
STGAN can also help for land cover classification, as classification works better
with STGAN generated cloud-free images with respect to the use of original
cloudy images, or cloud-free images generated with the baseline method.

Finally, in [117], the authors improve the results of [31] in terms of quality
of the generated images considering the YUV color space for the input, instead
of the RGB, treating luminance and chroma components independently. As a
further difference with respect to [31], they resort to a WGAN [6] architecture
which is trained in two-steps. A first training is performed on cloud-free and
synthetic cloudy images. Then, the model is fine tuned on pairs of cloud-free
and real cloudy images, thus avoiding training from scratch on a limited
dataset. This two-steps training process allows to get better performance in
data scarcity conditions, when a limited set of acquired cloud-free and cloudy
images for the same locations are available.

6 Forgery Detection and Localization

In this section, we consider satellite image forensic methods for the detection
of synthetic media and the localization of manipulations. We are interested
in both the recognition of DNN-generated contents (referred to as synthetic
forgeries), being them an entire overhead image or just some regions of it, as
well as in the identification of satellite images that have been manipulated
with the help of common editing tools (i.e., Photoshop, GIMP, etc.) starting
from genuine images. In fact, while the emergence of applications of AI-
tools for editing overhead imagery is worrying the community [111], malicious
modifications created with general purpose softwares like Photoshop are still a
non-negligible threat. As a matter of fact, many satellite products are provided
in formats easy to use and manipulate (e.g., GeoTIFF, JPEG, etc.). This
element, together with the facility of use of editing software suites, allows even
non-expert users to create credible forgeries, that can be used for instance to
create misinformation campaigns [94].

To tackle with these menaces, the main idea behind most forensic methods
is to exploit the concept of data life-cycle: during the existence of a multimedia
object, various non-invertible operations are executed, each of them leaving a
peculiar footprint that can be exploited to reconstruct the chain of operations
the object has undergone. Forensic methods use this knowledge to expose
malicious editing operations or to understand whether an image is authentic
or it has been artificially synthentized.

The life-cycle of satellite imagery is characterized by a processing chain
completely different from that of natural photographs, including the type
of sensors and modalities used for their acquisition [112], as well as the
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Table 4: List of forensics detectors and their characteristics.

Reference Year Kind of data Goal Description

[118] 2018 Color optical
images

Detect and local-
ize splicings

One-class GAN autoen-
coder as feature extrac-
tor followede by one-
class SVM

[11] 2019 Color optical
images

Detect and local-
ize splicings

Conditional GAN is
trained on two classes.
Generator is used to
estimate masks

[52] 2019 Color optical
images

Detect and local-
ize splicings

Jointly trained autoen-
coder and one-class SVM

[74] 2020 Color optical
images

Localize splicings Use ensemble of Pix-
elCNNs to estimate
heatmaps from images

[53] 2020 Color optical
images

Detect and local-
ize splicings

One-class DBN for detec-
tion and localization

[54] 2021 Color optical
images

Localize splicings Visual Transformer used
to reconstruct image.
Binary mask obtained
through input-output
difference

[55] 2021 Color optical
images

Detect and local-
ize GAN-based in-
painting

Nested U-net trained to
estimate heatmaps

[21] 2021 Color optical
images

Detect synthetic
images

Subspace learning for
fake image detection

[122] 2021 Color optical
images

Detect synthetic
images

Hand-crafted features
and Support Vector
Machine (SVM) to
detect GAN-generated
images

[95] 2021 Multispectral
images

Detect synthetic
images

Binary CNN

[19] 2022 SAR ampli-
tude images

Localize splicings Extracted noise pattern
fed to supervised or un-
supervised segmentation
methods

[20] 2022 Panchromatic
images

Copy-paste local-
ization

Ensemble of attribution
CNNs

compression schemes used to encode them. Also the editing needed for making
them manageable by final users (e.g., orthorectification [34], radiometric
correction, etc.) includes operations that are very specific to the satellite
context. All these reasons have pushed the multimedia forensic community to
develop techniques specifically tailored to satellite data analysis.

In the following, we first provide some formal definition common to forensic
detection and localization methods. Then, we overview the forensic techniques
reported in Table 4, grouping them into two categories: (i) methods explicitly
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developed for synthetic image detection and localization; (ii) methods for
forgery detection and localization that, despite they can in principle be used
also to spot synthetic content, are targeted to more general overhead imagery
manipulations. Figure 14 highlights the timeline of the initial works related to
each datatype.

