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Abstract

The Cahn–Hilliard equation is one of the most common models to describe phase segregation processes 
in binary mixtures. Various dynamic boundary conditions have already been introduced in the literature 
to model interactions of the materials with the boundary more precisely. To take long-range interactions 
into account, we propose a new model consisting of a nonlocal Cahn–Hilliard equation with a nonlocal 
dynamic boundary condition comprising an additional boundary penalization term. We rigorously derive 
our model as the gradient flow of a nonlocal free energy with respect to a suitable inner product of order 
H−1 containing both bulk and surface contributions. In the main model, the chemical potentials are coupled 
by a Robin type boundary condition depending on a specific relaxation parameter. We prove weak and 
strong well-posedness of this system, and we investigate the singular limits attained when this relaxation 
parameter tends to zero or infinity.
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1. Introduction

We consider the system of equations

∂tφ = m��μ in �T := � × (0, T ), (1.1a)

μ = εa�φ − εJ ∗ φ + 1
ε
F ′

w(·, φ) in �T , (1.1b)

∂tψ = m���ν − βm�∂nμ on �T := � × (0, T ), (1.1c)

ν = δa�ψ − δK �ψ + 1
δ
G′

w(·,ψ) + 1
δ
B ′(·,ψ) on �T , (1.1d)

L∂nμ = βν − μ on �T , (1.1e)

φ|t=0 = φ0 in �, (1.1f)

ψ |t=0 = ψ0 on � (1.1g)

where ε, δ > 0 and � ⊂ Rd with d = 2 or d = 3 is a bounded domain with boundary � = ∂�

whose unit outer normal vector field is denoted by n. It consists of a nonlocal Cahn–Hilliard 
equation in the bulk (1.1a)–(1.1b) subject to a dynamic boundary condition (1.1c)–(1.1d) that 
also has a nonlocal Cahn–Hilliard type structure. The functions φ and ψ stand for phase-field 
variables describing the difference of two local relative concentrations of materials in the bulk 
and on the surface, respectively. In (1.1a) and (1.1c), the mobilities m� and m� are assumed to 
be positive constants. Moreover, μ denotes the chemical potential in the bulk whereas ν denotes 
the chemical potential on the surface. The symbols “∗” in (1.1b) and “�” in (1.1d) stand for the 
convolutions on � and �, respectively, i.e.,

(J ∗ φ)(x, t) :=
∫
�

J (x − y)φ(y, t)dy for every (x, t) ∈ �T ,

(K �ψ)(z, t) :=
∫
�

K(z − y)ψ(y, t)dS(y) for every (z, t) ∈ �T .

Moreover, the functions a� and a� are defined by

a�(x) := (J ∗ 1
)
(x) and a�(z):= (K � 1

)
(z)

for all x ∈ � and z ∈ �. In this model, the chemical potentials are coupled by the Robin type 
boundary condition (1.1e) with parameters L > 0 and β �= 0. To this end, we will refer to it as 
the “Robin model”. In addition, we also investigate the singular limits L → 0 and L → ∞ of 
the system (1.1) which lead to a Dirichlet type boundary condition (μ|�T

= βν a.e. on �T ) and 
a homogeneous Neumann boundary condition (∂nμ = 0 a.e. on �T ), respectively.

In the following subsection, we will explain the motivation behind our model as well as the 
occurring quantities. Before discussing the system (1.1) and its singular limits in more detail, we 
first present a short review of previous results to provide a better understanding of the origins and 
advances of our model.
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1.1. Motivation of our model

The (local) Cahn–Hilliard equation. The Cahn–Hilliard equation was originally introduced 
in [10] to model phase separation and de-mixing processes in binary alloys. Meanwhile, it is 
frequently used in mathematical models describing phenomena in materials science, life sciences 
and also image processing.

The (local) Cahn–Hilliard equation as introduced in [10] reads as follows:

∂tφ = m��μ, μ = −ε�φ + 1
ε
F ′

w(φ) in �T , (1.2a)

φ|t=0 = φ0 in �. (1.2b)

Here, the functions φ = φ(x, t) and μ = μ(x, t) depend on position x ∈ � and time t ∈ [0, T ], 
where T > 0 denotes an arbitrary but fixed final time. To describe a mixture of two materials, the 
phase-field variable φ stands for the difference of two local relative concentrations. We suppose 
that the parameter m�, which represents the so-called mobility, is a positive constant. This is 
indeed a very typical assumption, although non-constant mobilities are used in some situations 
(see, e.g., [29]). After a short period, the phase-field φ will attain values close to ±1 in large 
regions of the domain �. These areas, which correspond to the pure phases of the materials, are 
separated by a thin interface whose thickness is proportional to the parameter ε > 0 (which is 
usually chosen very small). The function μ denotes the chemical potential in the bulk (i.e., in 
�). It describes chemical reactions influencing the time evolution of the phase-field and can be 
expressed as the Fréchet derivative of the following bulk free energy of Ginzburg–Landau type:

EGL
bulk(φ) =

∫
�

ε

2
|∇φ|2 + 1

ε
Fw(φ)dx, (1.3)

where the function Fw is the bulk potential. If phase separation processes are to be described, 
Fw is usually supposed to exhibit a double-well structure attaining its global minima at −1 and 1
(as these values correspond to the pure phases) and a local maximum at 0. A physically relevant 
choice for Fw is a singular logarithmic potential (cf. (2.16)). For simplicity of the mathematical 
analysis, it is often approximated by a regular polynomial potential, typically the double-well 
potential Fw(s) = Wdw(s) = 1

4 (s2 − 1)2 (see also Remark 2.8). Since the time evolution of the 
phase-field and the chemical potential is considered in a bounded domain, it is necessary to 
impose suitable boundary conditions. The homogeneous Neumann conditions

∂nφ = 0, ∂nμ = 0 on �T (1.4)

are the classical choice. The condition (1.4)1 implies that the interface intersects the boundary 
at a perfect contact angle of ninety degrees, while the no-flux condition (1.4)2 entails that the 
phase-field φ satisfies the mass conservation law

∫
�

φ(t)dx =
∫
�

φ(0)dx, t ∈ [0, T ]. (1.5)

Moreover both conditions in (1.4) imply the energy dissipation law
238



P. Knopf and A. Signori Journal of Differential Equations 280 (2021) 236–291
d

dt
EGL

bulk

(
φ(t)

)+ m�

∫
�

|∇μ(t)|2 dx = 0, t ∈ [0, T ]. (1.6)

We point out that the Cahn–Hilliard equation subject to the boundary conditions (1.4) can 
be interpreted as a gradient flow of type H−1 of the bulk free energy EGL

bulk (cf. [20]). The 
Cahn–Hilliard equation (1.2) with homogeneous Neumann conditions (1.4) is already very well 
understood and there exists an extensive literature (see, e.g., [2,4,13,29,30,65,67,73]).

The (local) Cahn–Hilliard equation with dynamic boundary conditions. In some situations, it 
turned out that homogeneous Neumann boundary conditions are not satisfactory as they neglect 
the influence of certain processes on the boundary to the dynamics in the bulk. For instance, 
separate chemical reactions on the boundary cannot be taken into account. However, especially 
in certain applications (e.g., applications in hydrodynamics and contact line problems), it proved 
necessary to describe short-range interactions of the binary mixture with the solid wall of the 
container more precisely. To this end, physicists proposed a surface free energy which is again 
of Ginzburg–Landau type (cf. [27,28,51]):

EGL(φ,ψ) := EGL
bulk(φ) + EGL

surf(ψ) with EGL
surf(ψ) =

∫
�

κδ

2
|∇�ψ |2 + 1

δ
Gw(ψ)dS. (1.7)

Here, the symbol ∇� denotes the surface gradient on �, G is a surface potential, the parame-
ter κ ≥ 0 acts as a weight for surface diffusion effects, and δ > 0 denotes a small parameter 
corresponding to the thickness of the interface on the surface. In the case κ = 0 this energy is 
related to the moving contact line problem (see, e.g., [70]). Recently, various dynamic boundary 
conditions corresponding to the energy EGL have been derived and analyzed in the literature, 
for instance [11,12,16–19,35,37,38,44,56,61–64,66,71,72]. In particular, Cahn–Hilliard systems 
with dynamic boundary conditions exhibiting also a Cahn–Hilliard type structure have become 
very popular in recent times. In general, such models can be interpreted as a gradient flow of the 
energy EGL with respect to a suitable inner product of order H−1 which contains both a bulk 
and a surface contribution (see, e.g., [46,52,53]).

The following model which was proposed and analyzed in [53] can be regarded as the local 
analogue of the model (1.1) (with B ≡ 0) we intend to study. It reads as follows:

∂tφ = m��μ, μ = −ε�φ + 1
ε
F ′

w(φ) in �T , (1.8a)

∂tψ = m���ν − βm�∂nμ, ν = −δκ��ψ + 1
δ
G′

w(ψ) + ε∂nφ on �T , (1.8b)

φ|�T
= ψ, L∂nμ = βν − μ on �T , (1.8c)

φ|t=0 = φ0 in �, (1.8d)

ψ |t=0 = ψ0 = φ0|� on �, (1.8e)

where β �= 0, L > 0. Here, the chemical potentials μ and ν are coupled by a Robin type boundary 
condition (1.8c)2 (which is the same as the condition (1.1e) in our system) to model chemical 
reactions between the materials in the bulk and the materials on the surface. In this context, the 
constant 1/L is related to the reaction rate. Here, the term “reactions” is to be understood in a 
general sense including chemical reactions but also adsorption or desorption processes. By the 
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condition (1.8c)2, the mass flux −m�∂nμ (which describes the motion of the materials towards 
and away from the boundary) is directly influenced by differences in the chemical potentials.

Provided that a solution of (1.8) is sufficiently regular, it satisfies the mass conservation law

β

∫
�

φ(t)dx +
∫
�

ψ(t)dS = β

∫
�

φ0 dx +
∫
�

ψ0 dS, t ∈ [0, T ], (1.9)

as well as the energy dissipation law

d

dt
EGL(φ(t),ψ(t)

)
+ m�

∫
�

|∇μ(t)|2 dx + m�

∫
�

|∇�ν(t)|2 dS + m�

L

∫
�

|βν − μ|2 dS = 0,
(1.10)

for all t ∈ [0, T ]. This means that the parameter β acts as a weight in the mass conservation 
relation (1.9). Moreover, since the total free energy EGL is bounded from below (at least for 
reasonable choices of Fw and Gw), the dissipation law (1.10) implies that the potentials μ and ν
converge to the chemical equilibrium μ|�T

= βν over time. For more details, we refer the reader 
to [53].

Furthermore, the singular limits L → 0 and L → ∞ were analyzed rigorously in [53]. The 
limit L → 0 leads to the system

∂tφ = m��μ, μ = −ε�φ + 1
ε
F ′

w(φ) in �T , (1.11a)

∂tψ = m���ν − βm�∂nμ, ν = −δκ��ψ + 1
δ
G′

w(ψ) + ε∂nφ on �T , (1.11b)

φ|�T
= ψ, μ|�T

= βν on �T , (1.11c)

φ|t=0 = φ0 in �, (1.11d)

ψ |t=0 = ψ0 = φ0|� on �, (1.11e)

which was introduced and investigated previously in [50]. The condition (1.11c)2 means that 
the chemical potential in the bulk and the chemical potential on the surface are supposed to 
differ only by a multiplicative constant1. This means that, due to the condition (1.11c)2, the 
potentials μ and ν are always in chemical equilibrium. As the constant 1/L can be interpreted as 
∞, this model describes the idealized case of instantaneous relaxation to chemical equilibrium. 
Sufficiently regular solutions of the model satisfy the mass conservation law (1.9) and the energy 
dissipation law

d

dt
EGL(φ(t),ψ(t)

)+ m�

∫
�

|∇μ(t)|2 dx + m�

∫
�

|∇�ν(t)|2 dS = 0, (1.12)

for all t ∈ [0, T ].

1 In fact, the setting in the referenced paper is even more general as there the factor β is allowed to be a function in 
L∞(�) that is uniformly positive a.e. on �.
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On the other hand, in the limit L → ∞ we arrive at the system

∂tφ = m��μ, μ = −ε�φ + 1
ε
F ′

w(φ) in �T , (1.13a)

∂tψ = m���ν − βm�∂nμ, ν = −δκ��ψ + 1
δ
G′

w(ψ) + ε∂nφ on �T , (1.13b)

φ|�T
= ψ, ∂nμ = 0 on �T , (1.13c)

φ|t=0 = φ0 in �, (1.13d)

ψ |t=0 = ψ0 = φ0|� on �. (1.13e)

It was derived in [57] by an energetic variational approach and it was further analyzed in [57] and 
[46]. The crucial difference between (1.13) and the models (1.8) and (1.11) is that the chemical 
potentials in the bulk and on the boundary are completely decoupled. Accordingly, the constant 
1/L (that is related to the reaction rate) can be interpreted as zero. This means that the model 
considers only mechanical interactions between the bulk and the surface quantities through the 
trace relation for the phase-fields. As a consequence, the bulk and the surface mass are conserved 
separately, i.e.,

∫
�

φ(t)dx =
∫
�

φ0 dx and
∫
�

ψ(t)dS =
∫
�

ψ0 dS, t ∈ [0, T ]. (1.14)

Moreover, the dissipation law (1.12) holds true for this model.
Finally, we point out that a variant of the model (1.13), where (1.13c)2 was replaced by a 

Robin type transmission condition K∂nφ = H(ψ) − φ (with K > 0 and a function H ∈ C2(R)

satisfying suitable growth conditions), was studied in [52]. In this case, the quantity ψ can be 
interpreted as the difference in volume fractions of two materials which are restricted to the 
boundary.

The nonlocal Cahn–Hilliard equation. Although the derivation of the local Cahn–Hilliard 
equation is physically sound, nonlocal contributions to the total free energy are ignored. This 
means that only short-range interactions between the particles of the interacting materials are 
considered. A rigorous derivation of a phase-field model taking both short and long-range inter-
actions into account was firstly presented in [47] (see also [48,49] for more information). This 
leads to the nonlocal Cahn–Hilliard equation

∂tφ = m��μ, μ = εa�φ − εJ ∗ φ + 1
ε
F ′

w(φ) in �T , (1.15a)

∂nμ = 0 on �T , (1.15b)

φ|t=0 = φ0 in �, (1.15c)

where J : Rd → R is an even interaction kernel, i.e., J (x) = J (−x) for all x ∈ Rd . This system 
of equations can be interpreted as the gradient flow of the nonlocal Helmholtz free energy

Ebulk(φ) = ε

4

∫
�

∫
�

J (x − y)|φ(x) − φ(y)|2 dy dx + 1

ε

∫
�

Fw(φ(x))dx (1.16)
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with respect to a suitable inner product of order H−1 (see, e.g., [42]). By the substitution 
F(x, φ) = Fw(φ) + 1

2a�(x)φ2 with a�(x) = (J ∗ 1)(x), the nonlocal Cahn–Hilliard equation 
(1.15) as well as the free energy Ebulk can be expressed equivalently as

∂tφ = m��μ, μ = −εJ ∗ φ + 1
ε
F ′(·, φ) in �T , (1.17a)

∂nμ = 0 on �T , (1.17b)

φ|t=0 = φ0 in �, (1.17c)

and

Ebulk(φ) = −ε

2

∫
�

∫
�

J (x − y)φ(x)φ(y)dx dy + 1

ε

∫
�

F(x,φ(x))dx. (1.18)

The nonlocal Cahn–Hilliard equation has already been investigated from many different view-
points. We refer the reader to [1,5,6,21,25,31,36,40–42] for various well-posedness results, to 
[14,24,26,32,34] for the investigation of the nonlocal Cahn–Hilliard equation coupled to fluid 
equations, and also to [1,33,43,58,59] for results on long-time behavior. The convergence of the 
nonlocal Cahn–Hilliard equation to the local Cahn–Hilliard equation, under suitable assumptions 
on the convolution kernel J , has been investigated in [8,21–23,60].

The nonlocal Cahn–Hilliard equation with dynamic boundary conditions. As mentioned 
above, there are already several works concerning the local Cahn–Hilliard equation with dynamic 
boundary conditions. However, the authors were able to find only one contribution dealing with 
the nonlocal Cahn–Hilliard equation with dynamic boundary conditions in the literature, see [39]. 
Therein, the nonlocal Cahn–Hilliard equation subject to fractional dynamic boundary conditions 
is studied. The system of equations (in which the mobilities as well as ε and δ are set to one) 
reads as

∂tφ = �μ, μ = (−�)sφ + F ′
w(φ) in �T , (1.19a)

∂tψ = (−��)lψ + CsN
2−2sφ + βψ + G′

w(ψ) on �T , (1.19b)

φ|t=0 = φ0 in �, (1.19c)

with 1
2 < s < 1, 0 < l < 1 and β > 0. Here, (−�)s denotes the regional fractional Laplace 

operator, (−��)l denotes the fractional Laplace–Beltrami operator and CsN
2−2s stands for the 

fractional normal derivative. By the formal choice s = l = 1, this model corresponds to the local 
Cahn–Hilliard system subject to a dynamic boundary condition of Allen–Cahn type (as proposed 
in [7,27]).

