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I. INTRODUCTION TO THE ROADMAP

Adnan Mehonic, Daniele Ielmini, and Kaushik Roy

A. Taxonomy and motivation
The growing adoption of data-driven applications, such as arti-

ficial intelligence (AI), is transforming the way we interact with
technology. Currently, the deployment of AI and machine learn-
ing tools in previously uncharted domains generates considerable
enthusiasm for further research, development, and utilization. These
innovative applications often provide effective solutions to complex,
longstanding challenges that have remained unresolved for years.
By expanding the reach of AI and machine learning, we unlock
new possibilities and facilitate advancements in various sectors.
These include, but are not limited to, scientific research, education,
transportation, smart city planning, eHealth, and the metaverse.

However, our predominant focus on performance can some-
times lead to critical oversights. For instance, our constant depen-
dence on immediate access to information might cause us to ignore
the energy consumption and environmental consequences associ-
ated with the computing systems that enable such access. Balanc-
ing performance with sustainability is crucial for the technology’s
continued growth.

APL Mater. 12, 109201 (2024); doi: 10.1063/5.0179424 12, 109201-2

© Author(s) 2024

 22 O
ctober 2024 11:00:59

https://pubs.aip.org/aip/apm


APL Materials ROADMAP pubs.aip.org/aip/apm

FIG. 1. (a) Increase in computing power demands to run state-of-the-art AI models. (b) The cost associated with training AI models. Adapted and reproduced with permission
from A. Mehonic and A. J. Kenyon, Nature 604, 255 (2022). Copyright 2022 Springer Nature Limited.
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From this standpoint, the environmental impact of AI is a
cause for growing concern. In addition, applications such as the
Internet of Things (IoT) and autonomous robotic agents may not
always rely on resource-intensive deep learning algorithms but still
need to minimize energy consumption. Realizing the vision of IoT
is contingent upon reducing the energy requirements of numerous
connected devices. The demand for computing power is growing at
a rate that far exceeds improvements achieved through Moore’s law
scaling. Figure 1(a) shows the computing power demands, quanti-
fied in peta-floating-point operations (petaflops, one peta = 1015)
per day, as a function of time, indicating an increase of a factor
2 every two months in recent years.1 In addition to Moore’s law,
significant advancements have been made through the combina-
tion of intelligent architecture and hardware–software co-design.
For instance, NVIDIA graphics processing units (GPUs’) perfor-
mance has improved by a factor of 317 from 2012 to 2021, surpassing
expectations based on Moore’s law alone. Research and develop-
ment efforts have demonstrated further impressive performance
improvements,2–4 suggesting that more can be achieved. However,
conventional computing solutions alone are unlikely to meet the
demand in the long term, particularly when considering the high
costs of training associated with the most complex deep learning
models [Fig. 1(b)]. It is essential to explore alternative approaches
to tackle these challenges and ensure the long-term sustainability
of AI’s rapid advancements. While global energy consumption is
crucial and important, there is a relevant issue that is perhaps just
as significant: the ability of low-power systems to execute com-
plex AI algorithms without relying on cloud-based computing. It is
important to keep in mind that the challenge of global AI power con-
sumption and the ability to implement complex AI on low-power
systems are two somewhat separate challenges. It might be the case
that these two challenges need to be addressed with somewhat dif-
ferent strategies (e.g., the power consumption in data centers for
the most complex, largest AI models, such as large language mod-
els, might be addressed differently than implementing mid-sized
AI models, such as voice recognition, on low-power, self-contained
systems that might need to run at a few milliwatts of power).
The latter strategy might not be scalable for the largest models, or
the optimization of the largest models might not be applicable for
simpler models running on much lower power budgets. However,
undeniably, for both, we need to improve the overall energy effi-
ciency of our computing systems that are designed to execute AI
workloads.

The energy efficiency and performance of computing can
largely benefit from new paradigms that aim at replicating or being
inspired by specific characteristics of the brain’s biological mech-
anisms. It is important to note that biological systems might be
highly specialized and heterogeneous, and therefore, different tasks
are addressed by different computational schemes. However, we
can still aim to take inspiration from general features when they
are advantageous for specific applications. It is unlikely that a sin-
gle architecture or broader approach will be best applicable for all
targeted applications.

Adopting an interdisciplinary methodology, experts in materi-
als science, device and circuit engineering, system design, and algo-
rithm and software development are brought together to collectively
contribute to the progressive field of neuromorphic engineering and
computing. This collaborative approach is instrumental in fueling

innovation and promoting advancements in a domain that seeks
to bridge the gap between biological systems and artificial intelli-
gence. Coined by Mead in the late 1980s,5 the term “neuromorphic”
originally referred to systems and devices replicating certain aspects
of biological neural systems, but now, it varies across different
research communities. While the term’s meaning continues to
evolve, it generally refers to a system embodying brain-inspired
properties, such as in-memory computing, hardware learning, spike-
based processing, fine-grained parallelism, and reduced precision
computing. One can also draw analogies and identify more complex
phenomenological similarities between biological units (e.g., neu-
rons) and electronic components (e.g., memristors). For example,
phenomenological similarities between models of the redox-based
nanoionic resistive memory cell and common neuronal models,
such as the Hodgkin–Huxley conductance model and the leaky
integrate-and-fire model, have been demonstrated.6 Even more
complex biological functionalities have been demonstrated using a
single third-order nanocircuit elements.7 It should be noted that
many paradigms related to the neuromorphic approach have also
been independently investigated. For instance, in-memory comput-
ing,8 while being a cornerstone of the neuromorphic paradigm, is
also examined separately. It represents one of the most promis-
ing avenues to enhance the energy efficiency of AI hardware or
more general computing, offering a break from the traditional von
Neumann architecture paradigm.

Neuromorphic research can be divided into three areas.
First, “neuromorphic engineering” employs either complementary
metal–oxide–semiconductor (CMOS) technology (e.g., transistors
working in a sub-threshold regime) or cutting-edge post-CMOS
technologies to reproduce the brain’s computational units and
mechanisms. Second, “neuromorphic computing” explores new data
processing methods, frequently drawing inspiration from biological
systems and considering alternative algorithms, such as spike-based
computing. Finally, the development of “neuromorphic devices”
marks the third field. Taking advantage of advancements in elec-
tronic and photonic technologies, it develops innovative nano-
devices that frequently emulate biological components, such as
neurons and synapses, or efficiently implement desired properties,
such as in-memory computing.