Table 5 provides some information about the datasets used by the various
forensic detectors and their performance. Note that papers tend to use ad-hoc
datasets, thus making it difficult to directly compare the reported results. The
metrics used for detection are those typically used to evaluate binary classifiers:
ROC-AUC [33] (i.e., the area under the receiver operating characteristic curve) ;
F1-score [104] (i.e., the harmonic mean between precision and recall); Accuracy
(i.e., the degree of closeness of the obtained answers to their actual value). In
addition to these metrics, localization performance are evaluated also in terms
of: PR-AUC [47] (i.e., the area under the precision-recall curve); Jaccard Index
(JI) [72] (i.e., the ratio between the number of correctly detected forged pixels
and the number of pixels in the union set between actual and detected forged
pixels).

6.1 Forensic Detectors Definitions

The forensic analysis of overhead images can be carried out with two differ-
ent goals in mind: (i) detection, and (ii) localization. Under the detection
assumption, the analyst is interested in estimating the likelihood that the
image under analysis has been tampered with (partly or completely). With
localization, the analyst is interested in estimating which region of an image
has been manipulated.

Formally, let us define a generic satellite image with U ×V pixel resolution
as X. The coordinates of its pixels can be represented as (u, v), where
u ∈ [1, . . . , U ] and v ∈ [1, . . . , V ]. U and V are the number of rows and
columns, respectively. The pixel-by-pixel integrity of the image can be defined
by a tampering mask M, with the same resolution of X, whose pixels take a
binary value 1 or 0 depending on whether the corresponding pixel has been
manipulated or not. More formally

M(u, v) =

{
1, if (u, v) ∈ S
0, otherwise

, (9)

where S denotes the manipulated region. Given an image X, we can attribute
to it a binary label y of value 0 if X is pristine, and 1 if it contains manipulated
content. Figure 12 provides an example of manipulations executed on different
modalities of satellite data.

In this framework, detecting if an image has been manipulated consists
in designing a detector that implements a function d(X) returning a soft
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Table 5: List of datasets used and average performances of the forensic detectors. Results
not available in the original papers are denoted with ‘n/a’. For [55], ROC-AUC values are
averaged, and SD and CD indicate respectively the same dataset and cross dataset scenarios.
JI represents the Jaccard Index.

Performance - Performance -
Reference Dataset Detection Localization

[118] Ad-hoc spliced samples
created on purpose using
Landsat RGB images

ROC-AUC = 89.6% PR-AUC = 11.7%

[11] Ad-hoc spliced samples
created on purpose using
Landsat RGB images

ROC-AUC = 100% PR-AUC = 95.3%

[52] Ad-hoc spliced samples
created on purpose using
Sentinel-2 RGB images

ROC-AUC = 96.6% PR-AUC = 21.9%

[74] Ad-hoc spliced samples
created on purpose using
Sentinel-2 RGB images

n/a PR-AUC = 59.9%

[53] Ad-hoc spliced samples
created on purpose using
Sentinel-2 RGB images

ROC-AUC = 77.4% PR-AUC = 28.4%

[54] Ad-hoc spliced samples
created on purpose us-
ing DigitalGlobe and Plan-
etScope RGB images

n/a F1-score = 0.36,
JI = 0.275

[55] Ad-hoc spliced samples
created on purpose us-
ing generated content by
several GANs trained on
Sentinel-2 RGB images

ROC-AUC in SD scenario =

91.8%
ROC-AUC in CD scenario
= 66.7%

JI in SD scenario = 73.5%
JI in CD scenario = 0.21%

[21] Synthetic samples created
using different GANs
trained on Google’s Earth
and CartoDB RGB images

F1-score = 100% n/a

[122] Synthetic samples created
using different GANs
trained on Google’s Earth
and CartoDB RGB images

F1-score = 95.3% n/a

[95] Synthetic samples created
using Sentinel-2 MSI

Accuracy = 100% n/a

[19] Ad-hoc spliced samples
created on purpose using
Sentinel-1 SAR images

n/a Mean JI = 0.674

[20] Ad-hoc spliced samples
created on purpose us-
ing DigitalGlobe panchro-
matic images

n/a ROC-AUC = 85.7%

forgery score ỹ (i.e., the likelihood that y = 1) or a hard forgery score ŷ (i.e.,
an estimate of y). Localizing a forgery consists in either estimating a soft
tampering mask M̃ (i.e., the pixel-by-pixel likelihood that each pixel has been
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Figure 12: Examples of manipulated satellite images from different modalities, together
with their tampering mask indicating the attacked area. On top row, RGB data from [118];
in the middle, SAR from [19]; at the bottom, panchromatic from [20].

forged) or a hard tampering mask M̂ (i.e., an estimate of M). An example of
a soft and hard mask is reported in Figure 13.