In this paper, however, we pursue a different idea. To describe both short and long-range in-
teraction of the materials on the boundary, we define the nonlocal total free energy (of Helmholtz 
type) as

E(φ,ψ) := Ebulk(φ) + Esurf(ψ) + Epen(ψ)

:=
⎡
⎣ε

4

∫ ∫
J (x − y) |φ(x) − φ(y)|2 dx dy + 1

ε

∫
Fw(x,φ(x))dx

⎤
⎦

� � �
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+
⎡
⎣ δ

4

∫
�

∫
�

K(z − y) |ψ(x) − ψ(y)|2 dS(z)dS(y) + 1

δ

∫
�

Gw(z,ψ(z))dS(z)

⎤
⎦

+ 1

δ

∫
�

B(z,ψ(z))dS(z), (1.20)

where Esurf is introduced by analogy to the surface free energy defined in (1.7). As in [52], the 
function ψ can be interpreted as the difference of local relative concentrations of two materials 
that are restricted to the boundary. The function K : Rd → R defines an additional even kernel 
modeling both short- and long-range interactions among the materials described by ψ .

For generality, we also allow the potentials Fw = Fw(x, s) and Gw = Gw(z, s) to depend also 
on the spatial variables x ∈ � and z ∈ �. This generalization might make sense especially for 
Gw if the solid wall of the container consists of several materials interacting differently with the 
mixture therein. For this reason, we also allow an additional penalty term Epen in the total free 
energy. For instance, we can choose the function

B : � ×R→ R, (z, s) �→ b(z)s, (1.21)

where b can be interpreted as a weight function. Then the corresponding penalty term Epen is 
expected to describe different regions of the boundary that attract the material associated with 
ψ = ±1 and repel the other material associated with ψ = ∓1. For more detail see Remark 2.9.

Now, the system (1.1) can be derived as the gradient flow equation of the energy E with 
respect to a suitable inner product of order H−1 containing both a bulk and a surface contribution. 
We present a rigorous derivation in Section 3. In contrast to the model (1.19) studied in [39], the 
dynamic boundary condition in (1.1) is also of nonlocal Cahn–Hilliard type involving the phase 
field ψ and the chemical potential ν on the surface.

Since the chemical potentials are coupled by the Robin type boundary condition (1.1e), the 
system (1.1) (with B ≡ 0) can be regarded as the nonlocal analogue of the system (1.8) studied in 
[53]. As a consequence, sufficiently regular solutions to (1.1) satisfy the same mass conservation 
and dissipation properties as system (1.8). To be precise, this means that the mass conservation 
law

β

∫
�

φ(t)dx +
∫
�

ψ(t)dS = β

∫
�

φ0 dx +
∫
�

ψ0 dS (1.22)

as well as the energy dissipation law

d

dt
E
(
φ(t),ψ(t)

)
+ m�

∫
�

|∇μ(t)|2 dx + m�

∫
�

|∇�ν(t)|2 dS + m�

L

∫
�

|βν − μ|2 dS = 0
(1.23)

are satisfied for all t ∈ [0, T ]. As the total free energy E is bounded from below (for reasonable 
choices of J , K , Fw, Gw and B), we infer that d

dt
E(φ(t), ψ(t)) converges to zero as t → ∞. 

Hence, the potentials μ and ν converge to the chemical equilibrium μ|�T
= βν over the course 

of time.
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By the substitutions F(x, φ) = Fw(x, φ) + 1
2a�(x)φ2 with a�(x) = (J ∗ 1)(x), x ∈ � and 

G(z, ψ) = Gw(z, ψ) + 1
2a�(z)ψ2 with a�(z) = (K � 1)(z), z ∈ �, the energy E and the system 

(1.1) can be expressed equivalently as

E(φ,ψ) =
⎡
⎣−ε

2

∫
�

(J ∗ φ)φ dx + 1

ε

∫
�

F(·, φ)dx

⎤
⎦

+
⎡
⎣− δ

2

∫
�

(K �ψ)ψ dS + 1

δ

∫
�

G(·,ψ)dS

⎤
⎦+ 1

δ

∫
�

B(·,ψ)dS,

(1.24)

and

∂tφ = m��μ, μ = −εJ ∗ φ + 1
ε
F ′(·, φ) in �T , (1.25a)

∂tψ = m���ν − βm�∂nμ, ν = −δK �ψ + 1
δ
G′(·,ψ) + 1

δ
B ′(·,ψ) on �T , (1.25b)

L∂nμ = βν − μ on T , (1.25c)

φ|t=0 = φ0 in �, (1.25d)

ψ |t=0 = ψ0 on �. (1.25e)

In the following, we will switch between these equivalent formulations at our convenience.

1.2. The singular limits L → 0 and L → ∞

Similar to the corresponding local model (1.8), the constant 1/L is related to the reaction 
rate. As in the local case, we are also interested in the singular limits L → 0 and L → ∞ of the 
system (1.1).

Passing to the limit L → 0 in the system (1.1) we (formally) obtain the boundary condition 
βν = μ|�T

on �T . Thus, we can express the limit system as follows:

∂tφ = m��μ in �T , (1.26a)

μ = ε a�φ − εJ ∗ φ + 1
ε
F ′

w(·, φ) in �T , (1.26b)

∂tψ = 1
β
m���μ − βm� ∂nμ on �T , (1.26c)

μ|�T
= βδ a�ψ − δβK �ψ + β

δ
G′

w(·,ψ) + β
δ
B ′(·,ψ) on �T , (1.26d)

φ|t=0 = φ0 in �, (1.26e)

ψ |t=0 = ψ0 on �. (1.26f)

It can be interpreted as the nonlocal analogue to the model (1.11). Here, the constant 1/L can 
again be interpreted as infinity meaning that this model describes the idealized scenario of in-
stantaneous relaxation to the situation where the potentials μ and ν = β−1μ|�T

are in chemical 
equilibrium. Sufficiently regular solutions satisfy the mass conservation law (1.22) as well as the 
energy dissipation law
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d

dt
E
(
φ(t),ψ(t)

)+ m�

∫
�

|∇μ(t)|2 dx + m�

∫
�

|∇�ν(t)|2 dS = 0. (1.27)

In the limit L → ∞ we (formally) obtain the boundary condition ∂nμ = 0 on �T . As a con-
sequence, the subsystems for (φ, μ) and for (ψ, ν) are completely decoupled. To be precise, the 
pair (φ, μ) satisfies the standard nonlocal Cahn–Hilliard equation with homogeneous Neumann 
boundary condition

∂tφ = m��μ, μ = a�φ − εJ ∗ φ + 1
ε
F ′

w(·, φ) in �T , (1.28a)

∂nμ = 0 on �T , (1.28b)

φ|t=0 = φ0 in �, (1.28c)

whereas the pair (ψ, ν) satisfies the following nonlocal Cahn–Hilliard type equation on the sur-
face

∂tψ = m���ν, ν = a�ψ − δK �ψ + 1
δ
G′

w(·, φ) + 1
δ
B ′(·, φ) on �T , (1.29a)

ψ |t=0 = ψ0 on �. (1.29b)

For that reason, we refer to ((1.28), (1.29)) as the “decoupled model”. If B ≡ 0, this model can be 
interpreted as the nonlocal analogue to the model (1.13). However, in contrast to (1.13) where the 
phase fields φ and ψ were coupled by the Dirichlet type condition (1.13c)1, the systems (1.28)
and (1.29) are completely independent. This means that the bulk and the surface materials are 
assumed to not interact at all. As the mass flux −m�∂nμ is zero, we obtain separate conservation 
of bulk and boundary mass, i.e.,

∫
�

φ(t)dx =
∫
�

φ0 dx and
∫
�

ψ(t)dS =
∫
�

ψ0 dS, t ∈ [0, T ]. (1.30)

Moreover, the energy dissipation law (1.27) is satisfied by sufficiently regular solutions.
Since the interfacial thickness parameters ε and δ as well as the constant mobilities m� and 

m� will not play any role in the analysis, we conveniently set them to one in the rest of the paper.

2. Preliminaries

2.1. Notation

Throughout this paper we use the following notation: For any 1 ≤ p ≤ ∞ and k ≥ 0, the 
standard Lebesgue and Sobolev spaces defined on � are denoted as Lp(�) and Wk,p(�), along 
with the norms ‖ · ‖Lp(�) and ‖ · ‖Wk,p(�). For the case p = 2, these spaces become Hilbert spaces 
and we use the notation Hk(�) := Wk,2(�). For any exponent p > 1, we write p′ to denote its 
dual Sobolev exponent, i.e., (1/p) + (1/p′) = 1. We point out that H 0(�) can be identified 
with L2(�). A similar notation is used for Lebesgue and Sobolev spaces on �. The definition 
of tangential gradients on Lipschitz surfaces can be found, e.g., in [9, Def. 3.1]. For any Banach 
space X, we denote its topological dual space by X′ and the associated duality pairing by 〈·, ·〉X. 
If X is a Hilbert space, we denote its inner product by (·, ·)X. We define
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〈u〉� :=
{

1
|�| 〈u,1〉H 1(�) if u ∈ H 1(�)′,
1

|�|
∫
�

udx if u ∈ L1(�)

as the spatial mean of u, where |�| denotes the d-dimensional Lebesgue measure of �. The 
spatial mean for v ∈ H 1(�)′ and v ∈ L1(�) can be defined analogously and will be denoted by 
〈v〉�. For any real number p ∈ [1, ∞] and any integer k ≥ 0, we set

Lp := Lp(�) × Lp(�), and Hk := Hk(�) × Hk(�),

and we identify H0 with L2. We notice that the space Hk is a Hilbert space with respect to the 
inner product

(
(φ,ψ), (ζ, ξ)

)
Hk := (φ, ζ

)
Hk(�)

+ (ψ,ξ
)
Hk(�)

and its induced norm ‖ · ‖Hk := (·, ·)1/2
Hk .

2.2. Assumptions

General assumptions.

(A1) We take � ⊂ Rd with d ∈ {2, 3} to be a bounded domain with Lipschitz boundary �. For 
any t > 0 we write �t := � × (0, t) as well as �t := � × (0, t). Since � is bounded, we can 
find a positive radius R > 0 such that � ⊂ BR(0) where BR(0) denotes the open ball in Rd

with radius R and center 0. In general, we assume that T > 0. If not stated otherwise, we 
suppose that L > 0 and β �= 0. The mobilities m� and m�, and the interface parameters ε
and δ are positive constants. As their choice does not have any impact on the mathematical 
analysis, they will be set to one from now on.

(A2) We assume that the convolution kernels J, K : Rd → R are even (i.e., J (x) = J (−x)

and K(x) = K(−x) for almost all x ∈ Rd ), nonnegative almost everywhere, and satisfy 
J ∈ W 1,1(Rd) and K ∈ W 2,r (Rd) with r > 1. Note that the regularity assumption on K is 
higher than that on J since the traces K(z − ·)|� and ∇�K(z − ·)|� must exist and belong 
to Lr(�) for all z ∈ � (see, e.g., Lemma 2.2 and its proof).
In addition, we suppose that

a∗ := inf
x∈�

∫
�

J (x − y)dy > 0, a� := inf
z∈�

∫
�

K(z − y)dS(y) > 0, (2.1a)

a∗ := sup
x∈�

∫
�

J (x − y)dy < ∞, a� := sup
z∈�

∫
�

K(z − y)dS(y) < ∞, (2.1b)

b∗ := sup
x∈�

∫
�

|∇J (x − y)|dy < ∞, b� := sup
z∈�

∫
�

|∇�K(z − y)|dS(y) < ∞ (2.1c)

where inf and sup are to be understood as the essential infimum and the essential supre-
mum, respectively. We further use the notation
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a�(x) := (J ∗ 1
)
(x) =

∫
�

J (x − y)dy, for almost all x ∈ �, (2.2a)

a�(z) := (K � 1
)
(z) =

∫
�

K(z − y)dS(y), for almost all z ∈ �. (2.2b)

We point out that a� ∈ L∞(�) and a� ∈ L∞(�) due to (2.1).
(A3) We suppose that the potentials Fw : � ×R →R, Gw : � ×R → R are nonnegative, satisfy 

Fw(x, ·), Gw(z, ·) ∈ C2(R) for almost all x ∈ �, z ∈ �, and satisfy Fw(·, s), Gw(·, s) ∈
L∞(R) for all s ∈ R. The derivatives with respect to the second variable are denoted by 
F ′

w, F ′′
w, G′

w and G′′
w. We assume that there exist constants c∗, c� > 0 such that for all 

s ∈ R, and almost all x ∈ �, z ∈ �,

F ′′
w(x, s) + a∗ ≥ c∗ and G′′

w(z, s) + a� ≥ c�. (2.3)

Moreover, we assume that there exist αF ′
w
, αG′

w
, γF ′

w
, γG′

w
> 0 and δF ′

w
, δG′

w
≥ 0 as well as 

exponents p, q ∈R with

{
p > 2 and q ≥ 2 if d = 2,

p > 3 and q > 2 if d = 3,
p′ = p

p − 1
, q ′ = q

q − 1
(2.4)

such that for all s ∈R and almost all x ∈ �, z ∈ �,

αF ′
w

|s|p−1 − δF ′
w

≤ ∣∣F ′
w(x, s)

∣∣ ≤ γF ′
w
(1 + |s|p−1), (2.5a)

αG′
w

|s|q−1 − δG′
w

≤ ∣∣G′
w(z, s)

∣∣≤ γG′
w
(1 + |s|q−1). (2.5b)

As a consequence, there exist constants αFw, αGw , γFw , γGw > 0 and δFw , δGw ≥ 0 such 
that

αFw |s|p − δFw ≤ Fw(x, s) ≤ γFw(1 + |s|p), (2.5c)

αGw |s|q − δGw ≤ Gw(z, s) ≤ γGw(1 + |s|q), (2.5d)

for all s ∈ R and almost all x ∈ �, z ∈ �.
(A4) We define the potentials F and G by

F(x, s) := Fw(x, s) + 1

2
a�(x)s2 and G(z, s) := Gw(z, s) + 1

2
a�(z)s2 (2.6)

for all s ∈ R and almost all x ∈ � and z ∈ �. In view of a� ∈ L∞(�) and a� ∈ L∞(�) we 
conclude that for almost every fixed x ∈ � and z ∈ �, the functions F(x, ·) and G(z, ·) are 
twice continuously differentiable.
Moreover, we write

F ′(x, s) = F ′
w(x, s) + a�(x)s, F ′′(x, s) = F ′′

w(x, s) + a�(x),

G′(z, s) = G′
w(z, s) + a�(z)s, G′′(z, s) = G′′

w(z, s) + a�(z),
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for all s ∈ R and almost all x ∈ � and z ∈ � to denote the derivatives of F(x, ·) and G(z, ·)
with respect to the second variable. It follows from (2.3) that for all s ∈ R and almost all 
x ∈ � and z ∈ �,

F ′′(x, s) ≥ F ′′
w(x, s) + a∗ ≥ c∗ and G′′(z, s) ≥ G′′

w(z, s) + a� ≥ c� (2.7)

meaning that F(x, ·) and G(z, ·) are uniformly convex for almost all x ∈ � and z ∈ �. 
Since a� ∈ L∞(�), a� ∈ L∞(�) and p, q ≥ 2 (according to (2.4)), we infer from (2.5)
that there exist αF ′, αG′ , αF , αG, γF ′ , γG′ , γF , γG > 0 and δF ′, δG′ , δF , δG ≥ 0 such that

αF ′ |s|p−1 − δF ′ ≤ |F ′(x, s)| ≤ γF ′(1 + |s|p−1), (2.8a)

αG′ |s|q−1 − δG′ ≤ |G′(z, s)| ≤ γG′(1 + |s|q−1), (2.8b)

αF |s|p − δF ≤ F(x, s) ≤ γF (1 + |s|p), (2.8c)

αG |s|q − δG ≤ G(z, s) ≤ γG(1 + |s|q), (2.8d)

for all s ∈ R and almost all x ∈ � and z ∈ �.
(A5) We suppose that B ∈ L∞(� × R) with B(z, ·) ∈ C1(R) for almost all z ∈ � and we write 

B ′ to denote the derivative with respect to the second variable. Moreover, we assume that 
the following holds:
(A5.1) There exist constants αB, αB ′ , γB, γB ′ > 0 with αB < min{αG, αGw} such that

|B(z, s)| ≤ αB |s|q + γB, and
∣∣B ′(z, s)

∣∣≤ αB ′ |s|q−1 + γB ′ (2.9)

for all s ∈ R and almost all z ∈ � where q is the exponent from (2.5).
(A5.2) For any sequence ψk ⇀ ψ in Lq(�), it holds that

∫
�

B(·,ψ)dS ≤ lim inf
k→∞

∫
�

B(·,ψk)dS,

∫
�

B ′(·,ψ)θ dS = lim
k→∞

∫
�

B ′(·,ψk)θ dS,

for all test functions θ ∈ Lq(�). Note that B ′(·, ψ) ∈ Lq ′
(�) for all ψ ∈ Lq(�) due to 

the growth condition on B ′ in (A5.1).
(A5.3) We assume that B ′ is Lipschitz continuous with respect to its second argument in 

the following sense: There exists a constant 0 ≤ LB < c� such that

∣∣B ′(z, r) − B ′(z, s)
∣∣≤ LB |r − s|

for all r, s ∈ R and almost all z ∈ �.

Additional assumptions for higher regularity.

(A6) We assume that the boundary � is of class C2.
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(A7) We suppose that there exist constants γF ′′, γG′′ > 0 such that

F ′′(x, s) ≤ γF ′′(1 + |s|p−2), G′′(z, s)≤ γG′′(1 + |s|q−2)

for all s ∈R and almost all x ∈ � and z ∈ �.
(A8) We assume that B(z, ·) ∈ C2(R) for almost all z ∈ � and that there exists a constant 

0 < γB ′′ < c� such that

∣∣B ′′(z, s)
∣∣≤ γB ′′

for all s ∈R and almost all z ∈ �. In this case, we can of course choose LB = γB ′′ .

Remark 2.1.

(a) The assumptions on the kernel J in (A2) are very typical in the literature (cf. [23]). Some-
times the apparently weaker requirement J ∈ W

1,1
loc (Rd) is prescribed (see, e.g., [42]). 