Furthermore, various approaches to neuromorphic research
can be identified based on their primary objectives. Some systems
focus on delivering efficient hardware platforms to enhance our
understanding of biological nervous systems, while others employ
brain-inspired principles to create innovative, efficient computing
applications. This roadmap primarily focuses on the latter. While
there are already outstanding roadmaps,9 reviews,10–12 and special
issues13 that offer comprehensive overviews of neuromorphic tech-
nologies, encompassing the integration of hardware and software
solutions as well as the exploration of new learning paradigms,
this particular roadmap focuses on emphasizing the significance
of materials engineering in advancing cutting-edge complementary
metal–oxide–semiconductor (CMOS) and post-CMOS technolo-
gies. Simultaneously, it offers a holistic perspective on the general
challenges of computing systems, the reasoning behind adopting the
neuromorphic approach, and concise summaries of current tech-
nologies to better contextualize the role of materials engineering
within the broader neuromorphic landscape. Of course, there are
other critical aspects in the development of neuromorphic tech-
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nologies that need to be taken into account. For example, an excel-
lent recent review on thermal management materials, devices, and
networks is one such example.14

This roadmap is organized into several thematic sections, out-
lining current computing challenges, discussing the neuromorphic
computing approach, analyzing mature and currently utilized tech-
nologies, providing an overview of emerging technologies, address-
ing material challenges, exploring novel computing concepts, and
finally examining the maturity level of emerging technologies while
determining the next essential steps for their advancement.

This roadmap starts with a concise introduction to the current
digital computing landscape, primarily characterized by Moore’s law
scaling and the von Neumann architecture. It then explores the
challenges in sustaining Moore’s law and examines the significance
and potential advantages of post-CMOS technologies and architec-
tures aiming to integrate computing and memory. Following this,
this roadmap presents a historical perspective on the neuromorphic
approach, emphasizing its potential benefits and applications. It pro-
vides a thorough review of cutting-edge developments in various
emerging technologies, comparing them critically. The discussion
addresses how these technologies can be utilized to develop com-
putational building blocks for future computing systems. The roles
of two mature technologies, static random access memory (SRAM)
and flash, are also explored. The overview of emerging technologies
includes resistive switching and memristors, phase change materi-
als, ferroelectric materials, magnetic materials, spintronic materials,
optoelectronic and photonic materials, and 2D devices and sys-
tems. Material challenges are discussed in detail, covering types
of challenges, possible solutions, and experimental techniques to
study these. Novel computing concepts are examined, focusing on
embracing device and system variability, spiking-based computing
systems, analog computing for linear algebra, and the use of analog
content addressable memory (CAM) for in-memory computing and
optimization solvers. Section VIII discusses technological maturity
and potential future directions.

II. COMPUTING CHALLENGES

Onur Mutlu and Shahar Kvatinsky

A. Digital computing
1. Status

Digital computing has a long and complex history that stretches
back over a century. The earliest electronic computers were devel-
oped in the 1930s and 1940s, and they were large, expensive, and
difficult to use. However, these early computers laid the foundation
for the development of the modern computers that we use today and
their principles are still in widespread use.

One of the key figures in the early history of digital computing
was John von Neumann, a mathematician and computer scientist
known for his contributions to the field of computer science. Von
Neumann advocated the stored program concept and sequential
instruction processing, two vital features of the von Neumann archi-
tecture15 that are still used in most computers today. Another key
feature of the von Neumann architecture is the separation of the

central processing unit (CPU) and the main memory. This sepa-
ration allows the CPU to access the instructions and data it needs
from the main memory while executing a program, and assigns the
computation and control responsibilities specifically to the CPU.

Throughout the years, the rapid scaling of semiconductor
logic technology, known as Moore’s law,16 has led to tremen-
dous improvements in computer performance and energy efficiency.
With the exponential increase in the number of transistors placed
on a single chip provided by technology scaling, engineers have
explored many ways to increase the speed and performance of com-
puters. One way they did this was by exploiting parallelism, which
is the ability of a computer to perform multiple tasks simultane-
ously. There are several different types of parallelism, including SISD
(single instruction, single data), SIMD (single instruction, multiple
data), MIMD (multiple instruction, multiple data), and MISD (mul-
tiple instruction, single data),17 all of which are exploited in modern
computing systems ranging from general-purpose single-core and
multi-core processors, GPUs, and specialized accelerators.

Technology scaling has also allowed for the development
of more processing units, starting from duplicating the process-
ing cores and, more recently, adding accelerators. These accel-
erators can off-load specific tasks, e.g., video processing, com-
pression/decompression, vision processing, graphics, and machine
learning, from the central processor, further improving performance
and energy efficiency (the required energy to perform a certain
task) by specializing the computation units to the task at hand.
As such, modern systems are heterogeneous, with many different
types of logic-based computation units integrated into the same
processor die.

2. Challenges
While the performance and energy of logic-based computation

units have scaled very well via technology scaling, those of inter-
connect and memory systems have not scaled as well. As a result,
communication (e.g., data movement) between computation units
and memory units has emerged as a major bottleneck, partly due
to the disparity in scaling and partly due to the separation and dis-
parity between processing and memory offered in von Neumann
architecture, which both have limited the ability of computers to take
full advantage of the improvements in logic technology. This bottle-
neck is broadly referred to as the “von Neumann bottleneck” or the
“memory wall,” as it can greatly limit the speed and energy at which
the computer can execute instructions.

For decades, the transistor size has scaled down, while the
power density has remained constant. This phenomenon, first
observed in the 1970s by Dennard,18 means that as transistors
become smaller and more densely packed onto a chip, the overall
performance and capabilities of the chip improve. However, since
the early 2000s, it has become increasingly challenging to maintain
Dennard scaling as voltage (and thus frequency) scaling has greatly
slowed down. The end of Dennard scaling has increased the impor-
tance of energy efficiency of different processing units and led to
phenomena such as “dark silicon,”19 where large parts of the chip
are powered off. The rapid move toward more specialized process-
ing units, powered on for specific tasks, exemplifies the influence of
the end of Dennard scaling.

Furthermore, in recent years, it has become increasingly chal-
lenging to maintain the pace of Moore’s law due to the physical lim-
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itations of transistors and the challenges of manufacturing smaller
and more densely packed chips. As a result, the looming end of
Moore’s law has been a topic of discussion in the tech industry, as
this could potentially limit the future performance improvements
of computer chips. New semiconductor technologies and novel
architectural solutions are required to continue computing systems’
performance and energy efficiency improvements at a similar pace
as in the past.

3. Potential solutions and conclusion
In recent years, different semiconductor and manufacturing

technologies have emerged to overcome the slowdown of Moore’s
law. These devices include new transistor structures and materi-
als, advanced packaging techniques, and new (e.g., non-volatile)
memory devices. Some of those technologies have similar function-
ality as standard CMOS technology but with improved properties.
Other technologies also offer radically new properties, different
from CMOS. For example, memristive technologies, such as resis-
tive RAM,20 have varying resistance and provide analog data stor-
age that also supports computation. Such novel technologies with
their unique properties may serve as enablers for new architec-
tures and computing paradigms, which could be different from and
complementary to the von Neumann architecture.