6.2 Synthetic Image Detection and Localization

Section 4 has shown that it is possible to generate high-quality synthetic
satellite images. As it happened with other types of artificial data (e.g.,
synthetic images of faces, animals, etc.), concerns regarding the possible
malicious usage of these generators are raising.
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Figure 13: Examples of soft M̃ and hard M̂ tampering masks obtained from a spliced
panchromatic sample presented in [20].

This section deals with the detection and localization of forgeries generated
through synthetic satellite image generation tools. For this kind of forgeries,
the majority of forensics tools rely on data-driven techniques. This is partly
motivated not only by the complex processing pipeline characterizing satellite
imagery, but also by the fact that the forensic traces contained in forgeries
generated through neural networks are not easy to model. A common approach
consists therefore in training specialized CNNs for detecting and localizing
synthetic forgeries.

In [55], the authors localize RGB forgeries generated by 3 different families
of GANs: StyleGAN2; ProGAN; CycleGAN. More specifically, the authors
have generated a dataset of Sentinel-2 RGB images splicing them with each
one of the analyzed GANs. Their approach is based on a modified version of a
CNN used for image segmentation called Nested Attention U-Net (NAU-N).
This network takes as input a XRGB image and outputs directly a soft mask
M̃ with each pixel value indicating the likelihood that the pixel has been
generated by one of the analyzed GANs.

Being a data-driven method, the NAU-N needs to be trained directly
on synthetically spliced samples. Nevertheless, the authors demonstrate the
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Figure 14: Timeline reporting the first forensic techniques for each datatype.

feasibility of their solution in a cross-dataset scenario, i.e., training the NAU-
N on images spliced with a specific type of GAN and testing it on images
generated by a GAN which was not included in the training set.

In [122], the authors not only present a GAN-based approach for seman-
tic satellite image translation, but also provide a data-driven approach for
detecting the synthetically generated images. As a matter of fact, they rely
on SVMs trained with a number of features (i.e., spatial, histogram-based
and spectral features plus a combinations of the three) to detect CycleGAN
generated images.

Using the same dataset presented by Zhao et al. [122], Chen et al. [21]
provide another data-driven method to detect semantically translated RGB
satellite images. The core concept is based on the assumption that GANs
have difficulties in creating high-frequency details in generated samples. They
therefore analyze an input XRGB image dividing it into several patches, and
perform a frequency analysis using a filter-bank named Subspace Approxima-
tion with Adjusted Bias (SAAB) transform. Coefficients from each filter are
first used to train a XGBoost [23] classifier learning patch by patch the most
discriminant frequency coefficients. Then, coefficients from all patches are
considered as features for taking a global decision regarding the authenticity
of the analyzed sample.

Finally, Ren et al. [95] rely on a simple CNN to detect season transferred
multi-spectral images generated through CycleGANs. In their study they reach
very good detection performances, even though one of their major findings
consists in the fact that relying on a simple CNN exposes the detection process
to adversarial attacks. However, they have showed that adversarial training
can make such a simple approach effective in distinguishing synthetically
generated images. They also provide some insights about the features that a
CNN-based classifier finds more useful in the classification of GAN-generated
multispectral images, thanks to the use of gradient-interpretability techniques
such as Integrated Gradients [103].
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6.3 Forgery Detection and Localization

The literature on methods explicitly focusing on the detection of synthetic
forgeries is rather limited. However, synthetically generated content can
in principle be treated as a specific kind of local or global forgery. It is
therefore possible to exploit general purpose satellite image forgery detectors
to also expose synthetic forgeries. Indeed, image forgery detection consists in
understanding if the image under analysis has been edited (in part or in its
totality according to some specific editing definition) or not. Image forgery
localization consists in understanding which pixels of the image under analysis
have been edited (if any). Editing may be a splicing operation, as well as the
insertion of synthetically generated content.

Current image forensics SOTA solutions for forgery detection and localiza-
tion rely on the use of data-driven solutions [114]. Not surprisingly, this trend
also applies to satellite images. As a matter of fact, data-driven techniques
enable automatic extraction of meaningful forensics features from corpora of
data. In this way, it is possible to devise a good solution also in situations in
which data models may be complex or uncertain (e.g., due to the wide variety
of possible satellite products).