However, any kernel J̃ ∈ W
1,1
loc (Rd) can always be multiplied by a compactly supported 

cut-off function ρ ∈ C1(Rd) with ρ = 1 in B2R(0), where R is the radius from (A1). Then 
J := J̃ρ ∈ W 1,1(Rd), and since x − y ∈ B2R(0) for all x, y ∈ �, it holds that J ∗ φ = J̃ ∗ φ

a.e. in �. For that reason, it is not a real restriction to demand J ∈ W 1,1(Rd) instead of 
J ∈ W

1,1
loc (Rd) in (A2). Of course, we can argue analogously for the assumptions on K .

(b) As a direct consequence of (2.1b) and (2.1c), we conclude that for all functions φ ∈ L1(�)

and ψ ∈ L1(�), it holds that J ∗ φ ∈ W 1,1(�) and K �ψ ∈ W 1,1(�) with

‖J ∗ φ‖L1(�) ≤ a∗ ‖φ‖L1(�) , (2.10a)

‖K �ψ‖L1(�) ≤ a� ‖ψ‖L1(�) , (2.10b)

‖∇(J ∗ φ)‖L1(�) = ‖(∇J ) ∗ φ‖L1(�) ≤ b∗ ‖φ‖L1(�) , (2.10c)

‖∇�(K �ψ)‖L1(�) = ‖(∇�K)�ψ‖L1(�) ≤ b� ‖ψ‖L1(�). (2.10d)

2.3. Special spaces, products and norms

(P1) Let β �= 0, m ∈R, and let k denote any integer. We define the spaces

Vk :=
{
ζ ∈ Hk(�) : ζ |� ∈ Hk(�)

}
for k ≥ 1,

Hk
β,m :=

{
(ζ, ξ) ∈Hk : β |�| 〈ζ 〉� + |�| 〈ξ 〉� = m

}
for k ≥ 0.

Note that the space Vk , endowed with the inner product

(φ, ζ )Vk := (φ, ζ )Hk(�) + (φ, ζ )Hk(�)

and its induced norm is a Hilbert space.
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For any L ≥ 0 and β �= 0 we introduce the bilinear form

(
(μ, ν), (ζ, ξ)

)
L,β

:=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
�

∇μ · ∇ζ dx +
∫
�

∇�ν · ∇�ξ + 1

L
(βν − μ)(βξ − ζ )dS, if L > 0,

∫
�

∇μ · ∇ζ dx +
∫
�

∇�ν · ∇�ξ dS, if L = 0,

for all (μ, ν), (ζ, ξ) ∈ H1. It is straightforward to check that (·, ·)L,β defines an inner product 
on H1

β,0 if L > 0 and β �= 0, and (·, ·)0,β defines an inner product on H1
β,0 if L = 0 and β > 0. 

The induced norm is given by ‖ · ‖L,β := (·, ·)1/2
L,β . Note that the dual space of H1 is given 

as

(H1)′ = H 1(�)′ × H 1(�)′.

We further define the subspace

H−1
β,0 =

{
(ζ, ξ) ∈ (H1)′ : β |�| 〈ζ 〉� + |�| 〈ξ 〉� = 0

}
⊂ (H1)′.

(P2) For β > 0, we introduce the subspace

D1
β :=

{
(ζ, ξ) ∈H1 : ζ |� = βξ a.e. on �

}
⊂ H1.

Endowed with the inner product

((φ,ψ), (ζ, ξ))D1
β

:= (φ, ζ )H 1(�) + (ψ, ξ)H 1(�) , (φ,ψ), (ζ, ξ) ∈ D1
β

and its induced norm ‖ · ‖D1
β

:= (·, ·)1/2
D1

β

, the space D1
β is a Hilbert space. We further define 

the bilinear form

〈
(φ,ψ), (ζ, ξ)

〉
D1

β
:= (φ, ζ )L2(�) + (ψ, ξ)L2(�)

for all pairs (φ, ψ), (ζ, ξ) ∈ L2. By means of the Riesz representation theorem, this product 
can be extended to a duality pairing on (D1

β)′ ×D1
β , which will also be denoted by 〈·, ·〉D1

β
. 

This means that for all (φ, ψ) ∈ (H1)′ ⊂ (D1
β)′ and (ζ, ξ) ∈D1

β ⊂ H1,

〈
(φ,ψ), (ζ, ξ)

〉
D1

β
= 〈φ, ζ 〉H 1(�) + 〈ψ,ξ 〉H 1(�).

In particular, the spaces 
(
D1

β, L2, (D1
β)′
)

form a Gelfand triplet, and the operator norm on 

(D1 )′ is given by
β
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‖φ‖(D1
β)′ = sup

{ ∣∣〈φ, ζ 〉D1
β

∣∣ : ζ ∈D1
β with ‖ζ‖D1

β
= 1
}

for all φ ∈ (D1
β)′.

We further point out that the mapping

I : V1 →D1
β, ρ �→ (βρ,ρ)

is an isomorphism.
(P3) Let L > 0 and (φ, ψ) ∈H−1

β,0 be arbitrary. According to [54, Thm. 3.3], there exists a unique 

weak solution SL(φ, ψ) := (SL
�(φ, ψ), SL

� (φ, ψ)) ∈ H1
β,0 to the elliptic system

⎧⎪⎪⎨
⎪⎪⎩

−�SL
� = −φ in �,

−��SL
� + β∂nSL

� = −ψ on �,

L∂nSL
� = (βSL

� − SL
�) on �.

This means that

(
SL(φ,ψ), (ζ, ξ)

)
L,β

= −〈(φ,ψ), (ζ, ξ)
〉
H1 = −〈φ, ζ 〉H 1(�) − 〈ψ,ξ 〉H 1(�) (2.11)

for all (ζ, ξ) ∈ H1
β,0. As in [54, Thm. 3.3 and Cor. 3.5], we can thus define the solution 

operator

SL : H−1
β,0 → H1

β,0, (φ,ψ) �→ SL(φ,ψ) = (SL
�(φ,ψ),SL

� (φ,ψ))

as well as an inner product on the space H−1
β,0 by

(
(φ,ψ), (ζ, ξ)

)
L,β,∗ := (SL(φ,ψ),SL(ζ, ξ)

)
L,β

for all (φ,ψ), (ζ, ξ) ∈ H−1
β,0

along with its induced norm

‖ · ‖L,β,∗ := (·, ·)1/2
L,β,∗ .

Because of H0
β,0 ⊂ H−1

β,0, the product (·, ·)L,β,∗ can also be used as an inner product on 

H0
β,0. Moreover, ‖ · ‖L,β,∗ is also a norm on H0

β,0 but H0
β,0 is not complete with respect to 

this norm.
(P4) Suppose that β > 0. We define the space

D−1
β :=

{
(φ,ψ) ∈ (D1

β)′ : 〈(φ,ψ), (β,1)
〉
D1

β
= 0
}

⊂ (D1
β)′.

Proceeding as in [54], we use Lax–Milgram theorem to show that for any (φ, ψ) ∈ D−1
β , 

there exists a unique weak solution S0(φ, ψ) = (S0
�(φ, ψ), S0

�(φ, ψ)) ∈ D1
β ∩ H1

β,0 to the 
elliptic problem
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⎧⎪⎪⎨
⎪⎪⎩

−�S0
� = −φ in �,

−��S0
� + β∂nS0

� = −ψ on �,

S0
�|� = βS0

� on �.

This means that S0(φ, ψ) satisfies the weak formulation

〈
S0(φ,ψ), (ζ, ξ)

〉
0,β

= −〈(φ,ψ), (ζ, ξ)
〉
D1

β
(2.12)

for all test functions (ζ, ξ) ∈D1
β .

Similar to [54, Thm. 3.3 and Cor. 3.5], we can thus define the solution operator

S0 : D−1
β →D1

β ∩H1
0,β , (φ,ψ) �→ S0(φ,ψ) = (S0

�(φ,ψ),S0
�(φ,ψ))

as well as an inner product and its induced norm on the space D−1
β by

(
(φ,ψ), (ζ, ξ)

)
0,β,∗ := (S0(φ,ψ),S0(ζ, ξ)

)
0,β

,

‖(φ,ψ)‖0,β,∗ := ((φ,ψ), (φ,ψ))
1/2
0,β,∗

for all (φ, ψ), (ζ, ξ) ∈D−1
β .

Since H0
0,β ⊂ D−1

β , the product (·, ·)0,β,∗ can also be used as an inner product on H0
0,β . 

Moreover, ‖ · ‖0,β,∗ is also a norm on H0
0,β but H0

0,β is not complete with respect to this 
norm.

(P5) For any integer k, we define the spaces

◦
Hk(�) := {ϕ ∈ Hk(�) : 〈ϕ〉� = 0

}
,

◦
Hk(�) := {ϕ ∈ Hk(�) : 〈ϕ〉� = 0

}
,

◦
H−1(�) := {ϕ ∈ H 1(�)′ : 〈ϕ〉� = 0

}
,

◦
H−1(�) := {ϕ ∈ H 1(�)′ : 〈ϕ〉� = 0

}
.

Let now φ ∈ ◦
H−1(�) and ψ ∈ ◦

H−1(�) be arbitrary. Then the Lax–Milgram theorem guar-
antees the existence of a unique weak solutions N�(φ) ∈ ◦

H 1(�) and N�(ψ) ∈ ◦
H 1(�) to the 

elliptic systems

{−�N� = −φ in �,

∂nN� = 0 on �
and − ��N� = −ψ on �.

This allows us to define the inner products

(φ, ζ )�,∗ := (∇N�(φ),∇N�(ζ ))L2(�) , φ, ζ ∈ ◦
H−1(�)

(ψ, ξ)�,∗ := (∇N�(ψ),∇N�(ξ))L2(�) , ψ, ξ ∈ ◦
H−1(�)

on 
◦

H−1(�) and 
◦

H−1(�), respectively. Their induced norms
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‖ · ‖�,∗ := (·, ·)1/2
�,∗ , ‖ · ‖�,∗ := (·, ·)1/2

�,∗

are equivalent to the standard norms on 
◦

H−1(�) and 
◦

H−1(�), respectively. Because of 
◦

H 0(�) ⊂ ◦
H−1(�) and 

◦
H 0(�) ⊂ ◦

H−1(�), the products (·, ·)�,∗ and (·, ·)�,∗ as well as the 

norms ‖ · ‖�,∗ and ‖ · ‖�,∗ can also be used on 
◦

H 0(�) and 
◦

H 0(�), respectively.

2.4. Important tools

We now present three fundamental lemmata which will be essential for the subsequent ap-
proach. The proofs of these lemmata, which are very technical in some parts, can be found in the 
Appendix.

Lemma 2.2. Suppose that (A2) is satisfied. Then the following holds:

(a) For all φ ∈ L2(�), it holds that J ∗φ ∈ H 1(�) and there exists a constant CJ > 0 depending 
only on d and J such that

‖J ∗ φ‖H 1(�) ≤ CJ ‖φ‖L2(�). (2.13)

(b) For all ψ ∈ L2(�), it holds that K �ψ ∈ H 1(�) and there exists a constant CK > 0 depend-
ing only on d , r and K such that

‖K �ψ‖H 1(�) ≤ CK ‖ψ‖L2(�). (2.14)

Remark 2.3. If p, q, p′, q ′ ∈ R satisfy (2.4), we have p, q ≥ 2 and thus, p′, q ′ ≤ 2. Hence, 
Lemma 2.2 particularly implies that J ∗ φ ∈ W 1,p′

(�), K �ψ ∈ W 1,q ′
(�) with

‖J ∗ φ‖
W 1,p′

(�)
≤ C‖J ∗ φ‖H 1(�) ≤ C‖φ‖L2(�) ≤ C‖φ‖Lp(�),

‖K �ψ‖
W 1,q′

(�)
≤ C‖K �ψ‖H 1(�) ≤ C‖ψ‖L2(�) ≤ C‖ψ‖Lq(�)

for generic positive constants denoted by C that may depend on J , K , d and r .

Lemma 2.4. Suppose that (A2) holds and that p, q, p′, q ′ ∈ R satisfy the condition (2.4). Then 
for all sequences (φk)k∈N ⊂ Lp(�) and (ψk)k∈N ⊂ Lq(�) satisfying φk ⇀ φ in Lp(�) and 
ψk ⇀ ψ in Lq(�) as k → ∞, it holds that

(J ∗ φk) → (J ∗ φ) in Lp′
(�) and (K �ψk) → (K �ψ) in Lq ′

(�)

as k → ∞ along a non-relabeled subsequence.

Lemma 2.5. Let β �= 0, L > 0 be arbitrary. Then, there exists a positive constant C that may 
depend on β but not on L such that

‖ϕ‖(H1)′ ≤ C
(

1 + 1√
L

)
‖ϕ‖L,β,∗ for all ϕ ∈H−1

β,0 if L > 0, (2.15a)

‖ϕ‖(H1)′ ≤ C‖S0(ϕ)‖0,β = C‖ϕ‖0,β,∗ for all ϕ ∈D−1 if L = 0. (2.15b)
β
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2.5. Examples for admissible kernels, potentials and penalty functions

Examples for admissible kernels J and K . Since the assumption (A2) is rather abstract, we 
now give concrete examples for admissible singular convolution kernels.

Lemma 2.6.

(a) Let 0 < ω < d − 1 be arbitrary and let ρ ∈ C1([0, ∞)) be a positive function decaying 
sufficiently fast as s → ∞ such that

s �→ |ρ(k)(s)| sd−1−ω ∈ L1((0,∞)), k ∈ {0,1},

where ρ(k) denotes the derivative of ρ of order k. Then the kernel J defined by

J (x) := ρ(|x|) |x|−ω for all x ∈ Rd \ {0}

belongs to W 1,1(Rd) and satisfies the condition (A2) with

a∗ = (2R)−ω min|x|≤2R
ρ(|x|).

(b) Suppose that d = 3. Let 0 < γ < d −2 = 1 be arbitrary and suppose that 1 < r < 3/(γ +2). 
Moreover, let σ ∈ C2([0, ∞)) be a positive function decaying sufficiently fast as s → ∞ such 
that

s �→ |σ (k)(s)|r s2−rγ ∈ L1((0,∞)), k ∈ {0,1,2},

where σ (k) denotes the derivative of σ of order k. Then the kernel K defined by

K(x) := σ(|x|) |x|−γ for all x ∈ R3 \ {0}

belongs to W 2,r (R3) and satisfies the condition (A2) with

a� = (2R)−γ min|x|≤2R
σ(|x|).

The proof of Lemma 2.6 can be found in the Appendix.

Remark 2.7.

(a) Unfortunately, in Lemma 2.6, the “sharp” cases ω = d − 1 in (a) and γ = d − 2 in (b) 
cannot be included as the kernels would not have the desired regularity. Moreover, in the 
case d = 2, we cannot allow singular potentials because W 2,r (R2) is continuously embedded 
in L∞(R2) as r > 1. Of course, for both d = 2 and d = 3, non-singular potentials such as 
K(x) = σ(|x|) |x|γ with γ ≥ 0 can be handled without any problem, provided that σ(s)

decays sufficiently fast as s → ∞.
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(b) In view of Remark 2.1(a), let R > 0 be the radius introduced in (A1) and suppose that the 
functions ρ and σ in Lemma 2.6 satisfy

ρ,σ ∈ C∞([0,∞)), ρ = σ = 1 in [0,2R], ρ = σ = 0 in [3R,∞).

Then, since x − y ∈ B2R(0) for all x, y ∈ �, the values of (J ∗ φ)|� and (K �ψ)|� do not 
depend on the choice of ρ and σ .
This means that, applying this trick, the Riesz potentials

J (x) := cα |x|α−d for x ∈Rd \ {0}, d ∈ {2,3}, and 1 < α < d,

K(x) := cα |x|α−3 for x ∈R3 \ {0}, d = 3, and 2 < α < 3,

where cα > 0 stands for a positive constant, can also be handled.

An example for admissible potentials Fw and Gw.

Remark 2.8. The smooth double well potential

Wdw(s) = 1

4
(s2 − 1)2, s ∈ R

is one of the standard choices for the Cahn–Hilliard equation to model phase segregation pro-
cesses. Let us fix arbitrary functions f ∈ L∞(�) and g ∈ L∞(�) satisfying

f ≥ 0 a.e. in �, g ≥ 0 a.e. on �, ‖f ‖L∞(�) < a∗, ‖g‖L∞(�) < a�.

Then the potentials Fw and Gw defined by

Fw(x, s) := f (x)Wdw(s), Gw(z, s) := g(z)Wdw(s),

satisfy the assumptions (A3), (A4) and (A7) with

p = q = 4, c∗ := a∗ − ‖f ‖L∞(�) > 0, c� := a� − ‖g‖L∞(�) > 0.

In most situations, it should be reasonable to assume that f is constant. However, as already 
discussed in the introduction, it might make sense to use a nonconstant factor g to describe the 
influence of certain materials on the boundary more precisely.

We also want to point out that singular potentials like the logarithmic potential

Wlog(s) = ϑ

2

(
(1 + s) ln(1 + s) + (1 − s) ln(1 − s)

)− ϑc

2
s2, s ∈ (−1,1) (2.16)

(for some 0 < ϑ < ϑc) or the double-obstacle potential

Wobst(s) =
{

ϑ(1 − s2), s ∈ [−1,1],
∞, else,

(2.17)
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(for some ϑ > 0) are not allowed to be chosen instead of Wdw as they do not satisfy the assump-
tion (A3).

An example for an admissible penalty function B .