The combination of Moore’s law slowdown and von
Neumann’s bottleneck requires fresh thinking on computing
paradigms. Data movement between the memory and the process-
ing units is the primary impediment against high performance and
high energy efficiency in modern computing systems.21–24 In addi-
tion, this impediment only worsens with the improved processing
abilities and the increased need for data. All modern computers
employ a variety of methods to mitigate the memory bottleneck, all
of which increase the complexity and power requirements of the
system with limited (and sometimes little) success in mitigating
the bottleneck. For example, modern computers have several levels
of cache memories to reduce the latency and power of memory
accesses by exploiting data locality. Cache memories, however, have
limited capacity and are effective only when significant spatial and
temporal locality exists in the program. Cache memories are not
always (completely) effective due to low locality in many modern
workloads, which can worsen the performance and energy efficiency
of computers.25,26 Similarly, modern computers employ prefetching
techniques across the memory hierarchy to anticipate future mem-
ory accesses and load data into caches before they are needed by
the processor. While partially effective for relatively simple memory
access patterns, prefetching is not effective for complicated memory
access patterns and it increases system complexity and memory
bandwidth consumption.27 Thus, memory bottleneck remains a
tough challenge and hundreds of research papers and patents are
written every year to mitigate it.28

Overcoming the performance and energy costs of off-chip
memory accesses is an increasingly difficult task as the disparity
between the efficiency of computation and the efficiency of memory
access continues to grow. There is therefore a need to examine more
disruptive technologies and architectures that much more tightly
integrate logic and memory at a large scale, avoiding the large costs
of data movement across system components.

Many efforts to move computation closer to and inside the
memory units have been made,29 including adding processing units

in the same package as DRAM chips,30,31 performing digital process-
ing using memory cells,32,33 and using analog computation capabil-
ities of both DRAM and non-volatile memory (NVM) devices.34–37

One exciting novel computing paradigm to eliminate the von Neu-
mann bottleneck is to reconsider the way computation and memory
tasks are performed by getting inspiration from the brain, where,
unlike von Neumann architecture, processing and storage are not
separated. Many recent studies demonstrate orders of magnitude
performance and energy improvements using various kinds of
processing-in-memory architectures.29 Processing-in-memory and,
more broadly, neuromorphic (or brain-inspired) computing thus
offers a promising way to overcome the major performance and
energy bottleneck in modern memory systems. However, it also
introduces significant challenges for adoption as it is a disruptive
technology that affects all levels of the system stack, from hardware
devices to software algorithms.

III. NEUROMORPHIC COMPUTING BASICS
AND ITS EVOLUTION

Teresa Serrano-Gotarredona and Bernabe
Linares Barranco

A. What is neuromorphic computing/engineering
Neuromorphic computing can be defined as the underlying

computations performed by neuromorphic physical systems. Neu-
romorphic physical systems carry out robust and efficient neural
computation using hardware implementations that operate in phys-
ical time. Typically, they are event- or data-driven and they employ
low-power, massively parallel hybrid analog, digital, or mixed VLSI
circuits, and they operate using similar physics of computation used
by the nervous system.

Spiking neural networks (SNNs) are one very good example
of a neuromorphic computing system. Computation is performed
whenever a spike is transmitted and received by destination neurons.
Computation can be performed at the dendritic tree, while spikes
travel to their destinations, as well as at the destination neurons
where they are collected to update the internal states of the neurons.
Neurons collect pre-weighted and pre-filtered spikes coming from
different source neurons or sensors, perform some basic computa-
tion on them, and generate an output spike whenever their internal
state reaches some threshold. A neuron firing typically means that
the “feature” this neuron represents has been identified in place and
time. The collective computation of populations of neurons can give
rise to powerful system level behaviors, such as pattern recogni-
tion, decision making, sensory fusion, and knowledge abstraction.
In addition, neuromorphic computing systems can also be enabled
to acquire new knowledge through both supervised and unsuper-
vised learning, either offline or while they perform, which is typically
known as online learning and which can be life-long. Neuromorphic
computing covers typically from sensing to processing to learning.

1. Neuromorphic sensing
Probably the most clarifying example of what neuromorphic

computation is about is the paradigm of neuromorphic visual
computation. Neuromorphic visual computation exploits the data
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encoding provided by neuromorphic visual sensors. At present, the
most widespread neuromorphic vision sensor is the Dynamic Vision
Sensor (DVS).38 In a DVS, each pixel sends out its (x, y) coordinate
whenever its photodiode perceives a relative change of light beyond
some preset thresholds θ− > In+1

In
> θ+, with θ+ slightly greater than 1

and θ− slightly less than 1. This is typically referred to as an “address
event.” If In+1 > In, then light has increased. If In+1 < In, then light
has decreased. To differentiate both situations, the address event can
also be a signed event, by adding a sign bit “s,” (x, y, s). If events are
recorded using some event-recording hardware, then a timestamp
tn is added to each event (xn, yn, sn, tn). The full recording consists
then of a list of timestamped address events. Figure 2 illustrates this.
In Fig. 2(a), a DVS camera is observing a 7 kHz spiral on a clas-
sic phosphor oscilloscope (without any extra illumination source).
Figure 2(b) plots in {x, y, t} space the recorded events. The camera
was a 128× 128 pixel high-contrast sensitivity DVS camera.39 There-
fore, x–y coordinates in Fig. 2(b) span from 0 to 127. The vertical
axis is time, which spans over about 400 μs, slightly less than 100 μs
per spiral turn. Each dot in Fig. 2(b) is an address event, and we can
count several hundreds of them within the 400 μs. This DVS cam-
era is capable of generating over 10 × 106 events per second (about
one every 100 ns). This produces a very fine timing resolution when
sensing dynamic scenes.

The information (events) produced by this type of sensors can
be sent directly to event-driven neuromorphic computing hard-
ware, which would process this quasi-instantaneous dynamic visual
information event by event.

DVS cameras have evolved over the past 20 years, since they
first appeared.40 They combine frames, sensitivity to color,41 and of
resolutions up to 1 MP.42

Other sensory modality event-driven neuromorphic devices
have been reported, such as auditory cochleae,43 olfactory noses,44

or tactile sensing.45

2. Neuromorphic processing

Neuromorphic signal information encoding in the form of
sequences of events reduces information so that only meaningful
data, such as changes, are transmitted and processed. This follows
the underlying principle in biological nervous systems, as infor-
mation transmission (in the form of nervous spikes) and their
consequent processing affect energy consumption. Thus, biologi-
cal systems tend to minimize the number of spikes (events) to be
transmitted and processed for a given computational task. This prin-
ciple is what neuromorphic computing intends to pursue. Figure 3
shows an illustrative example of this efficient frame-free event-
driven information encoding.46 In Fig. 3(a), we see a poker card deck
being browsed at a natural speed, recorded with a DVS, and played
back at real-time speed with a reconstructed frame time of about
20 ms. In Fig. 3(b), the same recorded list of events is played back at
77 μs frame time. In Fig. 3(c), we show the tracked symbol input
fed to a spiking convolutional neural network for object recogni-
tion, displaying the recognized output symbol. In Fig. 3(d), we show
the 4-layer spiking convent structure, and in Fig. 3(e), we show the
{x, y, time} representation of 20 ms input and output events occur-
ring during a change of card so that the recognition switches from
one symbol to the next in less than 2 ms. Note that here the system is
composed of both, the sensor and the network executing the recog-
nition. Both working together need less than 2 ms. This contrasts
dramatically with conventional artificial systems, in which the sen-
sor first needs to acquire two consecutive images (typically 25 ms per
image) and then process both to capture the change.