In this section, we analyze the SOTA data-driven forensics solutions devel-
oped for the tasks of forgery detection and localization in satellite imagery. In
the following, we organize the discussion about forgery detection and local-
ization methods based on the modality of satellite imagery analyzed by the
considered techniques: (i) RGB images; (ii) panchromatic images; (iii) SAR
images.

6.3.1 RGB Images

Yarlagadda et al. [118] tackle the problem of detecting and localizing general
image manipulations on RGB satellite images as an anomaly detection task.
More specifically, their approach consists in the training of a CNN as an
autoencoder.

As introduced in Section 3, autoencoders are a particular kind of Neural
Networks (NNs) whose goal is to reconstruct at the output the data provided
as input. While this procedure may seem trivial, training of the autoencoder
A in [118] is performed in such a way that the hidden representation vector
h possesses some desirable properties. Indeed, the dimension of h is forced
to be considerably smaller than that of the input XRGB. Therefore, the
autoencoder is forced to learn only the most salient features of the input in
order to reconstruct it properly at the output.

For forensics purposes, Yarlagadda et al. train an autoencoder only on
pristine satellite RGB images. The expected outcome is that during training
the function ΦEnc(·) is optimized to extract information regarding original
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RGB data. The hidden representation vector h becomes a low-dimensional
representation fitted to pristine images only. Spliced samples can be recognized
as their hidden representation constitutes an anomaly with respect to the
distribution of vectors extracted from original data.

To this end, the authors propose to train an autoencoder to reconstruct
64×64 patches extracted from RGB satellite data using a L2 loss. They compare
two different training strategies: an autoencoder trained as a standalone
network, called by Yarlagadda et al. “without GAN” scenario; an autoencoder
trained as a GAN generator starting from a pre-trained autoencoder for
initialization, i.e., “with GAN” scenario as named by the authors. In both
cases, after training, only the encoding function ΦEnc(·) is retained to provide
the hidden representation vectors h.

The extracted hidden vectors are then used to train a 1-class SVM. The
SVM is trained on vectors h extracted from pristine images only. The al-
gorithm learns the boundary in the feature space of the h vectors enclosing
the distribution of pristine samples. After convergence, the SVM implements
a detection function dSVM(h) which outputs a soft value ỹ representing the
likelihood that a vector h belong to the pristine data distribution.

The proposed framework is flexible enough to handle also localization of
manipulations. As a matter of fact, for samples of resolution greater than
64 × 64 pixels, by dividing the input XRGB into patches of the resolution
expected by the network and producing a detection score ỹi for each patch
Pi, a soft tampering mask M̃ can be created by assigning the score ỹi to all
the pixels belonging to the patch Pi from which it has been computed. The
authors have tested the performance of the algorithm on spliced RGB data
generated starting from images of the Landsat mission. Spliced samples have
been realized pasting objects of various shapes (i.e., clouds, airplanes, etc.)
and dimensions (i.e, 70× 70 pixels, 128× 128 pixels, etc.).

Even Bartusiak et al. [11] work on both manipulation detection and
localization. The authors rely on the same dataset used in [118], but pro-
pose a different approach to analyze RGB data. In particular, they ex-
ploit a two-class cGAN: starting from a set of spliced XRGB images, the
cGAN generator is trained to estimate tampering masks M̃ as close as
possible to the original M, with the discriminator judging their quality.
At convergence, only the generator is kept as a splicing localization tool.
To accomplish this task, they rely on a combination of the cGAN loss to-
gether with Binary Cross Entropy (BCE) for evaluating the discriminator
performances.

Given an estimated tampering mask M̃, the authors are also able to produce
a single tampering score for the analyzed sample by proceeding as follows: if
the input image XRGB is pristine, then M̃ should correspond to a dark image
with no bright pixels (i.e., it contains low values close to 0); conversely, if a
splicing attack is localized, M̃ should highlight the S region as a bright area
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(i.e., pixel values close to 1). Such behavior can be captured by a detection
function defined as

d(M̃) =

∑U
u=1

∑V
v=1 M̃(u, v)

U × V
, (10)

with U and V indicating the input resolution as in Equation 9. This detection
score is proportional to the average pixel values of the forgery mask: the higher
the value, the higher the likelihood that the image has been edited.