Remark 2.9. For any weight function b ∈ L∞(�), the penalty function B defined (as in (1.21)) 
by

B(z, s) := b(z) s for almost all z ∈ �, and all s ∈ R (2.18)

obviously satisfies the assumptions (A5) and (A8) with γB ′′ = LB = 0. In particular, the estimate 
(2.9) can be verified with αB arbitrarily small by means of Young’s inequality for products. The 
corresponding penalty term in the free energy reads as

Epen(ψ) =
∫
�

b(z)ψ(z)dS(z).

As the free energy E decreases along solutions of the system (1.1) due to dissipation effects 
(cf. (1.23)), the term Epen is also expected to become small over the course of time. In this 
way, the penalization tries to enforce that ψ attains values close to 1 on the set �1 := {z ∈ � :
b(z) < 0} and that ψ attains values close to −1 on �−1 := {z ∈ � : b(z) > 0}. On �0 := {z ∈
� : b(z) = 0}, the penalization behaves neutrally towards ψ . This means that �±1 attracts the 
material associated with ψ = ±1 and repels the material associated with ψ = ∓1. Of course, 
since the total free energy becomes small and not only the penalty term, this behavior will also 
depend on effects caused by the potentials Fw and Gw. In this regard, it might also be reasonable 
that at least the surface potential Gw = Gw(z, s) is allowed to depend on the spatial variable 
z ∈ �.

3. The gradient flow structure

In this section we show that the Cahn–Hilliard systems (1.1), (1.26) and ((1.28), (1.29)) can 
be interpreted as gradient flow equations of type H−1 (both in the bulk and on the surface) with 
respect to suitable inner products. This structure will be a key ingredient in the well-posedness 
proof as it allows us to derive a priori bounds for the time-discrete approximate solution. As 
stated in (A1), the constants m�, m�, ε and δ are set to one.

3.1. The gradient flow structure of the Robin model

Suppose that the functions φ, ψ , μ and ν are sufficiently regular. For convenience, we use the 
notation ϕ = (φ, ψ). We claim that the Cahn–Hilliard system (1.1) can be interpreted as the flow 
equation

(∂tϕ,η)L,β,∗ = −δE

δϕ
(ϕ)[η] for all η ∈H0

β,0 ∩L∞. (3.1)
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We notice that the only difference to the gradient flow equation of the local analogue (1.8) is that 
the local free energy EGL is replaced by the nonlocal free energy E. The inner product, however, 
remains the same.

To prove this claim, let η = (ζ , ξ) denote an arbitrary test function in L∞. Then, the first 
variation of the energy (1.24) at the point ϕ in the direction η reads as follows:

δE

δϕ
(ϕ)[η] = −

∫
�

∫
�

J (x − y)φ(y) ζ (x)dy dx +
∫
�

F ′(·, φ)ζ dx

−
∫
�

∫
�

K(z − y)ψ(y) ξ(z)dS(y)dS(z) +
∫
�

G′(·,ψ)ξ + B ′(·,ψ)ξ dS.

(3.2)

To identify the gradient of E at ϕ with respect to the inner product (·, ·)L,β,∗ we look for the ele-
ment ∇E(ϕ) ∈ H0

β,0 such that (∇E(ϕ), η)L,β,∗ = δE
δϕ (ϕ)[η] for every η ∈H0

β,0 ∩L∞. Denoting 
this element by ρ = ∇E(ϕ) and using integration by parts along with (P3), we have

δE

δϕ
(ϕ)[η] =

∫
�

∇SL
�(ρ) · ∇SL

�(η)dx +
∫
�

∇�SL
� (ρ) · ∇�SL

� (η)dS

+ 1

L

∫
�

(
βSL

� (ρ) − SL
�(ρ)

)(
βSL

� (η) − SL
�(η)

)
dS

= −
∫
�

SL
�(ρ)ζ dx −

∫
�

SL
� (ρ)ξ dS

(3.3)

for every η = (ζ, ξ) ∈ H0
β,0 ∩ L∞. We point out that (3.3) actually holds true for every test 

function η ∈ L∞ if we shift the integrands in the last line of (3.3) by suitable additive constants. 
Indeed, we notice that for any arbitrary η = (ζ , ξ) ∈ L∞, the function η0 := (ζ0, ξ0) defined by

ζ0 := ζ + βc0, ξ0 := ξ + c0 with c0 := −β
∫
�

ζ dx + ∫
�

ξ dS

β2 |�| + |�| (3.4)

belongs to H0
β,0 ∩L∞. Choosing now the constant

c := −β|�|F(φ) + |�|G(ψ)

β2|�| + |�|
with

F(φ) := 〈−J ∗ φ + F ′(·, φ)〉�,

G(ψ) := 〈−K �ψ + G′(·,ψ) + B ′(·,ψ)〉�,
(3.5)

and defining the functions

μ := −SL
�(ρ) + βc in �, and ν := −SL

� (ρ) + c on �
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we conclude that

δE

δϕ
(ϕ)[η] =

∫
�

μζ dx +
∫
�

νξ dS for all η ∈ L∞. (3.6)

In particular, in view of (3.2), we can use the fundamental lemma of calculus of variations to 
deduce the relations

μ = −J ∗ φ + F ′(·, φ) a.e. in �,

ν = −K �ψ + G′(·,ψ) + B ′(·,ψ) a.e. on �.

On the other hand, for all η ∈ H0
β,0 ∩L∞, we have

(∂tϕ,η)L,β,∗ =
∫
�

∇SL
�(∂tϕ) · ∇SL

�(η)dx +
∫
�

∇�SL
� (∂tϕ) · ∇�SL

� (η)dS

+ 1

L

∫
�

(
βSL

� (∂tϕ) − SL
�(∂tϕ)

)(
βSL

� (η) − SL
�(η)

)
dS

=
∫
�

SL
�(∂tϕ)ζ dx +

∫
�

SL
� (∂tϕ)ξ dS.

Hence, the gradient flow equation

(∂tϕ,η)L,β,∗ = −δE

δϕ
(ϕ)[η] = −(∇E(ϕ),η)L,β,∗

can be expressed as∫
�

SL
�(∂tϕ)ζ dx +

∫
�

SL
� (∂tϕ)ξ dS = −

∫
�

μζ dx −
∫
�

νξ dS (3.7)

for all η ∈ H0
β,0 ∩L∞. Again, we can show that (3.7) holds true for all test functions η ∈ L∞ if 

the integrands on the left hand side are modified by appropriate additive constants. Proceeding 
as above, we choose the constant

c := −β |�| 〈μ〉� + |�| 〈ν〉�
β2 |�| + |�|

to conclude that∫
�

SL
�(∂tϕ)ζ + βc ζ dx +

∫
�

SL
� (∂tϕ)ξ + c ξ dS = −

∫
�

μζ dx −
∫
�

νξ dS (3.8)

holds for all test functions η = (ζ , ξ) ∈ L∞. Recalling (P3), it follows from the fundamental 
theorem of calculus of variations that (μ, ν) satisfies the system
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⎧⎪⎨
⎪⎩

−�μ = −∂tφ in �,

−��ν + β∂nμ = −∂tψ on �,

L∂nμ = βν − μ on �.

Thus, combining (3.6) and (3.8) we conclude (3.1).

3.2. The gradient flow structure of the limit models

Provided that the functions φ, ψ , μ and ν are sufficiently regular, we can argue similarly 
to derive the gradient flow equation for the Dirichlet model (1.26) and the decoupled model 
((1.28), (1.29)).

• The gradient flow equation corresponding to the Dirichlet model (1.26) reads as

(∂tϕ,η)0,β,∗ = −δE

δϕ
(ϕ)[η] for all η ∈H0

β,0 ∩L∞, (3.9)

where ϕ = (φ, ψ). Here, the only difference to the gradient flow equation of the local ana-
logue (1.11) (see [46]) is that the local free energy EGL is replaced by the nonlocal free 
energy E, while the inner product remains the same.

• The gradient flow equation corresponding to the system (1.28) reads as

(∂tφ, ζ )�,∗ = −δEbulk

δφ
(φ)[ζ ] for all ζ ∈ L∞(�) with 〈ζ 〉� = 0, (3.10)

whereas the gradient flow equation corresponding to the system (1.29) reads as

(∂tψ, ξ)�,∗ = −δ(Esurf + Epen)

δψ
(ψ)[ξ ] for all ξ ∈ L∞(�) with 〈ξ 〉� = 0. (3.11)

In contrast to the local analogue (1.13), the gradient flow equations in the bulk and on the 
surface are fully decoupled. However, if we sum (3.10) and (3.11), we obtain the gradient 
flow equation for the corresponding system (1.13) (see, e.g., [46,52]) only with EGL replaced 
by E.

4. Weak and strong well-posedness of the Robin model

4.1. Notion of a weak solution to the Robin model

We first introduce the notion of a weak solution to the system (1.1). We point out that, as 
stated in (A1), the constants m�, m�, ε and δ are set to one since they have no impact on the 
mathematical analysis.

Definition 4.1 (Definition of a weak solution to the system (1.1)). Let T , L > 0, m ∈R, β �= 0 and 
(φ0, ψ0) ∈ H0

β,m be arbitrary and suppose that the conditions (A1)–(A5) hold. The quadruplet 
(φ, ψ, μ, ν) is called a weak solution of the system (1.1) if the following holds:
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(i) The functions (φ, ψ, μ, ν) have the following regularity

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ ∈ C0, 1
2 ([0, T ];H 1(�)′) ∩ H 1(0, T ;H 1(�)′) ∩ L∞(0, T ;Lp(�)),

ψ ∈ C0, 1
2 ([0, T ];H 1(�)′) ∩ H 1(0, T ;H 1(�)′) ∩ L∞(0, T ;Lq(�)),

μ ∈ L2(0, T ;H 1(�)
)
,

ν ∈ L2(0, T ;H 1(�)
)

(4.1)

where p and q are the exponents from (A4), and it holds that (φ(t), ψ(t)) ∈H0
β,m for almost 

all t ∈ [0, T ].
(ii) The weak formulation

〈∂tφ, θ〉H 1(�) = −
∫
�

∇μ · ∇θ dx −
∫
�

1
L
(βν − μ)θ dS, (4.2a)

〈∂tψ,σ 〉H 1(�) = −
∫
�

∇�ν · ∇�σ dS +
∫
�

1
L
(βν − μ)βσ dS, (4.2b)

∫
�

μζ dx =
∫
�

−(J ∗ φ)ζ + F ′(·, φ)ζ dx, (4.2c)

∫
�

νξ dS =
∫
�

−(K �ψ)ξ + G′(·,ψ)ξ + B ′(·,ψ)ξ dS (4.2d)

is satisfied almost everywhere in [0, T ] for all test functions θ ∈ H 1(�), σ ∈ H 1(�), ζ ∈
L∞(�) and ξ ∈ L∞(�). Moreover, the initial conditions φ|t=0 = φ0 and ψ |t=0 = ψ0 are 
satisfied almost everywhere in � and on �, respectively.

(iii) The energy inequality

E
(
φ(t),ψ(t)

)+ 1

2

t∫
0

‖∇μ(s)‖2
L2(�)

+ ‖∇�ν(s)‖2
L2(�)

+ 1
L
‖βν(s) − μ(s)‖2

L2(�)
ds

≤ E(φ0,ψ0) (4.3)

is satisfied for all t ∈ [0, T ].

4.2. Weak well-posedness

The weak well-posedness result reads as follows.

Theorem 4.2 (Weak well-posedness for the system (1.1)). Let T , L > 0, m ∈ R and β �= 0
be arbitrary and suppose that the conditions (A1)–(A5) hold. Then, for any initial datum 
(φ0, ψ0) ∈ H0

β,m satisfying F(·, φ0) ∈ L1(�), G(·, ψ0), B(·, ψ0) ∈ L1(�), there exists a unique 
weak solution of the system (1.1) in the sense of Definition 4.1.
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Remark 4.3. Since φ(t) ∈ Lp(�) and ψ(t) ∈ Lq(�) for almost all t ∈ [0, T ], it holds that 
F ′(·, φ(t)) ∈ Lp′

(�) and G′(·, φ(t)), B ′(·, φ(t)) ∈ Lq ′
(�) for almost all t ∈ [0, T ] due to the 

growth conditions in (2.8). Moreover, we have (J ∗φ(t)) ∈ Lp′
(�) and (K �ψ(t)) ∈ Lq ′

(�) for 
almost all t ∈ [0, T ] according to Remark 2.1. Hence, by a density argument, the weak formula-
tions (4.2c) and (4.2d) remain valid for all test functions ζ ∈ Lp(�) and ξ ∈ Lq(�).

Proof of Theorem 4.2. The proof is divided into seven steps. Throughout this proof, the symbol 
C will denote generic positive constants independent of N , n and τ that may change their value 
from line to line.

Step 1: Implicit time discretization. We devise a particular minimization movements scheme 
based on the gradient flow structure discussed in Section 3. To this end, let us fix an arbitrary 
N ∈ N and let τ := T/N denote our time-step size. We now define a time-discrete approximate 
solution ϕn = (φn, ψn) ∈ H0

β,m, n = 1, ..., N by the following recursion: The zeroth iterate is 
given by the initial data, i.e., ϕ0 = (φ0, ψ0) := (φ0, ψ0). Assuming that the n-th iterate ϕn is 
already constructed, we define ϕn+1 as a minimizer of the functional

In(ϕ) := 1

2τ
‖ϕ − ϕn‖2

L,β,∗ + E(ϕ) (4.4)

over the set H0
β,m, i.e.,

ϕn+1 ∈ arg minIn(ϕ) for every ϕ ∈H0
β,m. (4.5)

The existence of such a minimizer will be addressed in Step 2. The idea behind this construction 
is the following: Formally, the minimality of ϕn+1 entails that

0 = δIn

δϕ
(ϕn+1)[η] =

〈ϕn+1 − ϕn

τ
,η
〉
L,β,∗ + δE

δϕ
(ϕn+1)[η]

=
〈ϕn+1 − ϕn

τ
,η
〉
L,β,∗ +

∫
�

−(J ∗ φn+1)ζ + F ′(·, φn+1)ζ dx

+
∫
�

−(K �ψn+1)ξ + G′(·,ψn+1)ξ + B ′(·,ψn+1)ξ dS

for every test function η = (ζ, ξ) ∈ H0
β,0 ∩L∞. Thus, {ϕn}n=1,...,N can be interpreted as a time-

discrete approximate solution of the gradient flow equation (3.1). However, depending on the 
growth conditions on the potentials, it is possible that the functional In is not Gâteaux differ-
entiable at the point ϕn+1 as In might attain the value +∞ in every neighborhood of ϕn+1. 
However, exploiting the convexity of F and G, we can proceed as in [45] to rigorously show that 
the Euler–Lagrange equation
261



P. Knopf and A. Signori Journal of Differential Equations 280 (2021) 236–291
0 =
〈ϕn+1 − ϕn

τ
,η
〉
L,β,∗ +

∫
�

−(J ∗ φn+1)ζ + F ′(·, φn+1)ζ dx

+
∫
�

−(K �ψn+1)ξ + G′(·,ψn+1)ξ + B ′(·,ψn+1)ξ dS

(4.6)

holds true for all η = (ζ, ξ) ∈ H0
β,0 ∩ L∞ nevertheless. Now, recalling the solution operator 

defined in (P3), we set

(
◦
μn+1,

◦
νn+1) := SL

(ϕn+1 − ϕn

τ

)
∈ H1

β,0. (4.7)

Then for every n = 0, ..., N − 1 and any η ∈ H0
β,0 ∩L∞, a straightforward computation reveals 

that ∫
�

◦
μn+1ζ dx +

∫
�

◦
νn+1ξ dS

=
∫
�

−(J ∗ φn+1)ζ + F ′(·, φn+1)ζ dx

+
∫
�

−(K �ψn+1)ξ + G′(·,ψn+1)ξ + B ′(·,ψn+1)ξ dS.

(4.8)

Arguing as in Section 3, we now want to replace ( ◦
μn+1, ◦νn+1) by functions (μn+1, νn+1) such 

that (4.8) holds true for all test functions η = (ζ, ξ) ∈ H0 ∩L∞ = L∞ (i.e., there is no restriction 
to the mean values of ζ and ξ anymore). Setting

μn+1 := ◦
μn+1 + βcn+1, νn+1 := ◦

νn+1 + cn+1, (4.9)

with

cn+1 := −β|�|F(φn+1) + |�|G(ψn+1)

β2|�| + |�| ,

where F and G are defined as in (3.5), we conclude that the functions ϕn, ϕn+1 and (μn+1, νn+1)

satisfy the equations

∫
�

(φn+1 − φn

τ

)
θ dx = −

∫
�

∇μn+1 · ∇θ dx −
∫
�

1
L
(βνn+1 − μn+1)θ dS, (4.10a)

∫
�

(ψn+1 − ψn

τ

)
σ dS = −

∫
�

∇�νn+1 · ∇�σ dS +
∫
�

1
L
(βνn+1 − μn+1)βσ dS, (4.10b)

∫
μn+1ζ dx =

∫
−(J ∗ φn+1)ζ + F ′(·, φn+1)ζ dx, (4.10c)
� �
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∫
�

νn+1ξ dS =
∫
�

−(K �ψn+1)ξ + G′(·,ψn+1)ξ + B ′(·,ψn+1)ξ dS (4.10d)

for all test functions θ ∈ H 1(�), σ ∈ H 1(�) and η = (ζ, ξ) ∈ L∞. This system can be inter-
preted as an implicit time discretization of the weak formulation (4.2) and hence, the quadruplet 
(φn, ψn, μn, νn) is a time-discrete approximate solution of the system (1.1). In order to show 
that this approximate solution converges to a weak solution of (1.1) in some suitable sense, it 
must first be extended onto the whole time interval. To this end, for every n = 1, ..., N , we define 
the piecewise constant extension by

(
φN,ψN,μN, νN

)
(·, t) := (φn

N,ψn
N,μn

N, νn
N

)
(·, t) := (φn,ψn,μn, νn

)
for t ∈ ((n − 1)τ, nτ

]
, and the piecewise linear extension by

(
φN,ψN,μN, νN

)
(·, t) := α

(
φn

N,ψn
N,μn

N, νn
N

)+ (1 − α)
(
φn−1

N ,ψn−1
N ,μn−1

N , νn−1
N

)
for, every α ∈ [0, 1], and t = αnt + (1 − α)(n − 1)τ , respectively.