Figure 3 illustrates a simple version of a neuromorphic sens-
ing and processing system. By today, much larger neuromorphic
systems, inspired in the same information encoding scheme, have
been developed and demonstrated. The following are some powerful
example systems:

FIG. 2. (a) 7 kHz spiral observed in a classic phosphor oscilloscope set in X/Y mode. (b) DVS output event stream when observing the oscilloscope in (a).
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FIG. 3. (a) Fast speed poker deck browsing: events are collected about every 20 ms to build a frame to display on a computer screen. (b) Slow speed playback at 77 μs per
reconstructed frame. (c) Poker symbol tracked and displayed on the right and recognition output on the left. (d) Event-driven CNN to classify four poker symbols. (e) {x, y, t}
representation of 20 ms showing camera events together with recognition events during a change of card with a recognition switching of less than 2 ms.

● The SpiNNaker platform47 was partly developed under the
Human Brain Project.48 It features an 18-core Advanced
RISC Machine (ARM) SpiNNaker chip.Each node on the
platform comprises a printed circuit board (PCB) that holds
48 of these chips. In total, about 1200 chips are assem-
bled into furniture-like sets that include racks. Collectively,
these setups host approximately 1 million ARM cores. This
system is capable of emulating 1 × 109 neurons in real
time. An updated SpiNNaker chip has already been devel-
oped, performing about 10× in efficiency, neuron emulation
capability, and event traffic handling, while keeping similar
power consumption.

● The BrainScales platform,49 also developed during the
Human Brain Project,47 implements physical silicon neu-
rons fabricated on full silicon 8 in. wafers, interconnecting
20 of these wafers in a cabinet, together with 48 FPGA
based communication modules. It implements accelerated
time computations with respect to real time (about 10 000×),
with spike-timing-dependent plastic synapses. Each wafer
can host about 200k neurons and 44 × 106 synapses.

● The IBM TrueNorth chip50 could host 1 × 106 very simple
neurons, or be reconfigured to achieve a trade-off between
the number of neurons and neuron model complexity. They
were structured into 4096 identical cores, consuming about
63 mW each.

● Loihi from Intel is probably by today the most advanced
neuromorphic chip. In its first version,51 fabricated in

14 nm, it contains 128 cores, each capable of implement-
ing 1k spiking neuronal units (compartments), and includes
plastic synapses. More recently, Loihi 2 chip was introduced,
with up to 1 × 106 neurons per chip, manufactured in Intel
4 technology (7 nm). Up to 768 of Loihi chips have been
assembled into the Pohoiki Springs system, while operating
at less than 500 W.52

3. Challenges and conclusion
Neuromorphic computing algorithms should be optimum

when run on neuromorphic hardware, where events travel and are
processed in a fully parallel manner. One of the main challenges
in present day neuromorphic computing is to train and execute
powerful computing systems directly on neuromorphic hardware.
Traditionally, neuromorphic computing problems were mapped to
more traditional deep neural networks to obtain their parameters
through backpropagation based training,53 which would then be
mapped to their neuromorphic/spiking counterpart.46 However,
these transformations always resulted in a loss of performance. By
today, there are many proposals of training directly in the spiking
domain, combining variants of spike-timing-dependent plasticity
rules, with surrogate training techniques that adapt backpropaga-
tion to spiking systems, which are tested on either fully connected
or convolution based deep spiking neural networks. For an updated
review, readers are referred to Ref. 54.
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On the other hand, it remains to see whether novel nano-
material devices, such as memristors, can provide truly giga-scale
compact chips with billions of neurons on a single chip and
self-learning algorithms. Some initial demonstrations of single55

or multi-core systems56 exploiting a nano-scale memristor com-
bined with a selector transistor as a synaptic element have been
reported, with highly promising outlooks once synapse elements
could be provided as pure nanoscale devices while stacking mul-
tiple layers of synapse fabrics together with other nano-scale neu-
rons.57 In the end, the success of neuromorphic computing will rely
on the optimum combined progress in neuromorphic hardware,
most probably exploiting emerging nano-scale devices massively,
in event- and data-driven information and energy-efficient pro-
cessing methodologies, and finally in providing efficient, resilient,
and quick learning methodologies for mapping real-world applica-
tions into the available hardware and computational neuromorphic
substrates.

B. Different neuromorphic technologies and state
of the art

Sabina Spiga

1. Status
The research field of neuromorphic computing has been grow-

ing significantly over the past three decades, following the pioneer-
ing research at Caltech (USA) by Mead,5 and it is currently attract-
ing the interest of a wide and interdisciplinary community from
devices, circuits, and systems to neuroscience, biology, computer

science, materials, and physics. Within this framework, the devel-
oped neuromorphic hardware technologies span from fully CMOS-
based systems58,59 to solutions exploiting the use of charge-based
or resistive non-volatile memory technologies60–62 and to emerg-
ing memristive device concepts and novel materials.63–66 Figure 4
reports a schematic (and non-exhaustive) evolution of the main
technologies of interest. A common feature of these approaches is to
take inspiration from the brain computation, by co-locating mem-
ory and processing [in-memory computing (IMC) approach], to
overcome the von Neumann bottleneck. Hardware artificial neu-
ral networks (ANNs) can implement IMC computing and provides
an efficient physical substrate for machine learning algorithms and
artificial intelligence (AI). On the other hand, spiking neural net-
works (SNNs), encoding and processing information using spikes,
hold great promise for applications requiring always-on real-time
processing of sensory signals, for example in edge computing,
personalized medicine, and Internet of things.

In terms of the maturity of neuromorphic technologies, we can
discuss three main blocks.

(i) Current large-scale hardware neuromorphic computing
systems are fully CMOS-based and exploit digital or
analog/mixed-signal technologies. Examples of fabricated
chips are the IBM TrueNorth, Intel Loihi, Tianjic, ODIN, and
others as discussed in previous review papers.58,59 In these
systems, the neuron and synapse functionalities are emulated
by using circuit blocks based on CMOS transistors, capaci-
tors, and volatile SRAM memory. The scientific community
is now exploiting these chips to implement novel algorithms
for AI applications.