Horváth et al. [52] rely on an anomaly detection approach for detecting and
localizing splicing attacks similarly to Yarlagadda et al. [118]. In particular,
they extend the idea proposed in [118] adapting the concept of deep one-class
classifier presented by Ruff et al. [96]. They also rely on the same dataset
used in [118]. The solution, named Satellite Support Vector Data Descriptor
(SatSVDD), consists in using an autoencoder A to learn a hidden representation
vector h capturing the most salient features of pristine RGB data, and a SVM
working as an anomaly detector with respect to the distribution of these vectors
extracted from pristine data. However, instead of training separately a 1-class
SVM on hidden representation vectors extracted from a training set (as in
[118]), SatSVDD trains jointly the autoencoder with the SVM obtaining better
latent representations. Moreover, the authors exploit the so-called kernel
trick to learn a non-liner boundary of the pristine class hidden representation
distribution.

Horváth et al. [96] also experiment with different optimizers and activation
functions. The authors extract patches of different resolutions (i.e., 32× 32,
64×64, etc.) from RGB satellite data, and generate estimate tampering masks
M̃ using the same approach of Yarlagadda et al. [118]. With respect to the
original solution, they are also able to perform detection on samples bigger
than the patch resolution on which SatSVDD has been trained. In particular,
given an estimate mask M̃, they compute the detection score as

d(M̃) =
max(M̃)− µ(M̃)√

σ2(M̃)

max(M̃)

, (11)

where µ and σ2 denote, respectively, the mean and standard deviation com-
puted on M̃ pixels, and max(·) the maximum value operator. Such measure
accounts for the fact that spliced samples should present an high anomaly
detection value in M̃, which is high when compared to the average pixel value
of M̃, and also high compared to the standard deviation normalized by its
maximum value.

Horváth et al. [53] exploit Deep Belief Networks (DBNs) [50] in a similar
manner to the way autoencoders are used in [52, 118]. DBNs are a particular



38 Abady et al.

type of neural networks composed by the stacking of several Restricted Boltz-
mann Machines (RBMs) [2], a particular type of perceptron where the relation
between the input (i.e., visible units) and the output (i.e., hidden units) is
expressed in terms of conditional probability distributions.

The authors construct a DBN by stacking two RBMs„ with the goal of
training the network to reconstruct RGB patches similarly to an autoencoder.
The first RBM takes an input patch and outputs an hidden representation
vector with reduced dimensionality with respect to the input patch. The
second RBM takes this hidden representation vector as input and outputs a
hidden representation of the same resolution of the input image.

For forensics purposes, Horváth et al. [53] exploit this characteristic and
train the DBN only on pristine satellite data, spotting spliced RGB images
as anomalies in the reconstruction process executed by the second RBM. The
expected outcome is that the network learns to retain in the hidden units only
the most relevant statistical properties of original RGB data. When tested on
forged data, the reconstruction is not perfect, and therefore by measuring the
reconstruction error it is possible to discriminate spliced images.

With respect to the methods proposed in [118] and [52], the authors still
analyze an input XRGB dividing it into different patches Pi and reconstruct
them one by one, but the estimate mask M̃ is created by simply assigning the
L2 loss computed between original and reconstructed patches. A detection
score for the entire sample is instead computed by using Equation (11).

Mas Montserrat et al. [74] rely again on a sort of anomaly detection
approach to perform splicing localization. Instead of exploiting autoencoders,
they build their solution on generative autoregressive models, in particular on
PixelCNNs [84] and Gated PixelCNNs [83].

These neural networks are designed as generative models, i.e., they model
the conditional distribution of pixel values given the values of their neighbors.
More specifically, they provide the conditional likelihood for the value of a
pixel in an image, using as conditional variables the values of the surrounding
pixels, and as distribution the one learned during training. Considering all
pixels as i.i.d. variables, the probability of an entire image XRGB can be
computed. As a matter of fact, given a pixel xi in a single channel image X,
with i, . . . , N being the total number of pixel in it, these models compute the
conditional probability of the image pixel values as:

p(X) =
N∏
i=1

p(xi|x1, . . . , xi−1). (12)

The idea behind this pipeline is that training the generative autoregressive
models only on pristine data, they are able to learn the conditional distribution
of pixels of pristine RGB data. When presented with a spliced sample, the
trained models will output a very low likelihood when processing spliced pixels,
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thus allowing the creation of an estimate tampering mask M̃. Therefore,
in order to localize splicing manipulations the authors train PixelCNNs and
Gated PixelCNNs only on pristine images. At the deployment stage, they then
test the solution on spliced samples from the dataset presented in [118]. To
have a more accurate and robust prediction, the authors run some experiments
with model ensembling, i.e., averaging the predictions from multiple networks
with different parameters and trained on different pixel scan ordering.