Step 2: Existence of a minimizer. We now show that, for every n ∈ N , the functional In defined 
in (4.4) admits a minimizer in the set H0

β,m. For the proof we apply the direct method of calculus 
of variations. It is worth mentioning that the aforementioned discussion concerning the relation 
between the energies (1.20) and (1.24) (as well as between F, G and Fw, Gw) allows us to switch 
between these two frameworks at our convenience. Indeed, we will first make use of the repre-
sentation (1.24) to show that In is bounded from below, while the rest of the proof is carried out 
using the depiction (1.20).

First, using the representation (1.20), the nonnegativity of Fw, (2.5d) and (A5.1), we deduce 
that

In(ϕ) ≥
∫
�

Gw(·,ψ)dS +
∫
�

B(·,ψ)dS

≥ αGw

∫
�

|ψ |q dS − δGw |�| −
∫
�

|B(·,ψ)|dS

≥ (αGw − αB)

∫
�

|ψ |q dS − |�|(δGw + γB) ≥ −|�|(δGw + γB)

for any ϕ ∈ H0
β,m. This proves that the functional In is bounded from below and thus,

I∗
n := inf

ϕ∈H0
β,m

In(ϕ)

exists. This allows us to choose a minimizing sequence (ϕk)k∈N = (φk, ψk)k∈N ⊂ H0
β,m which 

satisfies

lim
k→∞In(ϕk) = I∗

n, and In(ϕk) ≤ I∗
n + 1 for every k ∈ N.
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Furthermore, invoking the growth assumption of the potentials Fw and Gw pointed out by 
(2.5c)–(2.5d), we infer that

αFw

∫
�

|φk|p dx − |�|δFw + (αGw − αB)

∫
�

|ψk|q dS − |�|(δGw + γB) ≤ E(ϕk) ≤ I∗
n + 1

which leads to

αFw

∫
�

|φk|p dx + (αGw − αB)

∫
�

|ψk|q dS ≤ I∗
n + 1 + (|�|δFw + |�|(δGw + γB)

)
.

Hence, since αB < αGw , there exists a non-relabeled subsequence of (ϕk)k∈N and a limit ϕ =
(φ, ψ) ∈ Lp(�) × Lq(�) ⊂ H0 such that

φk ⇀ φ in Lp(�), ψk ⇀ ψ in Lq(�),

as k → ∞. Due to these convergence properties it is straightforward to check that ϕ ∈ H0
β,m. 

It remains to show that ϕ is indeed a minimizer of the functional In. To this end, we use the 
representation (1.20) of the energy E. Recalling Lemma 2.4, that F and G are convex and that

∫
�

B(·,ψ)dS ≤ lim inf
k→∞

∫
�

B(·,ψk)dS

according to (A5.2), we conclude that

In(ϕ) ≤ lim inf
k→∞ In(ϕk) = I∗

n .

By the definition of I∗
n this proves that ϕ is a minimizer of In on the domain H0

β,m.

Step 3: Uniform estimates. In order to prove convergence of the piecewise constant extension, we 
now aim to establish uniform bounds on the functions (φN, ψN, μN, νN). We claim that there 
exists a positive constant C independent of N, n, τ such that

‖φN‖L∞(0,T ;Lp(�)) + ‖ψN‖L∞(0,T ;Lq(�))

+ ‖μN‖L2(0,T ;H 1(�)) + ‖νN‖L2(0,T ;H 1(�)) ≤ C.
(4.11)

As ϕn+1 is a minimizer of In over H0
β,m, we infer that

In(ϕ
n+1) = 1

2τ
‖ϕn+1 − ϕn‖2

L,β,∗ + E(ϕn+1) ≤ In(ϕ
n) = E(ϕn)

for all n ∈ {0, ..., N − 1}. Moreover, by induction and using (A4), we infer that

αF

∫
�

∣∣∣φn+1
∣∣∣p + (αG − αB)

∫
�

∣∣∣ψn+1
∣∣∣q ≤ E(ϕn+1) + C ≤ E(ϕ0) + C
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so that, owing to the boundedness of E(ϕ0), we obtain the uniform bound

‖φn+1‖p

Lp(�) + ‖ψn+1‖q

Lq(�) ≤ C. (4.12)

Next, fixing an arbitrary nontrivial function ρ ∈ C∞(�) as a test function in (4.10c), we get

∫
�

μn+1ρ dx =
∫
�

−(J ∗ φn+1)ρ + F ′(·, φn+1)ρ dx.

Now, using (2.10a), (4.12) and the polynomial growth of the potential F as postulated in (A4), 
we obtain

∣∣∣∣∣∣
∫
�

−(J ∗ φn+1)ρ + F ′(·, φn+1)ρ dx

∣∣∣∣∣∣
≤
[
a∗‖φn+1‖L1(�) + γF ′

(
|�| + ‖φn+1‖p−1

Lp−1(�)

)]
‖ρ‖∞ ≤ C‖ρ‖∞.

Hence, there exists a constant C(ρ) independent of N such that

∣∣∣∣∣∣
∫
�

μn+1ρ dx

∣∣∣∣∣∣≤ C(ρ). (4.13)

Arguing as in [46], we define

Mρ :=
⎧⎨
⎩v ∈ H 1(�) :

∣∣∣∣∣∣
∫
�

vρ dx

∣∣∣∣∣∣≤ C(ρ)

⎫⎬
⎭ , C0 := C(ρ)

| ∫
�

vρ dx| .

Note that Mρ is a nonempty, closed and convex subset of H 1(�). The definition of C0 entails 
that

|ξ | ≤ | ∫
�

ξρ dx|∫
�

ρ dx
≤ C0 for all ξ ∈ R such that ξχ� ∈ Mρ,

where χ� denotes the characteristic function of the set �. This allows us to apply the generalized 
Poincaré inequality [3, p. 242] which yields

‖v‖L2(�) ≤ C(1 + ‖∇v‖L2(�)) for all v ∈ Mρ.

In particular, since μn+1 ∈ Mρ , we conclude that

‖μn+1‖L2(�) ≤ C(1 + ‖∇μn+1‖L2(�)) for all n ∈ {0, ...,N − 1}. (4.14)
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It thus remains to establish a uniform bound on ∇μN . We first recall from the definition of the 
piecewise constant extension that for arbitrary n ∈ {1, ..., N −1}, t = nτ and for any s ∈ (t −τ, t], 
it holds that

(
φN,ψN,μN, νN

)
(s) = (φN,ψN,μN, νN

)
(t) = (φn

N,ψn
N,μn

N, νn
N

)
.

Using the above estimates as well as the definition of μN and νN we infer that

E(ϕN(t)) + 1

2

t∫
t−τ

‖∇μN(s)‖2
L2(�)

+ ‖∇�νN(s)‖2
L2(�)

+ 1

L
‖βνN(s) − μN(s)‖2

L2(�)
ds

= E(ϕN(t)) + 1

2τ 2

t∫
t−τ

‖ϕN(s) − ϕN(s − τ)‖2
L,β,∗ ds

= E(ϕN(t)) + 1

2τ 2

t∫
t−τ

‖ϕN(t) − ϕN(t − τ)‖2
L,β,∗ ds

= E(ϕN(t)) + 1

2τ
‖ϕN(t) − ϕN(t − τ)‖2

L,β,∗ ≤ E(ϕN(t − τ)).

Arguing by induction we conclude that

E(ϕN(t)) + 1

2

t∫
0

‖∇μN(s)‖2
L2(�)

+ ‖∇�νN(s)‖2
L2(�)

+ 1

L
‖βνN(s) − μN(s)‖2

L2(�)
ds

≤ E(ϕ0).

(4.15)

Therefore, choosing t = T = Nτ leads to

‖∇μN‖2
L2(0,T ;L2(�))

+ ‖∇�νN‖2
L2(0,T ;L2(�))

≤ 2(E(ϕ0) + C) ≤ C

and in combination with (4.14) we conclude the uniform bound

‖μN‖L2(0,T ;H 1(�)) ≤ C. (4.16)

Next, testing (4.10d) with ξ ≡ 1 gives

∫
�

νn+1(t)dS =
∫
�

−(K �ψn+1)(t) + G′(·,ψn+1(t)) + B ′(·,ψn+1(t))dS

for almost all t ∈ [0, T ]. Hence, using the assumptions postulated in (A4) and (A5) as well as the 
uniform bound (4.12), we infer that
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∣∣∣∣∣∣
∫
�

νn+1 dS

∣∣∣∣∣∣≤ a�‖ψn+1‖L1(�) + γG′ ‖ψn+1‖q−1
Lq−1(�)

+ αB‖ψn+1‖q

Lq(�)
+ |�|(γG′ + γB) ≤ C

which means that 〈νN 〉� is uniformly bounded in L∞(0, T ). Thus, we can use Poincaré’s in-
equality to conclude the uniform bound

‖νN‖L2(0,T ;H 1(�)) ≤ C (4.17)

which proves the claim.

Step 4: Hölder estimates in time.Using interpolation type arguments, we now show that the piece-
wise linear extension is Hölder continuous in time. We claim that for all t, s ∈ [0, T ],

‖φN(t) − φN(s)‖H 1(�)′ + ‖ψN(t) − ψN(s)‖H 1(�)′ ≤ C |t − s| 1
2 , (4.18a)

‖φN(t) − φN(t)‖H 1(�)′ + ‖ψN(t) − ψN(t)‖H 1(�)′ ≤ Cτ
1
2 , (4.18b)

‖∂tφN‖L2(0,T ;H 1(�)′) + ‖∂tψN‖L2(0,T ;H 1(�)′) ≤ C. (4.18c)

To prove this assertion, we first deduce from (4.10a) and (4.10b) that for all θ ∈ H 1(�), 
σ ∈ H 1(�) and almost all t ∈ [0, T ],

〈∂tφN(t), θ〉H 1(�) = −
∫
�

∇μN(t) · ∇θ dx −
∫
�

1
L

(
βνN(t) − μN(t)

)
θ dS, (4.19a)

〈∂tψN(t), σ 〉H 1(�) = −
∫
�

∇�νN(t) · ∇�σ dS +
∫
�

1
L

(
βνN(t) − μN(t)

)
βσ dS. (4.19b)

Let s, t ∈ [0, T ] be arbitrary and without loss of generality we suppose that s < t . Using (4.19a), 
along with the Cauchy–Schwarz inequality, we obtain

‖φN(t) − φN(s)‖H 1(�)′ = sup
‖θ‖

H1(�)
=1

∣∣∣〈φN(t) − φN(s), θ〉H 1(�)

∣∣∣

≤ sup
‖θ‖

H1(�)
=1

t∫
s

∣∣∣〈∂tφN(r), θ〉H 1(�)

∣∣∣dr

≤ C
(

1 + 1√
L

) t∫
s

‖∇μN(r)‖L2(�) + 1√
L
‖βνN(r) − μN(r)‖L2(�) dr

≤ C
(

1 + 1√
L

)
|t − s| 1

2

t∫
s

‖∇μN‖2
L2(0,T ;L2(�))

+ 1
L
‖βνN − μN‖2

L2(0,T ;L2(�))
dτ.

(4.20)

Proceeding similarly, we derive the estimate
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‖ψN(t) − ψN(s)‖H 1(�)′

≤ C
(

1 + 1√
L

)
|t − s| 1

2

t∫
s

‖∇�νN‖2
L2(0,T ;L2(�))

+ 1
L
‖βνN − μN‖2

L2(0,T ;L2(�))
dτ.

(4.21)

In combination with the uniform bound (4.15) this proves (4.18a). Furthermore, for any t ∈ [0, T ]
we can find n ∈ {1, ..., N} and α ∈ [0, 1] such that t = αnτ + (1 − α)(n − 1)τ . Hence, it follows 
immediately that

‖φN(t) − φN(t)‖H 1(�)′ ≤ ‖αφn
N(t) + (1 − α)φn−1

N (t) − φn
N(t)‖H 1(�)′

= (1 − α)‖φn
N(t) − φn−1

N (t)‖H 1(�)′ = (1 − α)‖φN(nτ) − φN((n − 1)τ )‖H 1(�)′ .

The estimate

‖ψN(t) − ψN(t)‖H 1(�)′ ≤ (1 − α)‖ψN(nτ) − ψN((n − 1)τ )‖H 1(�)′

can be derived analogously. Now, applying (4.18a) with t = nτ and s = (n −1)τ verifies (4.18b). 
Moreover, proceeding similarly as in (4.20) and (4.21), we obtain

T∫
0

‖∂tφN(t)‖2
H 1(�)′ + ‖∂tψN(t)‖2

H 1(�)′ dt (4.22)

≤ C
(
1 + 1

L

) T∫
0

‖∇μN(t)‖2
L2(�)

+ ‖∇�νN(t)‖2
L2(�)

+ 1
L
‖βνN(t) − μN(t)‖2

L2(�)
dt.

In combination with (4.15), this proves (4.18c) and thus, the claim is established.

Step 5: Convergence results. Now, we intend to use the estimates established in Step 3 and Step 4 
to prove convergence of our approximate solutions. We claim that, there exists a quadruplet of 
functions (φ, ψ, μ, ν) satisfying the regularity conditions (4.1) such that for every r ∈ (0, 12 ),

φN → φ weakly-∗ in L∞(0, T ;Lp(�)), a.e. in �T ,

and strongly in L∞(0, T ;H 1(�)′), (4.23)

ψN → ψ weakly-∗ in L∞(0, T ;Lq(�)), a.e. on �T ,

and strongly in L∞(0, T ;H 1(�)′), (4.24)

φN → φ weakly in H 1(0, T ;H 1(�)′),

and strongly in C0,r ([0, T ];H 1(�)′), (4.25)

ψN → ψ weakly in H 1(0, T ;H 1(�)′),

and strongly in C0,r ([0, T ];H 1(�)′), (4.26)
268



P. Knopf and A. Signori Journal of Differential Equations 280 (2021) 236–291
μN → μ weakly in L2(0, T ;H 1(�)), (4.27)

νN → ν weakly in L2(0, T ;H 1(�)) (4.28)

along a non-relabeled subsequence.
To prove this assertion we proceed similarly as in [46, s. 4.6] where the approach is carried 

out in more detail. Due to (4.18c) and the uniform estimates established in Step 3, there exist 
functions (φ, ψ, μ, ν) such that the first lines of (4.23), (4.24), (4.25) and (4.26), as well as (4.27)
and (4.28) directly follow from the Banach–Alaoglu theorem. Furthermore, arguing as in [46, 
s. 4.6] and invoking the compactness of the embeddings Lp(�) ⊂ L2(�) ∼= L2(�)′ ↪→ H 1(�)′
and Lq(�) ⊂ L2(�) ∼= L2(�)′ ↪→ H 1(�)′, the Arzelà–Ascoli theorem for functions with values 
in a Banach space (see, e.g., [68, Lem. 1]) implies that

φN → φ strongly in C0([0, T ];H 1(�)′),

ψN → ψ strongly in C0([0, T ];H 1(�)′).

Passing to the limit in the Hölder estimate (4.18a) we even get φ ∈ C0,1/2([0, T ]; H 1(�)′) and 
ψ ∈ C0,1/2([0, T ]; H 1(�)′). An interpolation argument now verifies the second lines of (4.25)
and (4.26). Eventually, using the estimate (4.18b), we conclude the second lines of (4.23) and 
(4.24). Thus, the claim is established.

Step 6: Existence of weak solutions. We now intend to show that the limit quadruplet (φ, ψ, μ, ν)

is a weak solution to the system (1.1). According to Step 5, the functions (φ, ψ, μ, ν) exhibit the 
regularity demanded in (4.1). To show that they fulfill the weak formulation (4.2), we want to pass 
to the limit N → ∞ in the time-discrete scheme. Using both the piecewise constant extension 
and the piecewise linear extension, the system (4.10) can be expressed as

∫
�T

∂tφN(t)θ dx dt = −
∫

�T

∇μN · ∇θ dx dt −
∫
�T

1
L
(βνN − μN)θ dS dt, (4.29a)

∫
�T

∂tψN(t)σ dS dt = −
∫
�T

∇�νN · ∇�σ dS dt +
∫
�T

1
L
(βνN − μN)βσ dS dt, (4.29b)

∫
�T

μNζ dx dt =
∫

�T

−(J ∗ φN)ζ + F ′(x,φN)ζ dx dt, (4.29c)

∫
�T

νNξ dS dt =
∫
�T

−(K �ψN)ξ + G′(x,ψN)ξ + B ′(x,ψN)ξ dS dt (4.29d)

holding for every θ ∈ L2(0, T ; H 1(�)), σ ∈ L2(0, T ; H 1(�)) and η = (ζ, ξ) ∈ L2(0, T ; L∞). 
Recalling the convergence properties (4.25)–(4.28), it is straightforward to pass to the limit in 
(4.29a) and (4.29b). Using (4.23) and (4.24), the terms depending on J and K in the equations 
(4.29c) and (4.29d) can be handled by Lemma 2.4. Moreover, the convergence of the terms de-
pending on F ′ and G′ follows from (4.23) and (4.24), the growth conditions (2.8) and Lebesgue’s 
general convergence theorem (see [3, p. 60]). Eventually, the convergence of the term depending 
on B ′ follows directly from the assumption in (A5). This allows us to pass to the limit also in 
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(4.29c) and (4.29d). Hence, the quadruplet (φ, ψ, μ, ν) satisfies the weak formulation (4.2). To 
verify the energy inequality (4.3) we first observe that

E
(
φ(t),ψ(t)

)≤ lim inf
N→∞ E

(
φN(t),ψN(t)

)
for almost all t ∈ [0, T ]

follows by similar arguments as in Step 2 by means of Lemma 2.4, the assumption (A5), and the 
convexity of F and G. Hence, taking the limes inferior in (4.15) and recalling the convergence 
properties (4.27) and (4.28), we conclude (4.3). This proves that (φ, ψ, μ, ν) is indeed a weak 
solution of the system (1.1).