FIG. 4. Schematic evolution of the main hardware technologies of interest for neuromorphic computing (the decades represent only a time frame). Triangular symbols mark
the reference period for early stage studies or starting interest in the technology development. From bottom to top of the figure, the listed technologies are today at higher
maturity level and more advanced at system integration level.
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(ii) Non-volatile memory technologies. In the past decade, resistive
non-volatile memory (NVM) technologies, such as Resistive
Random Access Memory (RRAM), phase change memory
(PCM), ferroelectric memory (FeRAM) and ferroelectric tran-
sistor (FeFET), and magnetoresistive random access mem-
ory (MRAM), have been proposed as possible compact, low
power, and dynamical elements to implement in hardware the
synaptic nodes, replacing SRAMs, or as a key element of neu-
ronal blocks.60,61,67 While these NVMs have been developed
over the past twenty years mainly for data storage applica-
tions, and introduced in the market, they can be considered
emerging technologies in the field of neuromorphic com-
puting and their great potential is still not fully exploited.
Over the past 10 years, novel concepts for computing, based
on hybrid CMOS/non-volatile resistive memory circuits and
chips,56 have been proposed in the literature. In parallel, also
more conventional charge-based non-volatile memories, such
as flash and NRAM, are currently being investigated for IMC
since they are mature technologies. Finally, it is worth men-
tioning the emerging memory technologies that are attracting
increasing interest in the field of IMC and neuromorphic
computing, namely the ferroelectric tunnel junction (FTJ)68

and the 3-terminal electrochemical random access memory
(ECRAM).69

(iii) Advanced memristive materials, devices, and novel compu-
tation concepts that are currently investigated include 2D
materials, organic materials, perovskites, nanotubes, self-
assembled nano-objects and nanowire networks, advanced

device concepts in the field of spintronics (domain wall,
race-trace memory, and skyrmions), devices based on
metal–insulator transition (for instance, VO2-based devices),
and volatile memristors.65,66,70–72 These technologies are cur-
rently proofs of concept at a single device level and circuit
blocks connecting a reduced number of devices. The com-
puting system is sometimes demonstrated with a mixed hard-
ware/software approach, where the measured device char-
acteristics are used to simulate large systems. Finally, it is
worth mentioning the increasing interest in architectures that
can exploit photonic components for computing, toward the
building of neuromorphic photonic processors taking advan-
tage of the silicon photonic platforms and co-integration with
novel optical memory devices and advanced materials, such as
phase-change materials.73,74

Figure 5 schematically shows examples of the material systems cur-
rently most investigated in various approaches and technologies for
neuromorphic computing.

2. Challenges
The current and future challenges can be considered at various

levels.

(i) For large-scale neuromorphic processors, the progress of
CMOS-based technologies and their scaling still provide room
to advance the research field. The main challenges are at
the architecture and algorithm level. On the other hand,

FIG. 5. Examples of materials systems currently employed in memristive technologies. The list of materials is not exhaustive and includes only some of the most used ones.
For the NVM devices (top line), the main active material is indicated, but each device includes also various types of material electrodes depending on the technology.
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most NVM memories (RRAM, PCM, FeRAM, FeFET, and
MRAM) have been already integrated with CMOS at scaled
technological nodes and large integration density and hold
interesting properties (depending on the specific technol-
ogy), such as small size, scalability, possible easy integration
also in 3D array stacking, low programming energy, and
multilevel programming capability. Therefore, it is expected
that NVM technologies will play an increasing role in
future IMC chips or neuromorphic processors, by enabling
energy-efficient computation. Prototype IMC chips have been
reported in the literature,56,75 as well as innovative circuits for
SNNs implementing advanced learning rules to compute with
dynamics.76,77

On the other hand, it is worth mentioning that the NVM tech-
nologies exhibit several device-level non-idealities, as discussed in
more detail in Sec. V of this roadmap. As examples and a non-
exhaustive list, we can mention nonlinearity and stochasticity in
conductance update vs a number of pulses at a fixed voltage (PCM,
RRAM, and FeRAM), asymmetry (RRAM) in the bidirectional tun-
ing of conductance, conductance drift (PCM) or broadening of
the resistance distribution (RRAM) after programming, device-to-
device and cycle-to-cycle variability of the programmed states, low
resolution due to the limited number of programmable levels (up to
8 or 16 are demonstrated for RRAM and PCM at the array level),
restricted memory window (MRAM) or limited endurance (general
issue except for MRAM), and relatively high conduction also in the
OFF state. All these aspects can impact the neural network accu-
racy and reliability, although proper algorithms/architectures can
take advantage from stochasticity or asymmetry of conductance tun-
ing.78 Therefore, a careful co-design of hardware and algorithms is
required together with an improvement of circuit design and/or pro-
gramming device strategies to fully exploit NVMs in combination
with CMOS and in large systems. The specific challenges and possi-
ble specific applications of the listed technologies will be discussed
further in Secs. V A–V D of this roadmap, while a more deep view
on application scenario is reported in Sec. VII.

(ii) Regarding the plethora of emerging materials/devices and
novel concepts proposed for neuromorphic computing
(beyond the ones discussed in the previous point, see some
examples in Secs. V D–V F of this roadmap), the main
challenge is that they are mostly demonstrated at the sin-
gle device level or in early stage proofs of concept in small
arrays/large device sizes, which are implemented in ANNs
or SNNs only at the simulation level. To leverage these
concepts at higher technology readiness level (TRL), it is
necessary to prove that the device characteristics are repro-
ducible and scalable, the working principle well understood,
and to provide more advanced characterizations on several
down-scaled devices, and finally to close the current gap
between laboratory exploration of single materials/devices
and integration in arrays or circuits. Another challenge
is to address in more detail how to exploit nanodevices’
peculiarities, such as dynamic or stochastic behavior, to
implement in hardware more complex bio-inspired func-
tionalities or even to perform radically new computation
paradigms. Indeed, while the more standard technologies
(CMOS, flash, and SRAM) can also be used in hardware

neural networks to implement complex functions, this is
possible only at the high cost of increased circuit complex-
ity. To give an example, the required dynamic to reproduce
the synaptic or neuronal functionality in SNNs is imple-
mented at the circuit level and/or using large area capacitors,
which are not easily scalable in view of large systems. One
possible approach is to exploit the emerging memristive tech-
nologies and their properties (variability, stochasticity, and
non-idealities) to implement complex functions with more
compact and low-power devices. One example is the use of
resistivity drift in PCM (usually an unwanted characteris-
tic for IMC or storage applications) to implement advanced
learning rules in hardware SNNs.79 Another example (dis-
cussed in Sec. VII A) is to use the inherent variability and
stochasticity of some nanodevices to build efficient ran-
dom number generators (for data security applications) and
stochastic computing models. Overall, this scenario points
out a long-term development research, likely up to ten years
or more, to close the gap between these novel concepts and
real industrial applications.

3. Potential solutions
To pursue advances in the development of neuromorphic hard-

ware chips, it is necessary to develop a common framework to
compare and benchmark different approaches, also in view of some
metrics, such as computing density, energy efficiency, computing
accuracy, learning algorithms, theoretical framework, and target
possible killer applications that might significantly benefit from
neuro-inspired chips. Within this framework, materials strategies
can still be relevant to address some of the outlined challenges
for NVMs, but materials need to be co-developed together with a
demonstration of a device at the scaled node and array level. An
important strategy for the future is also the possibility to substi-
tute current mainstream materials with green materials or to identify
fabrication processes more sustainable in terms of cost and environ-
mental impact, without compromising the hardware functionality.
Moreover, other important aspects include the development of hard-
ware architecture that can lead to the integration of several devices
and exploiting a large connectivity among them; the implementation
of efficient algorithms supporting online learning, also on different
time scales as in biological systems; and addressing the low power
analysis of large amount of data also for Internet of things and edge
devices. Overall, it is a necessary and holistic view that includes
the materials/devices/architectures/algorithms co-design to develop
a large-scaled neuromorphic chip.