In [54] another anomaly detection approach based on autoencoders is
proposed, relying on VisionTransformers [64] instead of CNNs. VisionTrans-
formers avoid to process RGB image patches Pi independently. Rather, the
whole architecture is designed to jointly compare all pixels among different
patches, denoted as tokens.

The authors train the VisionTransformer to reconstruct pristine RGB data
similarly to an autoencoder, using as loss function a smoothed version of the
L1 loss. At deployment time, the authors do not simply consider the loss
between the reconstructed and input sample, but proceeded in the following
way. Defining as XRGB the original input, and as X̂RGB the VisionTransformer
reconstructed output:

1. Apply a 3× 3 convolution with a Laplacian filter l(·) to both XRGB and
X̂RGB. The reason behind this is to use the Laplacian filter as an edge
detector, enhancing the high-frequency components of the reconstructing
samples, as autoencoders notoriously suffer in the generation of such
artifacts;

2. Compute an estimate tampering mask as

M̃ =

(
XRGB − X̂RGB

)
+
(
l(XRGB)− l(X̂RGB)

)
2

;

3. Impose a threshold on M̃ to generate a binary splicing localization mask
M̂;

4. Apply a series of morphological operators to clean M̂ removing false
positives.

Figure 15 provides a visual representation of the complete pipeline. The
authors test their solution on a dataset of spliced samples generated starting
from Sentinel-2 images and Maxar’s WorldView-3 satellite images, considering
spliced objects of different sizes extracted from images captured by PlanetScope
satellites.

6.3.2 Panchromatic

Panchromatic imagery is a valuable asset for a variety of remote sensing
applications. It combines the spectral information of the RGB bands, and
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Figure 15: Vision Transformer pipeline proposed in [54].

as such it appears as a grayscale format of images. Its main feature consists
in the broader wavelength range it represents. This translates in a greater
spatial resolutions. For this reason, a common use for this modality of data is
pan-sharpening, i.e., the combination with RGB and multi-spectral data to
increase the resolution of the latter.

Due to their importance, Cannas et al. [20] investigate the problem of
splicing localization for panchromatic data. This work builds upon the concept
of image source attribution, which is a task widely studied in the forensic
literature for natural images [62]. More specifically, [18] shows that it is possible
to understand which satellite has been used to generate a panchromatic image
by means of a carefully trained ensemble of CNNs.

Building upon [18], [20] exploits CNNs to spot copy-paste attacks, i.e.,
splicing attacks where the the spliced region S comes from a sample captured
by a different sensor. The main idea is that it is possible to extract local traces
that link an image region to the satellite used for its acquisition. If traces of
multiple satellites are found, then the image contains a spliced region.

To implement this idea, the authors first train an ensemble of N different
CNNs to perform sensor attribution on pristine images, i.e., assign an input
XPan to one of M available satellites in a patch-by-patch fashion. They exploit
the same data collection procedure followed in [18], training each network in
the ensemble on a different subset of satellites in order to make the ensemble
more robust to changes in data distributions.

At test time, the n-th CNN of the ensemble extracts from each patch Pi a
feature vector

f in = [f1
n, f

2
n, . . . , f

M
n ], (13)

where the m-th element is the likelihood for that patch to belong to the m-th
satellite.

To spot copy-paste attacks, the authors propose to capture the deviation
of sensor feature vectors extracted from each image patch with respect to the
average sensor feature vector characterizing the image. Deviations from this
global descriptor likely indicate that one of the vectors (i.e., one of the patches)
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Figure 16: Panchromatic copy-paste localization pipeline proposed in [20].

comes from a satellite that is different from the one that captured the rest of
the image, indicating a copy-paste attack.

Formally, this is done for each CNN by computing the average sensor
feature of the image under analysis as the arithmetic mean of all f in vectors
over i (i.e., over all patches). The deviation is computed as the L2 distance
between the average feature and each vector f in, ∀i. By assigning to each
patch the deviation from the average feature, the authors build a tampering
mask M̃n. Repeating the procedure for all networks in the ensemble, Cannas
et al. generate different estimate tampering masks, which are aggregated
into an estimate tampering mask M̃ through a weighted averaging procedure.
Figure 16 presents a graphical representation summarizing the whole pipeline.

6.3.3 SAR Images

Even if SAR images are complex radar signals, amplitude-based products
gained a lot of popularity recently. This is also thanks to the many platforms,
such as the Copernicus Open Acces Hub, which offer them in easy to manage
formats. Unfortunately, such products (e.g., those of the Sentinel-1 mission)
are also easy to manipulate as they can be edited by relying on any common
image processing suite (e.g., Photoshop).