Step 7: Uniqueness. To prove uniqueness, we consider two solutions (φi, ψi, μi, νi)i , i = 1, 2 to 
the system (1.1) as given by Theorem 4.2. For convenience, we write

(φ,ψ,μ, ν) := (φ1,ψ1,μ1, ν1) − (φ2,ψ2,μ2, ν2).

Let now t0 ∈ [0, T ], η ∈ L2(0, T ; H 1(�)) and ρ ∈ L2(0, T ; H 1(�)) be arbitrary. Testing the dif-
ference of the weak formulations (4.2a)–(4.2d) written for (φ1, ψ1, μ1, ν1) and (φ2, ψ2, μ2, ν2), 
respectively, with the test functions

θ :=
{∫ t0

t
η ds if t ≤ t0

0 if t > t0
, and σ :=

{∫ t0
t

ρ ds if t ≤ t0

0 if t > t0
,

and integrating in time from 0 to t0, we obtain the relations

∫
�t0

φη dx dt = −
∫

�t0

∇
⎛
⎝ t∫

0

μds

⎞
⎠ · ∇η dx dt − 1

L

∫
�t0

⎛
⎝ t∫

0

(βν − μ)ds

⎞
⎠η dS dt,

∫
�t0

ψρ dS dt = −
∫

�t0

∇�

⎛
⎝ t∫

0

ν ds

⎞
⎠ · ∇�ρ dS dt + 1

L

∫
�t0

⎛
⎝ t∫

0

(βν − μ)ds

⎞
⎠βρ dS dt,

by means of Fubini’s theorem. Recall that SL
�(φ) and SL

� (ψ) can be represented by

SL
�(φ) = −

t∫
0

μds + ctβ, SL
� (ψ) = −

t∫
0

ν ds + ct

for some constant c ∈R. Hence, choosing η = μ and ρ = ν, a straightforward computation leads 
to

1

2
‖(φ,ψ)(t0)‖2

L,β,∗ = −
∫

�t0

φμdx dt −
∫

�t0

ψν dS dt.

We now recall Remark 4.3 which allows to test (4.2c) and (4.2d) with functions ζ ∈ Lp(�) and 
ξ ∈ Lq(�). We are thus allowed to choose the test functions
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ζ = φχ[0,t0], ξ = ψχ[0,t0]

where χ[0,t0] stands for the characteristic function of the interval [0, t0]. Plugging ζ and ξ into 
(4.2c) and (4.2d) now gives

∫
�t0

φμdx dt +
∫

�t0

ψν dS dt

= −
∫

�t0

(J ∗ φ)φ dx dt −
∫

�t0

(K �ψ)ψ dS dt +
∫

�t0

(B ′(·,ψ1) − B ′(·,ψ2))ψ dS dt

+
∫

�t0

(F ′(·, φ1) − F ′(·, φ2))φ dx dt +
∫

�t0

(G′(·,ψ1) − G′(·,ψ2))ψ dS dt.

Invoking (2.7), which implies uniform monotonicity of F ′ and G′ with respect to their second 
argument, we obtain the estimate

∫
�t0

(F ′(·, φ1) − F ′(·, φ2))φ dx dt +
∫

�t0

(G′(·,ψ1) − G′(·,ψ2))ψ dS dt

≥ c∗
∫

�t0

|φ|2 dx dt + c�
∫

�t0

|ψ |2 dS dt

where c∗ and c� are the constants from (2.3). Furthermore, using the assumption (A5.3), 
Lemma 2.2, Lemma 2.5, and Young’s inequality, we infer that for any δ > 0,

∣∣∣∣∣∣∣−
∫

�t0

(J ∗ φ)φ dx dt −
∫

�t0

(K �ψ)ψ dS dt +
∫

�t0

(B ′(·,ψ1) − B ′(·,ψ2))ψ dS dt

∣∣∣∣∣∣∣
≤

t0∫
0

∣∣〈(φ ,ψ),
(
J ∗ φ ,K �ψ

)〉
H1

∣∣dt + LB

∫
�t0

|ψ |2 dS dt

≤
t0∫

0

‖(φ,ψ)‖(H1)′
∥∥(J ∗ φ ,K �ψ

)∥∥
H1 dt + LB

∫
�t0

|ψ |2 dS dt

≤ C

t0∫
0

‖(φ,ψ)‖L,β,∗
(
‖J ∗ φ‖2

H 1(�)
+ ‖K �ψ‖2

H 1(�)

)1/2
dt + LB

∫
�t0

|ψ |2 dS dt

≤ δ

∫
�

|φ|2 dx dt + (δ + LB)

∫
�

|ψ |2 dS dt + C

δ

t0∫
0

‖(φ,ψ)(t)‖2
L,β,∗ dt.
t0 t0
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Combining the above estimates, we infer that

1

2
‖(φ,ψ)(t0)‖2

L,β,∗ + (c∗ − δ)

∫
�t0

|φ|2 dx dt + (c� − LB − δ)

∫
�t0

|ψ |2 dS dt

≤ C

δ

t0∫
0

‖(φ,ψ)(t)‖2
L,β,∗ dt.

Recalling that LB < c�, we fix δ = 1
2 min{c∗, c� − LB}, and thus, Gronwall’s lemma yields

‖SL(φ,ψ)(t)‖L,β = ‖(φ,ψ)(t)‖L,β,∗ = 0 for almost all t ∈ [0, T ].

By the definition of the solution operator SL in (P3) we conclude that φ = 0 a.e. in �T and 
ψ = 0 a.e. on �T . Finally, the identities μ = 0 a.e. in �T and ν = 0 a.e. on �T follow from 
(4.2c) and (4.2d) by a standard comparison argument. Hence, the proof of Theorem 4.2 is com-
plete. �
4.3. Higher regularity and strong well-posedness

Under the additional assumptions (A6)–(A8), we can even establish strong well-posedness of 
the system (1.1).

Theorem 4.4 (Strong well-posedness of the system (1.1)). Let T , L > 0, m ∈ R and β �= 0 be 
arbitrary and suppose that the conditions (A1)–(A8) hold. For any initial datum (φ0, ψ0) ∈ H2

β,m

let (φ, ψ, μ, ν) denote the unique weak solution to (1.1) as given by Theorem 4.2. Then the 
solution (φ, ψ, μ, ν) enjoys the following additional regularity:

(φ,ψ) ∈ H 1(0, T ;L2), (μ, ν) ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2), ∂nμ ∈ L2(0, T ;L2(�)).

This means that (φ, ψ, μ, ν) is a strong solution to system (1.1) as all equations are satisfied a.e. 
in �T and �, and a.e. on �T and �, respectively.

Remark 4.5. We point out that F(·, φ0) ∈ L1(�) and B(·, ψ0), G(·, ψ0) ∈ L1(�) are satisfied as 
a consequence of (φ0, ψ0) ∈ H2

β,m, assumption (A7), and the continuous embedding H2 ↪→ L∞.

Proof of Theorem 4.4. The formal idea behind this proof is to test (4.2a) with −∂tμ, (4.2b)
with −∂tν, the time derivative of (4.2c) with ∂tφ and the time derivative of (4.2d) with ∂tψ . This 
strategy can be made rigorous by following the line of argument in [53, s. 3.2] (which was in turn 
greatly inspired by the approach in [15, s. 4.4]). To this end, we use once more the time-discrete 
approximate solution (φn, ψn, μn, νn)n=1,...,N constructed in Step 1 of the proof of Theorem 4.2. 
We recall that the discretized weak formulation (4.10) is satisfied and we define the backward 
difference quotients

(∂τ φ
n+1, ∂τψ

n+1, ∂τμ
n+1, ∂τ ν

n+1) := 1

τ

[
(φn+1,ψn+1,μn+1, νn+1) − (φn,ψn,μn, νn)

]
.
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For brevity, we will also use the notation

∂τF
′ := 1

τ

[
F ′(·, φn+1) − F ′(·, φn)

]
, ∂τH

′ := 1

τ

[
H ′(·,ψn+1) − H ′(·,ψn)

]
for H ∈ {G,B}.

In the following, the letter C will denote generic positive constants independent of n, N , τ
and L which may change their value from line to line. For any arbitrary n ∈ {0, ..., N − 1}, we 
test (4.10a) with θ = −∂τμ

n+1 ∈ H 1(�) and (4.10b) with σ = −∂τ ν
n+1 ∈ H 1(�). Adding the 

resulting equations, we conclude that

−
∫
�

∂τφ
n+1∂τμ

n+1 dx −
∫
�

∂τψ
n+1∂τ ν

n+1 dS

= 1

2τ

(
‖∇μn+1‖2

L2(�)
− ‖∇μn‖2

L2(�)
+ ‖∇μn+1 − ∇μn‖2

L2(�)

)

+ 1

2τ

(
‖∇�νn+1‖2

L2(�)
− ‖∇�νn‖2

L2(�)
+ ‖∇�νn+1 − ∇�νn‖2

L2(�)

)

+ 1

2τ

1

L

(
‖βνn+1 − μn+1‖2

L2(�)
− ‖βνn − μn‖2

L2(�)

+ ‖β(νn+1 − νn) − (μn+1 − μn)‖2
L2(�)

)
.

(4.30)

Next, we take the difference of (4.10c) and (4.10d) written at the step n + 1 and at the 
step n, respectively, and we add the resulting equations. Using ζ = 1

τ
∂τ φ

n+1 ∈ Lp(�) and 
ξ = 1

τ
∂τψ

n+1 ∈ Lq(�) as test functions, we obtain

∫
�

∂τμ
n+1∂τφ

n+1 dx +
∫
�

∂τ ν
n+1∂τψ

n+1 dS

=
∫
�

−(J ∗ ∂τφ
n+1)∂τ φ

n+1 + ∂τF
′ ∂τφ

n+1 dx

+
∫
�

−(K � ∂τψ
n+1)∂τψ

n+1 + ∂τG
′ ∂τψ

n+1 dS

+
∫
�

∂τB
′ ∂τψ

n+1 dS.

(4.31)

From the uniform convexity of the potentials (see (2.7)), we infer that

∫
�

∂τF
′∂τφ

n+1 dx +
∫
�

∂τG
′∂τψ

n+1 dS ≥ c∗‖∂τφ
n+1‖2

L2(�)
+ c�‖∂τψ

n+1‖2
L2(�)

.

Using (A5.3), Lemma 2.2 and Young’s inequality, we deduce the estimate
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∣∣∣∣∣∣
∫
�

−(J ∗ ∂τφ
n+1)∂τ φ

n+1 dx +
∫
�

(− (K � ∂τψ
n+1) + ∂τB

′)∂τψ
n+1 dS

∣∣∣∣∣∣
≤ δ‖∂τφ

n+1‖2
L2(�)

+ (δ + LB)‖∂τψ
n+1‖2

L2(�)
+ C

δ
‖∂τϕ

n+1‖2
L,β,∗

for any δ > 0, where ϕn+1 = (φn+1, ψn+1). According to (4.7) and (4.9), the functions μn+1 and 
νn+1 can be expressed as

μn+1 = SL
�(∂τϕ

n+1) + βcn+1, νn+1 = SL
� (∂τϕ

n+1) + cn+1.

Consequently, a straightforward computation gives

‖∂τϕ
n+1‖2

L,β,∗ = ‖∇μn+1‖2
L2(�)

+ ‖∇�νn+1‖2
L2(�)

+ 1
L
‖βνn+1 − μn+1‖2

L2(�)
.

Hence, adding (4.30) and (4.31), and using the above estimates, we obtain

‖∇μn+1‖2
L2(�)

− ‖∇μn‖2
L2(�)

+ ‖∇�νn+1‖2
L2(�)

− ‖∇�νn‖2
L2(�)

+ 1
L

(‖βνn+1 − μn+1‖2
L2(�)

− ‖βνn − μn‖2
L2(�)

)
+ (c∗ − δ)‖∂τφ

n+1‖2
L2(�)

+ (c� − LB − δ)‖∂τψ
n+1‖2

L2(�)

≤ C
(‖∇μn+1‖2

L2(�)
+ ‖∇�νn+1‖2

L2(�)
+ 1

L
‖βνn+1 − μn+1‖2

L2(�)

)
.

We now fix δ = 1
2 min{c∗, c� − LB} and sum from n = 0 to an arbitrary index j < N − 1 to infer 

that

‖∇μj+1‖2
L2(�)

+ ‖∇�νj+1‖2
L2(�)

+ 1
L
‖βνj+1 − μj+1‖2

L2(�)

+ c∗
2

jτ∫
0

‖∂tφN‖2
L2(�)

dt + 1

2
(c� − LB)

jτ∫
0

‖∂tψN‖2
L2(�)

dt

≤ ‖∇μN(0)‖2
L2(�)

+ ‖∇�νN(0)‖2
L2(�)

+ 1
L
‖βνN(0) − μN(0)‖2

L2(�)

+ C

T∫
0

(‖∇μN‖2
L2(�)

+ ‖∇�νN‖2
L2(�)

+ 1
L
‖βνN − μN‖2

L2(�)

)
ds,

(4.32)

where φN, ψN denote the piecewise linear extension introduced in Step 1 of the proof of Theo-
rem 4.2. By the fundamental theorem of calculus of variations we deduce that μN(0) = μ0 and 
νN(0) = ν0 satisfy the equations

μ0 = −(J ∗ φ0) + F ′(·, φ0) a.e. in �, (4.33a)

ν0 = −(K �ψ0) + G′(·,ψ0) + B ′(·,ψ0) a.e. on �. (4.33b)
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Since ϕ0 ∈H2
β,m, we use Lemma 2.2, the assumptions (A7), (A8) and the continuous embedding 

H2 ↪→ L∞ to deduce that the right-hand side of (4.33a) belongs to H 1(�) whereas the right-
hand side of (4.33b) belongs to H 1(�). By comparison, we infer that μN(0) = μ0 ∈ H 1(�) and 
νN(0) = ν0 ∈ H 1(�). Invoking the uniform bound (4.11), we conclude from (4.32) that

‖∇μj+1‖2
L2(�)

+ ‖∇�νj+1‖2
L2(�)

+ 1
L
‖βνj+1 − μj+1‖2

L2(�)

+ c∗
2

jτ∫
0

‖∂tφN‖2
L2(�)

dt + 1

2
(c� − LB)

jτ∫
0

‖∂tψN‖2
L2(�)

dt ≤ C
(4.34)

for all j ∈ {0, ..., N − 1}. This directly implies the uniform bound

‖∂tφN‖L2(0,T ;L2(�)) + ‖∂tψN‖L2(0,T ;L2(�))

+ ‖μN‖L∞(0,T ;H 1(�)) + ‖νN‖L∞(0,T ;H 1(�)) ≤ C.
(4.35)

Now, invoking the Banach–Alaoglu theorem, we conclude that

(φ,ψ) ∈ H 1(0, T ;L2), (μ, ν) ∈ L∞(0, T ;H1)

due to the uniqueness of the weak limit. In particular, we obtain the bound

‖(φ,ψ)‖H 1(0,T ;L2) + ‖(μ, ν)‖L∞(0,T ;H1) ≤ C. (4.36)

Recall that, according to (4.2a) and (4.2b), the elliptic problems

{
�μ = ∂tφ in �,

∂nμ = 1
L
(βν − μ) on �,

��ν = ∂tψ + β
L
(βν − μ) on �,

are satisfied in the weak sense. Employing elliptic regularity theory (see, e.g., [69, s. 5, Prop. 7.7]
for the Poisson–Neumann problem in the bulk and [69, s. 5, Thm. 1.3] for Poisson’s equation on 
the boundary), we obtain that μ(t) ∈ H 2(�) and ν(t) ∈ H 2(�) for almost all t ∈ [0, T ] with

‖μ(t)‖2
H 2(�)

≤ C

(
‖μ(t)‖2

H 1(�)
+ ‖∂tφ(t)‖2

L2(�)
+ 1

L2 ‖βν(t) − μ(t)‖2
H 1/2(�)

)

≤ C

((
1 + 1

L2

)
‖μ(t)‖2

H 1(�)
+ ‖∂tφ(t)‖2

L2(�)
+ β2

L2 ‖ν(t)‖2
H 1(�)

)
,

(4.37)

‖ν(t)‖2
H 2(�)

≤ C

(
‖ν(t)‖2

H 1(�)
+ ‖∂tψ(t)‖2

L2(�)
+ 1

L2 ‖βν(t) − μ(t)‖2
L2(�)

)
. (4.38)

Integrating the above estimates in time from 0 to T , we conclude that (μ, ν) ∈ L2(0, T ; H2)

and ∂nμ ∈ L2(0, T ; L2(�)). In combination with (4.1), this proves the regularity assertion. It 
directly follows that (φ, ψ, μ, ν) is even a strong solution to the system (1.1) and thus, the proof 
of Theorem 4.2 is complete. �
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5. Singular limits of the Robin model

This section is devoted to investigating the asymptotic limits of the system (1.1) as L tends to 
zero or to infinity. To this end, we prove that the sequence of solutions (φL, ψL, μL, νL) to the 
Robin model (1.1) converges in a suitable topology such that the limit is a weak solution to the 
corresponding limiting system. Therefore, let us first introduce the notions of weak solutions for 
these systems.