4. Conclusion
The development of advanced neuromorphic hardware that

can efficiently support AI applications is becoming more and more
important. Despite the several prototypes and results presented in
the literature, neuro-inspired chips are still only at an early stage of
development and there is plenty of room for further development.
Many mature NVM devices are definitely candidates to become a
future mainstream technology for large scale neuromorphic pro-
cessors that can outperform the current platform based only on
CMOS circuits. In the long term, it is also necessary to close the gap
between emerging materials and concepts, currently demonstrated
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only by proofs of concept, and their possible integration in func-
tional systems. Materials research and an understanding of physical
principles enabling novel functionalities are important parts for this
scenario.

C. Possible future computational primitives
for neuromorphic computing

Sergey Savel’ev and Alexander Balanov

The core idea of neuromorphic computing to develop and
design computational systems mimicking electrochemical activ-
ities in brain cortex is currently booming, embracing areas of
deep physical neural networks,80 classical and quantum reser-
voir computing,81,82 oscillator-based computing,83 and spiking
networks,84 among many other concepts.85 These computational
paradigms imply new ways for information processing and stor-
age different from conventional computing and, therefore, require
elementary base and primitives that often involve unusual novel
physical principles.86

At present, memristors—electronic switchers with memory—
and their circuits demonstrate great potential for application in the
primitives for future neuromorphic computing systems. In partic-
ular, different types of volatile and non-volatile memristors can
serve as artificial neurons and synapses, respectively, which facil-
itate the transfer, storage, and processing of information.87 For
example, volatile Mott memristors88 can work as an electric oscil-
lator with either regular or chaotic dynamics,7 while memristors
with filament-formation89 demonstrate tunable stochasticity90,91

and allow designing neuromorphic circuits with different degrees of
plasticity, chaoticity, and stochasticity to address diverse computa-
tional aims in mimicking dynamics of different neuron populations.
Furthermore, a crossbar of non-volatile memristors (servicing to
memorize training) attached to volatile memristors (working as
readouts) enables the design of AI hardware with unsupervised
learning capability.92 Thus, combining memristive circuits with dif-
ferent functionalities paves the way for building a wide range of
in-memory computational blocks for a broad spectrum of artificial
neural networks (ANNs) starting from deep learning accelerators to
spiking neuron networks.93

A rapidly developing class of volatile memristive elements94 has
been shown to demonstrate a rich spectrum of versatile dynami-
cal patterns,7,95,96 which makes them suitable for the realization of
a range of neuroscience-motivated AI concepts.97–99 For instance,
the ANNs based on volatile memristors can go well beyond usual
oscillator-based computing83 or spiking neural networks.84 They
rely on manipulating information by utilizing complexity in dynam-
ical regimes that offer a novel computational framework97,98 with
cognitive abilities closer to biological brains. There is a specific
emphasis on using dynamical behaviors of memristors, instead of
only static behaviors.100

Remarkably, memristive elements can be realized not only in
electronic devices but also within spintronic or photonic frame-
works, which have their own advantages compared to electron-
ics. Therefore, hybridized design promises great benefits in the

further development of neuromorphic primitives. For example,
a combination of memristive chipsets with spintronic and/or
photonic components can potentially create AI hardware with
enhanced parallelism offered by optical devices operating simul-
taneously at many frequencies (e.g., optical cavity eigenfrequen-
cies),101 energy-efficient magnetic non-volatile memories, and flex-
ible memristive spiking network architectures. An important step
in the realization of this approach is the development of inter-
face technologies for bringing electronic, photonic, and spin-
tronic technologies together. A possible example is the spintronic
memristor,65,102,103 where the transformation of magnetic structure
influences the resistance of the system.104 An interface between neu-
romorphic optical and electronic subsystems of a hybrid device
could be realized using optically controlled electronic memristive
systems,105 thus paving a path for neuromorphic optoelectronic
systems.106

The conventional ANNs with a large number of connections
require training to be efficient in the task requiring frequent retrain-
ing for “moving target” problems, for example in the recognition of
characteristics changing in time. A potential solution for such tasks
is to implement filtering or pre-processing data by a “reservoir,”81

usually consisting of neuron units connected by fixed weights. The
reservoir is assisted by a small readout ANN, which requires much
less data for training, thus removing significant retraining burden.
Recently, an important evolution has taken place in the development
of reservoir computing systems, where the function of the reser-
voir is realized by photon, phonon, and/or magnon mode mixing in
spintronic107,108 and photonic109 devices. Substitution of the interac-
tion of many artificial neurons by wave processes resembles neural
wave computation in the visual cortex98 and promotes miniaturiza-
tion, robustness, and energy efficiency of the reservoirs (neuromor-
phic accelerators), which in the future could become an additional
class of primitive, especially in neuromorphic computational sys-
tems dealing with temporal or sequential data processing.110 In AI
training, it has also been shown that memristive matrix multipli-
cation hardware can enable noisy local learning algorithms, which
perform training at the edge with significant energy efficiencies
compared to graphics processing units.111

Finally, we briefly outline another exciting perspective consti-
tuted by a combination of quantum and neuromorphic technolo-
gies.112 Currently, quantum AI113 attracts significant attention by
increasingly competing with more traditional quantum computing.
One of the most promising quantum AI paradigms is quantum
reservoir computing,114 which offers not only much larger state
space than classical reservoir computing but also essentially non-
classical quantum feedback on the reservoir via measurements. A
quantum reservoir built from quantum memristors115,116 could sig-
nificantly gain quantum AI efficiency as it can readily be integrated
with existing quantum and classical AI devices and also lead to an
“exponential growth”117 in the performance of “reservoirs” with the
possibility of relaxing requirements on decoherence compared to
traditional quantum computing.

The above trends and directions in the development of the
primitives for neuromorphic computing are obviously only a slice
of exciting future AI hardware technology. Even though we rec-
ognize that our choice is subjective, we hope that the outlined
systems should provide a flavor of future computational hardware,
which should be based on reconfigurable life-mimicking devices
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utilizing different physical principles in combination with novel
mathematical cognitive paradigms.118–121

IV. MATURE TECHNOLOGIES (COMPUTING
APPROACHES)
A. SRAM

Nitin Chawla and Giuseppe Desoli

1. Status
SRAM-based computing in memory (CIM) or in-memory

computing is seen as a mature and widely available technology for
accelerating matrix and vector calculations in deep learning applica-
tions, yet many technology driven optimizations are still possible. To
make CIM more compatible, researchers have been exploring ways
to improve the design of the bitcell (Fig. 6), which is the basic unit of
memory. This has led to the development of high-end SRAM chips
with large capacities, such as 107, 128, and 256 Mb SRAM chips at
10, 7, 5, and 4 nm.122–125 These large SRAM capacities help reduce
the need for off-chip DRAM access. However, in more cost-sensitive
applications, such as embedded systems and consumer products,
modifying the bitcell design can be too costly and may limit the
ability to easily transfer the technology to different manufacturing
nodes.