For this reason, in [19] the authors analyze the problem of splicing local-
ization in amplitude SAR imagery. The basic idea behind their approach
is that each SAR product is characterized by peculiar processing traces due
to the complex pipeline needed to generate it. Hence, the authors rely on
a CNN purposely trained to extract processing traces relative to the overall
generation pipeline of amplitude SAR products. These traces are expressed
as a fingerprint of the same resolution of the analyzed image, the fingerprint
image, which highlights, with different patterns, regions that underwent dif-
ferent processing operations. In this way, spliced regions S are highlighted as
spots with a different texture. Figure 17 provides an example of a fingerprint
computed as in [19].

After extraction, the fingerprint is analyzed to produce a binary tampering
mask M̂ localizing precisely the spliced pixels. The authors experiment with
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Figure 17: Examples of SAR forged image (a), ground truth tampering mask (b), and
fingerprint (c) extracted by the method proposed in [19].

both unsupervised and supervised techniques that turn the fingerprint into a
binary mask, testing their solutions on a dataset of spliced samples created
starting from GRD images downloaded from the Copernicus Open Access Hub
and using different kinds of editing to conceal the spliced area S.

7 Discussion and Future Challenges

In this section, we recap the possibilities available today to generate and
manipulate satellite images, and the techniques investigators and users can
adopt to detect non-genuine satellite images, highlighting their main limitations
in order to pave the way to future work.

7.1 Synthetic Overhead Imagery Generation

In Section 4, we have overviewed different approaches to create satellite images
from scratch or to manipulate their semantic content using generative models.
Additionally, in Section 5 we have shown how it is possible to further edit
satellite images through techniques that allow to enhance their quality and
change their image type. In light of this, it is easy to understand how these
techniques could be used by malicious users, allowing them to create high-
quality synthetic forgeries of various types. At the same time, generation
techniques are far from perfect. All methods developed so far have some
limitations that offer new opportunities for future research.

One of the limitations common to all the techniques developed so far is
that they do not work on full resolution remote sensing data. They rather
consider small image patches up to a resolution of 512×512 pixels. This is due
to the inability of the current generative models to store into the memory of
GPUs full satellite images, which are usually characterized by resolutions that
can reach the gigapixel. This means that a high-resolution synthetic image
can only be obtained by stitching together multiple smaller patches. This is



Generation and Detection of Synthetic and Manipulated Satellite Images 43

sub-optimal from a visual point of view, and leaves traces that can in principle
be exploited by forensics detectors.

Another aspect that is often overlooked is related to the fact that some
kinds of satellite images have peculiar characteristics that make them very dif-
ferent from natural photographs. These characteristics are not always properly
taken into account. For instance, multi-spectral and hyper-spectral data are
characterized by correlated multiple bands, whereas most generation techniques
usually generate single bands independently. SAR images are complex in na-
ture (i.e., a phase term is also present in addition to the amplitude image) but
generation techniques developed so far, focused mainly on the image amplitude.
Many kinds of satellite images come with 10 to 16 bit of depths, but generation
techniques typically return 8 bit data. All of these aspects should be taken
into account by future generators in order to produce realistic satellite images.

Another important characteristic of satellite images is that they are accom-
panied by abundant metadata. For instance, metadata can provide information
related to the kind and position of the satellite used for acquisition, the kind
of processing images have undergone to facilitate visual inspection, positional
data allowing to geo-locate the image on the planet’s surface, as well as other
custom data spanning from land-cover information to digital elevation models
providing altitude details. These pieces of information are often completely
stripped out by synthetic image generators that only work considering raster
images in the pixel domain. On the contrary, it would be advisable to take
metadata into account during the generation process in order to further in-
crease the quality and plausibility of the synthetic images. Moreover, it would
be interesting to allow generators to be driven by metadata themselves (e.g.,
to generate an image that is coherent with a set of imposed metadata in terms
of geo-location, pixel elevation, land-cover, etc.).

If some of these limitations will be naturally solved in the (near) future
thanks to technological improvements (e.g., GPU memory cost will decrease
allowing to generate higher resolution data), others pose research challenges
that require the development of new ad-hoc methods.

7.2 Forensic Analysis of Satellite Images

Section 6 illustrated how the multimedia forensics community has started
paying attention to overhead imagery. Despite the few works published so far,
researchers have recognized the strategic role of this kind of data. Therefore
a significant growth in the number of contributions is expected in the near
future.