5.1. Notion of weak solutions to the limit models

We now present the definitions of weak solutions to the systems (1.26), (1.28) and (1.29).

Definition 5.1 (Definition of a weak solution to (1.26)). Let T > 0, m ∈ R, β > 0 and 
(φ0,ψ0) ∈H0

β,m be arbitrary and suppose that the conditions (A1)–(A5) hold. The triplet 
(φ, ψ, μ) is called a weak solution of the system (1.26) if the following holds:

(i) The functions (φ, ψ, μ) have the following regularity

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ ∈ L∞(0, T ;Lp(�)),

ψ ∈ L∞(0, T ;Lq(�)),

(φ,ψ) ∈ C0, 1
2 ([0, T ]; (D1

β)′) ∩ H 1(0, T ; (D1
β)′),

μ ∈ L2(0, T ;V1),
(5.1)

and it holds that (φ(t), ψ(t)) ∈H0
β,m for almost all t ∈ [0, T ].

(ii) The weak formulation

〈(
∂tφ, ∂tψ

)
, (θ, σ )

〉
D1

β
= −

∫
�

∇μ · ∇θ dx − 1

β

∫
�

∇�μ · ∇�σ dS, (5.2a)

∫
�

μη dx =
∫
�

−(J ∗ φ)η + F ′(·, φ)η dx, (5.2b)

∫
�

μθ dS =
∫
�

−β(K �ψ)θ + βG′(·,ψ)θ + βB ′(·,ψ)θ dS (5.2c)

is satisfied almost everywhere in [0, T ] for all test functions (θ, σ) ∈ D1
β , η ∈ L∞(�) and 

θ ∈ L∞(�). Moreover, the initial conditions φ|t=0 = φ0 and ψ |t=0 = ψ0 are satisfied a.e. in 
� and on �, respectively.

(iii) The energy inequality

E
(
φ(t),ψ(t)

)+ 1

2

t∫
0

‖∇μ(s)‖2
L2(�)

+ ‖∇�ν(s)‖2
L2(�)

ds ≤ E(φ0,ψ0) (5.3)

is satisfied for all t ∈ [0, T ].
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Definition 5.2 (Definition of weak solutions to (1.28) and (1.29)). Let T > 0, and (φ0, ψ0) ∈ L2

be arbitrary, and suppose that the conditions (A1)–(A5) hold. The pairs (φ, μ) and (ψ, ν) are 
called weak solutions of the systems (1.28) and (1.29) if the following holds:

(i) The functions (φ, μ) and (ψ, ν) have the following regularity

{
φ ∈ H 1(0, T ;H 1(�)′) ∩ L∞(0, T ;Lp(�)), μ ∈ L2(0, T ;H 1(�)),

ψ ∈ H 1(0, T ;H 1(�)′) ∩ L∞(0, T ;Lq(�)), ν ∈ L2(0, T ;H 1(�)
) (5.4)

and it holds that 〈φ(t)〉� = 〈φ0〉� and 〈ψ(t)〉� = 〈ψ0〉� for almost all t ∈ [0, T ].
(ii) The weak formulations

〈∂tφ, θ〉H 1(�) = −
∫
�

∇μ · ∇θ dx, (5.5a)

∫
�

μζ dx =
∫
�

−(J ∗ φ)ζ + F ′(·, φ)ζ dx, (5.5b)

and

〈∂tψ,σ 〉H 1(�) = −
∫
�

∇�ν · ∇�σ dS, (5.6a)

∫
�

νξ dS =
∫
�

−(K �ψ)ξ + G′(·,ψ)ξ + B ′(·,ψ)ξ dS (5.6b)

are satisfied almost everywhere in [0, T ] for all test functions θ ∈ H 1(�), ζ ∈ L∞(�) and 
σ ∈ H 1(�), ξ ∈ L∞(�). Moreover, the initial conditions φ|t=0 = φ0 and ψ |t=0 = ψ0 are 
satisfied a.e. in � and on �, respectively.

(iii) The energy inequalities

Ebulk
(
φ(t)

)+ 1

2

t∫
0

‖∇μ(s)‖2
L2(�)

ds ≤ Ebulk(φ0), (5.7a)

Esurf
(
ψ(t)

)+ Epen
(
ψ(t)

)+ 1

2

t∫
0

‖∇�ν(s)‖2
L2(�)

ds ≤ Esurf(ψ0) + Epen(ψ0) (5.7b)

are satisfied for all t ∈ [0, T ].

Remark 5.3. We are convinced that weak well-posedness of the Dirichlet model (1.26) and the 
decoupled model ((1.28), (1.29)) can be proved in a similar fashion to the proof of Theorem 4.2
by exploiting the gradient flow equations (3.9), (3.10) and (3.11). However, as we want to inves-
tigate the singular limits L → 0 and L → ∞ of the Robin model anyway, we proceed differently 
and construct the weak solutions as the singular limits of solutions to the system (1.1).
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The weak and strong well-posedness of the Dirichlet model will be established in Theo-
rem 5.4, whereas the weak and strong well-posedness of the decoupled model will be presented 
in Theorem 5.5.

5.2. Uniform bounds

To investigate the singular limits, we first derive uniform bounds on solutions of the Robin 
model.

Uniform bounds on weak solutions. Suppose that T > 0, β �= 0, m ∈ R and that (A1)–(A5)
hold. Let ϕ0 = (φ0, ψ0) ∈ H0

β,m with F(·, φ0) ∈ L1(�) and G(·, ψ0), B(·, ψ0) ∈ L1(�) be ar-

bitrary. For L > 0, let (φL, ψL, μL, νL) denote the corresponding weak solution to the system 
(1.1) in the sense of Definition 4.1. In the following, the letter C will denote a generic posi-
tive constant that does not depend on the parameter L. From the energy inequality (4.3) and the 
growth conditions in (2.8) we infer that

‖φL‖L∞(0,T ;Lp(�)) + ‖ψL‖L∞(0,T ;Lq(�)) ≤ C, (5.8)

‖∇μL‖2
L2(�T )

+ ‖∇�νL‖2
L2(�T )

+ 1

L
‖βνL − μL‖2

L2(�T )
≤ C. (5.9)

On the basis of these estimates, we can now follow the line of argument in Step 3 of the proof of 
Theorem 4.2 to deduce the uniform bound

‖μL‖L2(0,T ;H 1(�)) + ‖νL‖L2(0,T ;H 1(�)) ≤ C. (5.10)

Moreover, proceeding as in Step 4 of the proof of Theorem 4.2, we derive the estimate

‖∂tφ
L‖L2(0,T ;H 1(�)′) + ‖∂tψ

L‖L2(0,T ;H 1(�)′) ≤ C

(
1 + 1√

L

)
. (5.11)

In the case β > 0, we choose an arbitrary pair of test functions (θ, σ) ∈ D1
β . We now test (4.2a)

with θ and (4.2b) with σ . Adding the resulting equations we observe that a cancellation occurs 
due to the relation θ |�T

= βσ a.e. on �T . Recalling that (∂tφ
L, ∂tψ

L) ∈ (H1)′ ⊂ (D1
β)′ a.e. on 

[0, T ], we obtain

〈
(∂tφ

L, ∂tψ
L), (θ, σ )

〉
D1

β
= 〈∂tφ

L, θ〉H 1(�) + 〈∂tψ
L,σ 〉H 1(�)

= −
∫
�

∇μL · ∇θ dx −
∫
�

∇�νL · ∇�σ dS

a.e. on [0, T ]. Invoking the uniform bound (5.9), we conclude that

‖(∂tφ
L, ∂tψ

L)‖L2(0,T ;(D1
β )′) ≤ C if β > 0. (5.12)

Additional uniform bounds on strong solutions. Let now β �= 0 be arbitrary again and in 
addition, we suppose that the conditions (A6)–(A8) hold and that ϕ0 ∈H2 . Then, according to 
β,m
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Theorem 4.4, the quadruplet (φL, ψL, μL, νL) is the unique strong solution of the system (1.1). 
We already know from (4.36) that

‖(φ,ψ)‖H 1(0,T ;L2) + ‖(μ, ν)‖L∞(0,T ;H1) ≤ C. (5.13)

Integrating (4.37) and (4.38) in time from 0 to T , we can use (5.9) and (5.10) to infer that

‖μ‖L2(0,T ;H 2(�)) ≤ C

(
1 + 1

L

)
and ‖ν‖L2(0,T ;H 2(�)) ≤ C

(
1 + 1√

L

)
. (5.14)

We can now use these estimates to investigate the singular limits L → 0 and L → ∞ of the 
Robin model (1.1).

5.3. The singular limit L → 0 and well-posedness of the Dirichlet model

Theorem 5.4 (The limit L → 0 and well-posedness of (1.26)). Let T , L > 0, m ∈ R and 
β > 0 be arbitrary and suppose that the assumptions (A1)–(A5) hold. For any initial 
datum (φ0,ψ0) ∈H0

β,m satisfying F(·, φ0) ∈ L1(�) and G(·, ψ0), B(·, ψ0) ∈ L1(�), let 
(φL, ψL, μL, νL) denote the corresponding unique weak solution to the system (1.1) in the 
sense of Definition 4.1. Then the following holds:

(a) There exist functions (φ∗, ψ∗, μ∗, ν∗) satisfying

⎧⎪⎪⎨
⎪⎪⎩

φ∗ ∈ L∞(0, T ;Lp(�)), ψ∗ ∈ L∞(0, T ;Lq(�)),

(φ∗,ψ∗) ∈ H 1(0, T ; (D1
β)′),

μ∗ ∈ L2(0, T ;H 1(�)
)
, ν∗ ∈ L2(0, T ;H 1(�)

)
,

(5.15)

and

(φ(t),ψ(t)) ∈H0
β,m for almost all t ∈ [0, T ] (5.16)

such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φL → φ∗ weakly-∗ in L∞(0, T ;Lp(�)), and a.e. in �T ,

ψL → ψ∗ weakly-∗ in L∞(0, T ;Lq(�)), and a.e. on �T ,

(φL,ψL) → (φ∗,ψ∗) weakly in H 1(0, T ; (D1
β)′),

μL → μ∗ weakly in L2(0, T ;H 1(�)),

νL → ν∗ weakly in L2(0, T ;H 1(�)),

βνL − μL → 0 strongly in L2(�T ),

(5.17)

as L → 0. This means that μ∗ = βν∗ a.e. on �.
Moreover, the triplet (φ∗, ψ∗, μ∗) is the unique weak solution of the system (1.26) in the 
sense of Definition 5.1. In particular, this comprises that (φ∗, ψ∗) ∈ C0, 1

2 ([0, T ]; (D1 )′).
β
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(b) Let us additionally assume that (A6)–(A8) hold and that (φ0, ψ0) ∈ H2
β,m. Then the quadru-

plet (φL, ψL,μL, νL) is a strong solution of the system (1.1), and it holds in addition to 
(5.17) that

{
(φL,ψL) → (φ∗,ψ∗) weakly in H 1(0, T ;L2),

(μL, νL) → (μ∗, ν∗) weakly-∗ in L∞(0, T ;H1)
(5.18)

as L → 0. Moreover, it holds that (μ∗, ν∗) ∈ L2(0, T ; H2) and thus, recalling that μ∗ = βν∗, 
the triplet (φ∗, ψ∗, μ∗) is the unique strong solution to the system (1.26).

Proof. Proof of assertion (a). Let (Lk)k∈N ⊂ (0, 1] denote an arbitrary sequence satisfying 
Lk → 0 as k → ∞. For any k ∈ N , let (φk, ψk, μk, θk) = (φLk , ψLk , μLk , θLk ) denote the 
unique weak solution to the system (1.1) corresponding to the parameter Lk . Due to the uni-
form bounds (5.8)–(5.10) and (5.12), the Banach–Alaoglu theorem directly implies the existence 
of limit functions (φ∗, ψ∗, μ∗, ν∗) satisfying the regularity condition (5.15) such that the conver-
gence properties (5.17) hold with L replaced by Lk as k → ∞ along a non-relabeled subsequence 
of (Lk)k∈N . This directly implies the relation μ∗ = βν∗ a.e. on �T .

For (θ, σ) ∈ D1
β arbitrary, testing (4.2a) with θ and (4.2b) with σ , and adding the resulting 

equations yields

〈
(∂tφ, ∂tψ), (θ, σ )

〉
D1

β
= 〈∂tφ

k, θ〉H 1(�) + 〈∂tψ
k, σ 〉H 1(�)

= −
∫
�

∇μk · ∇θ dx −
∫
�

∇�νk · ∇�σ dS.

After passing to the limit k → ∞, we obtain

〈
(∂tφ, ∂tψ), (θ, σ )

〉
D1

β
= −

∫
�

∇μ∗ · ∇θ dx −
∫
�

∇�ν∗ · ∇�σ dS, (5.19)

which verifies (5.2a). Let now s, t ∈ [0, T ] be arbitrary. Without loss of generality we assume 
that s < t . Integrating (5.19) in time from s to t gives

〈(
φ∗(t) − φ∗(s) ,ψ∗(t) − ψ∗(s)

)
, (θ, σ )

〉
D1

β

= 〈φ∗(t) − φ∗(s), θ〉H 1(�) + 〈ψ∗(t) − ψ∗(s), σ 〉H 1(�)

= −
t∫

s

∫
�

∇μ∗ · ∇θ dx dr −
t∫

s

∫
�

∇�ν∗ · ∇�σ dS dr

≤ C |t − s|1/2 ‖(θ, σ )‖D1
β

T∫
0

‖∇μ∗(r)‖2
L2(�)

+ ‖∇�ν∗(r)‖2
L2(�)

dr.
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This proves that (φ∗, ψ∗) ∈ C0, 1
2 ([0, T ]; (D1

β)′) and hence, the triplet (φ∗, ψ∗, μ∗) satisfies the 
regularity condition (5.1). Proceeding as in Step 6 of the proof of Theorem 4.2, we conclude that 
(φ∗, ψ∗, μ∗) also satisfies the weak formulations (5.2b) and (5.2c), the mass conservation law 
(5.16) and the energy inequality (5.3). This means that (φ∗, ψ∗, μ∗) is a weak solution to the 
system (1.26).

We next show that (φ∗, ψ∗, μ∗) is the only weak solution to 4.2. To this end, we assume that 
there exists another weak solution (φ∗∗, ψ∗∗, μ∗∗) to the system 4.2 and we write

(φ,ψ,μ) := (φ∗,ψ∗,μ∗) − (φ∗∗,ψ∗∗,μ∗∗)

to denote their difference. Plugging an arbitrary pair of test functions (θ, σ) ∈D1
β into (5.19) and 

integrating in time from 0 to t yields

t∫
0

〈
(φ,ψ), (θ, σ )

〉
D1

β
dt = −

∫
�

∇
⎛
⎝ t∫

0

μds

⎞
⎠ · ∇θ dx +

∫
�

∇�

⎛
⎝ t∫

0

ν ds

⎞
⎠ · ∇�σ dS. (5.20)

By the definition of S0 in (P3), we obtain the relations

S0
�(∂tφ) = μ + cβ, S0

�(∂tψ) = ν + c, S0
�(φ) =

t∫
0

μds + βct, S0
�(φ) =

t∫
0

ν ds + ct

for all t ∈ [0, T ] and some constant c ∈ R. Recall that the assumption β > 0 ensures that ‖ · ‖2
0,β,∗

actually defines a norm on the space D−1
β (see (P4)). A straightforward computation now reveals 

that, for any arbitrary t0 ∈ [0, T ],
1

2
‖(φ,ψ)(t0)‖2

0,β,∗ = −
∫

�t0

φμdx dt −
∫

�t0

ψν dS dt.

As the weak formulations (5.2b) and (5.2c) (with μ|�T
replaced by βν) are identical to (4.2c)

and (4.2d), we can proceed exactly as in the proof of Theorem 4.2 to conclude that

‖S0(φ,ψ)(t)‖0,β = ‖(φ,ψ)(t)‖0,β,∗ = 0 for almost all t ∈ [0, T ].

It follows that φ = 0 a.e. in �T and ψ = 0 a.e. on �T . Now, the identities μ = 0 a.e. in �T

and ν = 0 a.e. on �T follow from (5.2b) and (5.2c) by a standard comparison argument.
The uniqueness of the limit (φ∗, ψ∗, μ∗) finally implies that the convergences established 

above do not depend on the extraction of the subsequence. Hence, the convergence results hold 
true for the whole sequence (Lk)k∈N . This means that (5.17) is established.