A key difference exists between analog and digital SRAM CIM.
Analog CIM has been heavily studied using capacitive or resistive
sharing techniques to maximize row parallelism,126 but this comes
at the cost of inaccuracies and loss of resolution due to variations
in devices across process, voltage, and temperature (PVT) and the
limitations of signal-to-noise ratio (SNR) and dynamic range in
analog-to-digital converter (ADC)/readout circuits. The impacts of
device variations for different kinds of devices are listed below.

● Resistive devices, such as PCM or RRAM, experience a vari-
ation in the resistive values across the nominal behavior,
which can vary based on the process, and for a case of
±10%–20% change in resistance value, there will be a cor-
responding change of current values, which are then input
to the readout circuits, and hence, this will impact the
quantization step of readout circuits, hence impacting the

FIG. 6. Standard SRAM bitcells are usually designed with six or eight transistors.

SNR, which will then need a higher dynamic range to com-
pensate for the same. The temperature behavior for resistors
also needs to be taken care in the noise margin.

● MOS devices: These devices can vary in their performance
(threshold voltage) due to the following:

1. Global lot positioning, such as slow, typical, and fast,
can vary around ±20%, which can be less or more
based on technology and voltage of operation. This is
a deterministic shift.

2. Local variation: within the same lot, there are device
to device variations, which are random in nature and
need statistical analysis based on capacity in use to ana-
lyze the impact of variations. These impact the SNR and
quantization as in the case of resistive devices and will
need a higher dynamic range to compensate for the loss
in accuracy.

Analog SRAM CIM solutions often use large logic bitcells and an
aggressive reduction in ADC/readout bit width, resulting in low
memory density and computing inaccuracies, making it difficult to
use in situations where functional safety, low-cost testing, and sys-
tem scalability are required. On the other hand, digital CIM offers a
fast path for the next generation of neural processing systems due to
its deterministic behavior and compatibility with technology scaling
rules.

Researchers have improved the SRAM-based CIM’s perfor-
mance by modifying the SRAM bitcell structure and developing
auxiliary peripheral circuits. They proposed read–write isolation
cells to prevent storage damage and transposable cells to overcome
storage arrangement limitations. Peripheral circuits, such as digital-
to-analog converters (DACs), redundant reference columns, and
multiplexed ADCs, were proposed to convert between analog and
digital signals. The memory cell takes up most of the SRAM area in
the core module of a standard SRAM cut. However, the complex-
ity of the additional operations performed in the memory unit poses
additional problems to utilize the memory cells to their full poten-
tial. Researchers have explored various trade-offs to implement the
necessary computational functionality while preserving density and
power and, last but not least, minimizing the additional cost asso-
ciated with bitcell modifications required for requalification when
deployed in standard design flows. Most system-on-chips (SoCs) use
standard 6T structures due to their high robustness and access speed
and to minimize area overhead. The 6T storage cell is made up of
two P-channel Metal-Oxide-Semiconductor (PMOSs) and four N-
channel Metal-Oxide-Semiconductor (NMOSs) to store data stably.
To perform CIM using the conventional 6T SRAM cell, operands
are represented by the word line (WL) voltage and storage node data,
and processing results are reflected by the voltage difference between
bit line (BL) and bit line bar (BLB).

Figure 6 shows the conventional 6T and 8T bitcells that form
the basic building block of the SRAM design. The 8T bitcell is made
out of a conventional 6T bitcell and a read port that allows read
and write in parallel. These bitcells were never designed for paral-
lel access across rows, and this poses one of the main challenges for
enabling analog SRAM CIM.

Dual-split 6T cells with double separation have been
proposed,127,128 allowing for more sophisticated functions due to
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the separated WL and GND, which can use different voltages to
represent various types of information. Dong et al.129 proposed a
4 + 2T SRAM cell to decouple data from the read path. The read
is akin to that of the standard 6T SRAM, writes instead, and use
the N-well as the Word-Line Write (WWL) and two PMOS sources
as the Write-Bit Line (WBL) and Write Bit Line Bar (WBLB). In
computational mode, different voltages on the WL and storage node
encode the operands.

In general, CIM adopting the 6T bitcell structure is unable to
efficiently perform computing operations and may not fully meet the
requirements of future CIM architectures. Hence, many studies on
CIM have modified the 6T structure because using the 6T standard
cell directly poses a reliability challenge as the contents of the bitcells
get effectively shorted if accessed in parallel on the same bit line. This
means that special handling on the word line voltage is required,
which adds lot of complexity and limits the dynamic range. Further-
more, the variability and linearity of devices become very difficult to
control when limiting the device operation to reduced voltage lev-
els due to these reliability constraints, impacting the overall energy
efficiency of the solution.130,131

For practical applications, and specifically for AI ones, it is
important to evaluate the end to end algorithmic accuracy vs the
key metrics. To this end, recent research132–136 has suggested various
analytical models to examine the balance between the costs (accu-
racy) and benefits (primarily, energy efficiency and performance) of
digital vs analog SRAM CIM. This is based on the idea that many
machine and deep learning algorithms can tolerate some degree of
computational errors and that there are methods such as retraining
and fine-tuning as well as hardware-aware training to address these
errors.

The implementation of neural processing units incorporat-
ing CIM components for large-scale deep neural networks (DNNs)
presents significant difficulties, CIM macros can incur substantial
column current magnitudes, which can result in power delivery
difficulties and sensing malfunctions. Furthermore, the utilization
of analog domain operations necessitates the incorporation of ADCs
and DACs, which consume a significant amount of area and energy
resources. Further to this, the pitch matching of ADCs with SRAM
bitcells also poses a big challenge for arrays and ADC interfaces.
It is clear that the realization of the full potential of SRAM-
CIM necessitates development of innovative and sophisticated
techniques.

2. Challenges and potential solutions
In deep learning, convolutional kernels and other types of

kernels rely heavily on matrix/vector and matrix/matrix multipli-
cation (MVM). These operations are computationally expensive
and involve dot product operations between activation and ker-
nel values. In-memory multiplication in CIM macro devices can
be classified into three primary categories: current-based, charge-
sharing-based for analog computation, and one for all-digital. All-
digital CIM exhibits the same level of precision as purely digital
Application-Specific Integrated Circuit (ASIC) implementations.
Various implementation topologies ranging from bit-serial to all
parallel arithmetic implementations have been proposed for dig-
ital CIM solutions. Digital CIM, as in a previous study,137 rep-
resents a modified logic bitcell to support element-wise multipli-
cation followed by a digital accumulation tree sandwiched within

FIG. 7. Digital CIM memory macro with 8T bitcells and embedded digital logic.

the SRAM array. The solution improves on energy efficiency by
reducing data movement alongside the efficiency benefits of a
custom-built Multiply Acummulate (MAC) pipeline with improved
levels of parallelism over traditional digital Neural Processing Units
(NPUs), for example, as in Fig. 7.138 The digital CIM implementa-
tions also have a wide voltage and frequency dynamic range allowing
runtime reconfigurability between the competing Tera Operations
Per Second Per Watt (TOPS/W) and TOPS/mm2 performance cri-
teria. The operating range and mission profiles of these architectures
can also be extended by leveraging read-and-write assist schemes as
is commonly done for ultra-low voltage SRAM design. The digital
CIM solution’s energy efficiency depends on the operand precision,
and due to the deterministic precision and bit true computation
nature, it begins to decline as we increase the operand precision.