One aspect that is stressed in several works is that the nature of satellite
images may strongly differ from that of natural photographs. This is evident for
SAR data and MSI, but it also holds for EO products, whose complex processing
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pipelines have little in common with the life cycle of standard digital pictures.
This drives the need for specific forensic tools tailored to overhead data.

These tools nowadays often rely on deep learning techniques. This is
possible thanks to the increasing availability of EO products on the Web.
As a consequence, many of the proposed forensic tools ended up relying on
data-driven technology, causing two possible issues. On one hand, common
CNN techniques developed for image analysis are tailored to work with 8 bit
images with standard photograph resolutions. These tools have to be adapted
to work with 16 bit data at higher resolution, which may cause both numerical
instability and memory issues. On the other hand GAN-based methods often
look like black boxes that offer little to no interpretation to analysts. This is
a major concern as forensic results must be supported by strong evidence in
courts of trials. Therefore, we foresee as a future research line the development
and implementation of explainable forensic tools, which allow a forensic analyst
to better understand why a certain decision has been taken.

Another relevant aspect that current detectors have not exploited yet is the
presence of multiple image modalities. Satellite images often come bundled
with additional images. For instance, it is customary to work with multiple
bands if we think at MSIs. Moreover, it is common to have pairs of SAR
and EO observations of the same region. This could be exploited by forensic
detectors to further verify image integrity by means of a joint analysis of
different modalities.

Similarly, we expect that metadata could become an additional asset in the
hands of forensic analysts. Indeed, as satellite images often come with a great
amount of additional side information, this could be exploited to verify if an
image is authentic or it has been modified. This aspect could be of paramount
importance not only for methods linking images to devices, but also for local
forgery analysis (e.g., verify the compatibility of shadows with the sun position
and acquisition time).

Finally, we believe that model-based solutions could still be viable tech-
niques in the detection of satellite image forgeries. As these kind of images
undergo a set of very specific operations at acquisition time (e.g., multiple
acquisition stitching, image projection from the earth surface to a planar
bi-dimensional image, multiple band fusion, etc.) an informed analyst could
spot interesting forensic traces that may be not visible upon visual inspection.
Detectors based on such traces may only come from a close collaboration
between the multimedia forensic community and the remote sensing one.

8 Conclusion

We have reviewed the different facets characterizing the generation of synthetic
satellite images. In our analysis, we have divided SOTA works depending on the
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envisaged application. In doing so, we have seen that several techniques enable
image generation from scratch, while others aim at satellite modality translation
and image quality improvement. The vast majority of these techniques have
been developed to support a wide range of remote sensing applications. Indeed,
due to the diffusion of deep learning tools also in the satellite field, the need
for precise and annotated data has become more pressing than before. Despite
the numerous sources of remote sensing data available on the Web [37], the
use of synthetically generated images can be of great help.

On the negative side, the malicious use of synthetically generated satellite
images can lead to severe consequences. As a matter of fact, the increased
availability of remote sensing data, while paving the way to numerous research
and application opportunities, also exposes this kind of information to manip-
ulations and attacks [75]. For this reason, we have also overviewed the forensic
tools available to contrast the inappropriate usage of synthetic satellite images.
From this analysis, it is evident that satellite imagery represents a complete
new challenge to forensic analysts. In particular, detection and localization of
synthetic forgeries have been seldom studied in the literature so far. Luckily,
different general-purpose forgery detection and localization methods tailored
to both EO and SAR imagery have been proposed in the recent literature.
We envision that these techniques can be adapted to the problem of exposing
synthetic manipulations too.

We are confident that our work will help to shed light on the opportunities
that are opening in the near future, as well as on the challenges practitioners
must face regarding the generation and analysis of synthetic satellite images.
In particular, while data generation techniques seem to have reached quite an
advanced status, forensic analysis of this kind of imagery still falls behind. As
the forensic research community is still making its first steps in the remote
sensing field area, the increasing role that satellite images are acquiring in an
ever growing number of applications shows the urgent need for the development
of appropriate forensic tools.

In this context, future work could be dedicated to the extraction of forensics
footprints characterizing the life-cycle of satellite imagery, or to the development
of methods that take into account the physical properties of the depicted scene
(i.e., physical interpretable methods). Moreover, since many forensics methods
are currently based on deep learning tools, other research lines may touch the
field of artificial intelligence interpretability and the fusion of traces extracted
from different forensics methods.
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