Proof of assertion (b). Due to the uniform bound (5.13) and the uniqueness of the limit 
(φ∗, ψ∗, μ∗), the convergence property (5.18) follows directly by means of the Banach–Alaoglu 
theorem. Proceeding similarly as in the proof of Theorem 4.4, we can use elliptic regularity the-
ory to conclude a posteriori that (μ∗, ν∗) ∈ L2(0, T ; H2). Consequently, the triplet (φ∗, ψ∗, μ∗)
is a strong solution of the system (1.26). Thus, the proof is complete. �
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5.4. The singular limit L → ∞ and well-posedness of the decoupled model

Theorem 5.5 (The limit L → ∞ and well-posedness of (1.28) and (1.29)). Let T , L > 0, 
m ∈ R and β �= 0 be arbitrary and suppose that the conditions (A1)–(A5) hold. For any ini-
tial datum (φ0, ψ0) ∈ H0

β,m satisfying F(·, φ0) ∈ L1(�) and G(·, ψ0), B(·, ψ0) ∈ L1(�), let 
(φL, ψL, μL, νL) denote the corresponding unique weak solution to the system (1.1) in the sense 
of Theorem 4.2. Then the following holds:

(a) There exist functions (φ∗, ψ∗, μ∗, ν∗) satisfying

⎧⎪⎪⎨
⎪⎪⎩

φ∗ ∈ H 1(0, T ;H 1(�)′) ∩ L∞(0, T ;Lp(�)),

ψ∗ ∈ H 1(0, T ;H 1(�)′) ∩ L∞(0, T ;Lq(�)),

μ∗ ∈ L2(0, T ;H 1(�)), ν∗ ∈ L2(0, T ;H 1(�))

(5.21)

and

〈
φ∗(t)

〉
�

= 〈φ0〉� and
〈
ψ∗(t)

〉
�

= 〈ψ0〉� for almost all t ∈ [0, T ] (5.22)

such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φL → φ∗ weakly-∗ in L∞(0, T ;Lp(�)),

weakly in H 1(0, T ;H 1(�)′), and a.e. in �T ,

ψL → ψ∗ weakly-∗ in L∞(0, T ;Lq(�)),

weakly in H 1(0, T ;H 1(�)′), and a.e. on �T ,

μL → μ∗ weakly in L2(0, T ;H 1(�)),

νL → ν∗ weakly in L2(0, T ;H 1(�)),

1
L
(βνL − μL) → 0 strongly in L2(�T )

(5.23)

as L → ∞. In addition, it holds that

φ∗ ∈ C0, 1
2 ([0, T ];H 1(�)′), ψ∗ ∈ C0, 1

2 ([0, T ];H 1(�)′) (5.24)

and the pair (φ∗, μ∗) is the unique weak solution of the system (1.28) whereas the pair 
(ψ∗, ν∗) is the unique weak solution of the system (1.29) in the sense of Definition 5.2.

(b) Let us additionally assume that (A6)–(A8) hold and that (φ0, ψ0) ∈ H2
β,m. Then the quadru-

plet (φL, ψL,μL, νL) is a strong solution of the system (1.1), and it holds in addition to 
(5.23) that

⎧⎪⎪⎨
⎪⎪⎩

(φL,ψL) → (φ∗,ψ∗) weakly in H 1(0, T ;L2),

(μL, νL) → (μ∗, ν∗) weakly-∗ in L∞(0, T ;H1) ∩ L2(0, T ;H2),

∂nμL → 0 strongly in L2(�T ).

(5.25)
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as L → ∞. Moreover, it follows that ∂nμ∗ = 0 a.e. on �T and thus, the pairs (φ∗, μ∗) and 
(ψ∗, ν∗) are the unique strong solutions to the systems (1.28) and (1.29), respectively.

Proof. Proof of assertion (a). Let (Lk)k∈N ⊂ [1, ∞) denote an arbitrary sequence satisfying 
Lk → ∞ as k → ∞. For any k ∈ N , let (φk, ψk, μk, νk) = (φLk , ψLk , μLk , νLk ) denote the 
unique weak solution to the system (1.1) corresponding to the parameter Lk . Since Lk ≥ 1, 
the bounds (5.8)–(5.11) can be made uniform in k. Hence, we can apply the Banach–Alaoglu 
theorem to infer the existence of functions (φ∗, ψ∗, μ∗, ν∗) satisfying (5.21) such that the first 
four convergence properties in (5.23) (with L replaced by Lk) hold up to subsequence extraction. 
We further notice that the last convergence of (5.23) directly follows from (5.9) since, as k → ∞, 
we have ∥∥∥ 1

Lk

(βμk − νk)

∥∥∥2

L2(�)
= 1

L2
k

‖βμk − νk‖2
L2(�)

≤ C

Lk

→ 0.

The property (5.24) can be established in the same fashion as the corresponding result in Theo-
rem 5.4. As F ′, G′ and B ′ are continuous in their second argument, we infer that, as k → ∞,

F ′(·, φk) → F ′(·, φ) a.e. in �T ,

G′(·,ψk) → G′(·,ψ), B ′(·,ψk) → B ′(·,ψ) a.e. on �T .

Along with Lemma 2.4, this is enough to pass to the limit as k → ∞ in the weak formulation 
(4.2) written for (φk, ψk, μk, νk) from which we conclude that the weak formulations (5.5) and 
(5.6) are satisfied. This implies that (φ∗, ψ∗, μ∗, ν∗) also satisfies the mass conservation laws 
(5.22). Moreover, proceeding as in Step 6 of the proof of Theorem 4.2 the energy inequalities 
(5.7) can be verified. Hence, the pairs (φ, μ) and (ψ, ν) are weak solutions to the systems (1.28)
and (1.29), respectively, in the sense of Definition 5.2.

It remains to prove uniqueness of these weak solutions. To this end, we assume that (φ∗∗, μ∗∗)
and (ψ∗∗, ν∗∗) are also weak solutions of (1.28) and (1.29), respectively. We set

(φ,μ) := (φ∗,μ∗) − (φ∗∗,μ∗∗), (ψ, ν) := (ψ∗, ν∗) − (ψ∗∗, ν∗∗).

Recalling (P5), we deduce from (1.28a) that

N�(∂tφ) = μ − 〈μ〉� and N�(φ) =
t∫

0

μds − t 〈μ〉� .

For any arbitrary t0 ∈ [0, T ], a straightforward computation gives

1

2
‖φ(t0)‖2

�,∗ = −
∫

�t0

μφ dx dt

=
∫

�t0

(J ∗ φ)φ dx dt −
∫

�t0

(
F ′(·, φ∗) − F ′(·, φ∗∗)

)
φ dx dt.
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Proceeding similarly as in Step 7 of the proof of Theorem 4.2, we can use the monotonicity of 
F ′ and a Gronwall argument to conclude that

∥∥∇N�

(
φ(t0)

)∥∥
L2(�)

= ‖φ(t0)‖�,∗ = 0,

which, due to the arbitrariness of t0, directly implies that φ = 0 a.e. in �T . Finally, the identity 
μ = 0 a.e. in �T follows by comparison. This proves the uniqueness of the solution (φ∗, μ∗). 
Moreover, the uniqueness of the solution (ψ∗, ν∗) can be established in a similar manner.

In particular, this implies that the limit (φ∗, ψ∗, μ∗, ν∗) is unique and consequently, the 
convergences established above do not depend on the subsequence extraction. Hence, the con-
vergence properties remain true for the whole sequence (Lk)k∈N ⊂ [1, ∞).

Proof of assertion (b). Arguing as above, it suffices to realize that the estimates (5.13)–(5.14), 
which can now be established due to the enhanced regularity of the initial data, can be made 
uniform in k as well. Moreover, by substituting the identity Lk∂nμk = βνk − μk a.e. on �T into 
(5.9), we get

‖∂nμk‖2
L2(�)

= 1

L2
k

‖Lk∂nμk‖2
L2(�)

= 1

L2
k

‖βμk − νk‖2
L2(�)

≤ C

Lk

→ 0

as k → ∞. This directly implies that ∂nμ∗ = 0 a.e. on �T . Hence, invoking once more the 
Banach–Alaoglu theorem, we infer the functions (φ∗, ψ∗, μ∗, ν∗) satisfy (5.25). Then, in light 
of these stronger convergences and Lemma 2.4, it is possible to pass to the limit as k → ∞ in 
the strong formulation (1.1) written for (φk, μk, ψk, νk) to conclude that (φ∗, ψ∗, μ∗, ν∗) is the 
strong solution. Thus, the proof is complete. �
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Appendix A

Proof of Lemma 2.2. Let φ ∈ L2(�) and ψ ∈ L2(�) be arbitrary.

Proof of (a). We define the trivial extension of φ on Rd by

φ(x) :=
{

φ(x) if x ∈ �,

0 if x /∈ �,

where φ is to be interpreted as an arbitrary but fixed representative of its equivalence class. Let 
now α ∈ N3

0 be an arbitrary multi-index with |α| ≤ 1 and let ∂αJ denote the corresponding 
derivative. Applying Young’s inequality for convolutions (see, e.g., [55, Thm. 4.2]), we obtain
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‖∂αJ ∗ φ‖L2(�) ≤ ‖∂αJ ∗ φ‖L2(Rd ) ≤ C‖J‖W 1,1(Rd ) ‖φ‖L2(Rd ) = C‖J‖W 1,1(Rd ) ‖φ‖L2(�)

for a constant C > 0 depending only on d . This proves (a).

Proof of (b). To prove (b) we proceed as in [55, Proof of Thm. 4.2]. Let r > 1 be the exponent 
from (A2) and let ξ ∈ L2(�) be arbitrary. We now set

1 < s := 2r ′

r ′ + 1
≤ 2, i.e.,

1

s
+ 1

s
+ 1

r
= 2.

Moreover, recalling the definition of r ′, we notice that

r ′ = r

r − 1
, s′ = 2r ′

r ′ − 1
= 2r.

Next, we define the functions f, g, h : � × � → R by

f (y, z) := ψ+(z)s/s
′
K(z − y)r/s

′
,

g(y, z) := K(z − y)r/s
′
ξ+(y)s/s

′
,

h(y, z) := ψ+(z)s/r ′
ξ+(y)s/r ′

where ψ , K and ξ are to be interpreted as arbitrary but fixed representative of their equivalence 
class and ψ+ and ξ+ denote the positive parts of these functions. Using the continuous embed-
ding W 1,r (�) ↪→ Lr(�) and a change of variables, we obtain

‖K(z − ·)‖Lr(�) ≤ ‖K(z − ·)‖W 1,r (�) ≤ ‖K(z − ·)‖W 1,r (Rd ) = ‖K‖W 1,r (Rd )

for almost all z ∈ �. Hence, applying Hölder’s inequality, we get

‖f ‖
Ls′ (�×�)

=
⎛
⎝∫

�

ψ+(z)s
∫
�

K(z − y)r dS(y)dS(z)

⎞
⎠

1
s′

≤
⎛
⎝∫

�

ψ+(z)s ‖K‖r
W 1,r (Rd )

dS(z)

⎞
⎠

1
s′

≤ ‖ψ‖s/s′
Ls(�)‖K‖r/s′

W 1,r (Rd )
.

For g and h we derive the analogous estimates

‖g‖
Ls′ (�×�)

≤ ‖ξ‖s/s′
Ls(�)

‖K‖r/s′
W 1,r (Rd )

, ‖h‖
Lr′ (�×�)

≤ ‖ψ‖s/r ′
Ls(�)

‖ξ‖s/r ′
Ls(�)

.

Now, using Hölder’s inequality along with the above estimates, we infer that∫
�

∫
�

f (y, z)g(y, z)h(y, z)dS(y)dS(z) =
∫
�

∫
�

ψ+(z)K(z − y)ξ+(y)dS(y)dS(z)

≤ ‖ψ‖Ls(�)‖K‖W 1,r (Rd )‖ξ‖Ls(�) ≤ ‖ψ‖L2(�)‖K‖W 1,r (Rd )‖ξ‖L2(�).
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Proceeding analogously with the negative parts ψ− and ξ− and combining the estimates, we 
conclude that∫

�

∫
�

ψ(z)K(z − y)ξ(y)dS(y)dS(z) ≤ C ‖ψ‖L2(�)‖K‖W 1,r (Rd )‖ξ‖L2(�).

As ξ ∈ L2(�) was arbitrary, this implies that the mapping

L2(�) � ξ �→
∫
�

(K �ψ)(z)ξ(z)dS(z) ∈R

defines a bounded linear functional on L2(�). In particular, since L2(�) ∼= (L2(�))′, it holds that 
K �ψ ∈ L2(�) with

‖K �ψ‖L2(�) ≤ C ‖K‖W 1,r (Rd )‖ψ‖L2(�).

Proceeding analogously with the components of ∇�K instead of K , we finally conclude 
(∇�K) �ψ ∈ L2(�), and

‖K �ψ‖H 1(�) ≤ C ‖K‖W 2,r (Rd )‖ψ‖L2(�),

which proves (b).
Thus, the proof is complete. �

Proof of Lemma 2.4. We first deduce from Remark 2.1(b) that there exist functions J̄ ∈
W 1,1(�) and K̄ ∈ W 1,1(�) such that

(J ∗ φk) ⇀ J̄ in W 1,1(�) and (K �ψk) ⇀ K̄ in W 1,1(�)

after extraction of a subsequence. Since p and q satisfy (2.4), the embeddings W 1,1(�) ↪→
Lp′

(�) and W 1,1(�) ↪→ Lq ′
(�) are compact. Hence, it holds that

(J ∗ φk) → J̄ in Lp′
(�) and (K �ψk) → K̄ in Lq ′

(�) (A.1)

after another subsequence extraction. For arbitrary test functions ζ ∈ Lp(�) and ξ ∈ Lq(�) we 
now consider the following linear functionals:

Jζ : Lp(�) → R, φ �→
∫
�

(J ∗ φ)ζ dx,

Kξ : Lq(�) → R, ψ �→
∫
�

(K �ψ)ξ dS.

Using Hölder’s inequality, the continuous embeddings W 1,1(�) ↪→ Lp′
(�) and W 1,1(�) ↪→

Lq ′
(�) and the estimates from Remark 2.1, it is straightforward to check that both functionals 
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are continuous. Hence, on the one hand, the weak convergence of (φk)k∈N in Lp(�) and the 
weak convergence of (ψk)k∈N in Lq(�) imply that

Jζ (φk) → Jζ (φ) =
∫
�

(J ∗ φ)ζ dx and Kξ (ψk) → Kξ (ψ) =
∫
�

(K �ψ)ξ dS (A.2)

as k → ∞. On the other hand, it follows from (A.1) that

Jζ (φk) →
∫
�

J̄ ζ dx and Kξ (ψk) →
∫
�

K̄ξ dS (A.3)

as k → ∞. Combining (A.2) and (A.3), invoking the uniqueness of the limit, and recalling that 
the test functions ζ ∈ Lp(�) and ξ ∈ Lq(�) were arbitrary, we conclude from the fundamental 
lemma of calculus of variations that J̄ = J ∗φ a.e. in � and K̄ = K�ψ a.e. on �. This completes 
the proof. �
Proof of Lemma 2.5. In the case L > 0, let ϕ = (φ, ψ) ∈ H−1

β,0 and η = (ζ, ξ) ∈ H1 be arbitrary. 
Defining

ζ0 := ζ − cβ, ξ0 := ξ − c, with c := β |�| 〈ζ 〉� + |�| 〈ξ 〉�
β2 |�| + |�|

we see that η0 := (ζ0, ξ0) ∈ H1
β,0. We notice that 〈ϕ, (βc, c)〉H1 = 0 due to ϕ ∈H−1

β,0 and thus,

‖η0‖2
L,β = ‖∇ζ‖2

L2(�)
+ ‖∇�ξ‖2

L2(�)
+ 1

L
‖βξ − ζ‖2

L2(�)
≤ C

(
1 + 1

L

)
‖η‖2

H1 .

Recalling that SL(ϕ) satisfies the weak formulation (2.11), we can use the Cauchy–Schwarz 
inequality to infer that

∣∣∣〈ϕ,η〉H1

∣∣∣= ∣∣∣〈ϕ,η0〉H1

∣∣∣= ∣∣∣ (SL(ϕ),η0
)
L,β

∣∣∣≤ ‖SL(ϕ)‖L,β ‖η0‖L,β

≤ C

(
1 + 1√

L

)
‖SL(ϕ)‖L,β‖η‖H1 .

Hence, by invoking the definition of the operator norm on H−1
β,0, we get

‖ϕ‖(H1)′ = sup
‖η‖H1 =1

∣∣〈ϕ,η〉H1

∣∣≤ C
(

1 + 1√
L

)
‖SL(ϕ)‖L,β

and since ‖SL(ϕ)‖L,β = ‖ϕ‖L,β,∗ this proves (2.15a). The estimate (2.15b) can be proved com-
pletely analogously and thus, the proof is complete. �
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Proof of Lemma 2.6. As most of the assertions can be verified straightforwardly, we only sketch 
the most important steps. First of all, it holds in all cases that J ∈ C1(Rd \{0}), K ∈ C2(Rd \{0})
with

J (x) ≥ (2R)−ω min|y|≤2R
ρ(|y|) > 0 and K(x) ≥ (2R)−γ min|y|≤2R

σ(|y|) > 0

for all x ∈ B2R(0)\ {0}. Since x −y ∈ B2R(0) for all x, y ∈ �, this implies that (2.1a) is satisfied.
For K(x) = σ(|x|) |x|−γ , we first compute the partial derivatives ∂xj

K and ∂xi
∂xj

K for all 
indices i, j ∈ {1, 2, 3} on R3 \ {0}. Then, by transformation into spherical coordinates (the radius 
being denoted by s), a straightforward computation leads to the estimates

‖K‖r
Lr (Rd )

≤ C

∞∫
0

σ(s)r s2−rγ ds,

‖∂xj
K‖r

Lr (Rd )
≤ C

∞∫
0

σ(s)r s2−r(γ+1) + ∣∣σ ′(s)
∣∣r s2−rγ ds,

‖∂xi
∂xj

K‖r
Lr (Rd )

≤ C

∞∫
0

σ(s)r s2−r(γ+2) + ∣∣σ ′(s)
∣∣r s2−r(γ+1) + ∣∣σ ′′(s)

∣∣r s2−rγ ds

for all i, j ∈ {1, 2, 3}. Due to the decay conditions on σ the above integrals exist if and only if 
d − 1 − r(γ + 2) > −1 which is true since r < 3/(γ + 2). This implies that K ∈ W 2,r (R3) and 
it is now easy to check that K satisfies all relevant conditions in (A2). All remaining assertions 
can be proved by similar arguments. �
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