Current-based CIM, as represented in one of the early research
works,139 implements a WL DAC driving a multi-level feature input
with multiple rows active in parallel. The results of the element-wise
multiplications of all the parallel rows are accumulated as current
on the bit lines of the CIM macro that terminates in a current-based
readout/ADC. The current accumulation on the bit line essentially
implements a reduction operation limited by the SNR of the readout
circuit. Current-based CIM, as presented in this work, suffers from
significant degradation in accuracy due to bitcell variabilities and
nonlinearities of the WL DAC, while the throughput is limited by the
readout circuits. Kang et al.140 implemented a variation with CIM
using a 6T-derived bitcell with a Pulse Width Modulation (PWM)
WL modulation and focused on storing and computing multi-bit
weights per column. The modulation scheme uses binary weighted
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pulse duration based on the index of the bitcell in the column effec-
tively encoding the multi-bit weight in the column to impact the
value of the global bit line. The multiplication is effectively done
in the periphery of this CIM using a switched capacitor circuit.
Bitcell variations and nonlinearities as in the previous case signif-
icantly limit the accuracy of this implementation, thus restricting
the industrialization potential of these current-based CIM solutions.
The work in Ref. 141 tries to address the limitations of the above
analog CIM techniques and implements charge-based CIM by using
a modified SRAM logic bitcell that performs element-wise binary
multiplication (XNOR) and transfers the results to a small capaci-
tor. Multiple rows operating in parallel is key to the energy efficiency
of these CIM topologies. In this work, the element-wise multiplica-
tion result is transferred as a charge to the global bit line followed
by a voltage-based readout. The inherent implementation benefits
from the fact that capacitors suffer less from process variability
and present fairly linear transfer characteristics. This architecture,
however, like other analog CIM is impacted by dynamic range com-
pression due to the limited SNR regime of the readout at the end of
the column. Jia et al.142 extended this approach to support multi-
bit implementations using a bit-sliced architecture. The multi-bit
weights are mapped to different columns, while the feature data are
essentially transferred as 1-bit serial data on parallel word lines and
each column performs a binary multiplication followed by accu-
mulation on the respective bit lines. The near-memory all-digital
recombination unit in this approach performs the shift and scale
operations based on the column index to recreate the results of the
multi-bit MAC operation. The approach is flexible to support asym-
metric features and weight precision and can be made reconfigurable
to support different features and weight precisions on the fly. This,
however, still suffers from the same SNR constraints as each col-
umn operation is compressing the dynamic range and is limited by
the peak dynamic range of the readout ADC. The ADC in most
of these schemes is mostly shared across multiple columns, thus
making it a critical design component in determining the through-
put of such CIM architectures. The specific bit-sliced approach has
impressive TOPS/W numbers for the lower weights and activation
precision regime but starts to taper off due to the quadratic increase
in the computation energy with increasing weight and activation
precision The work in Ref. 143 instantiates multiple of these CIM
macros to demonstrate a system-level approach connecting these
CIM macros with a flexible interconnect and adding digital SIMD
and scalar arithmetic units to support real-world neural network
execution. This specific work due to the limited readout speed of
the CIM macros and the overhead of the other digital units suf-
fers from a moderate TOPS/mm2 number for the full solution but
presents impressive TOPS/W numbers, especially at the lower pre-
cision regime. The work in Ref. 144 represents another effort with
a system-level solution of a hybrid NPU comprising analog CIM
units and traditional digital accelerator blocks. The work leverages
a low-precision (2-bit) analog CIM macro coupled with a traditional
8-bit digital MAC accelerator. The two orders of magnitude differ-
ence in energy efficiency between the 8-bit digital MAC engine and
the 2-bit analog CIM macro can be leveraged by mapping differ-
ent layers to the appropriate computation engine but needs careful
articulation of mapping algorithms with the precision constraints of
the analog CIM while keeping the overhead of the write refresh and

other digital vector/scalar operators low. This, to some extent, is a
trade-off between a very specialized use case and a general-purpose
NN accelerator.

3. Conclusions
Analog CIM solutions based on charge-based CIM display a

lower degree of variability when compared to current-based CIM,
due to variability in the technologies employed for capacitors and
threshold voltage effects. In addition, charge-based CIM solutions
are able to activate a greater number of word lines per cycle and thus
achieve higher amounts of row parallelism. However, both current-
based and charge-based CIM are limited in terms of accuracy and the
equivalent bit precision of the dynamic range of the accumulation.
Selecting an appropriate ADC bit-precision and MVM parallelism
is a challenging task that requires balancing accuracy and power
consumption. Measurements and empirical evidence suggest that
an increase in the accumulation values is correlated with a higher
degree of variability. However, it is important to note that such
high values are relatively rare in practical neural network models, as
shown by the statistical distribution of activation data and resultant
accumulation outcomes. This characteristic along with noise-aware
training can be leveraged to optimize the precision and throughput
demands of the analog-to-digital converter, thereby improving the
figure of merit (FOM) of these analog CIM techniques. The research
on noise-aware training in the state of the art is limited to aca-
demic works on relatively small neural networks and datasets. This
for an industrial deployment still needs to mature and demonstrate
scalability to larger models and datasets.

All-digital CIM provides a deterministic and scalable path to
intercept the implementation of NPUs by bringing an order or more
of gain vs traditional all-digital NPUs. Digital CIM solutions pro-
vide excellent scaling for area and energy efficiency as we move
toward more advanced CMOS nodes with a wide operating volt-
age and frequency range tunability while still maintaining a general
purpose and application-agnostic view of embedded neural network
acceleration at the edge.

On the other hand, for applications that can handle approx-
imate computing, analog SRAM CIM-based solutions provide a
much-increased level of computation parallelism and energy effi-
ciency while still operating in an SNR-limited regime. The impacts
of dynamic range compression and readout throughput are key
algorithmic and design trade-offs while designing an analog CIM
solution, which tries to operate in a much more restricted voltage
and frequency regime as opposed to a digital CIM solution. That the
application choices are more vertically defined as opposed to gen-
eral purpose is also a deciding factor in choosing an analog SRAM
CIM-based solution as opposed to digital CIM solutions. In con-
clusion, due to the rapid industrialization potential of SRAM-based
CIM solutions and the opportunity of exploiting the duality of these
CIM instances to serve as SRAM capacity to support the system in
other operating modes, there are enough reasons to remain invested
in SRAM CIM. The scope to improve both digital and analog SRAM
CIM remains very high, both at the design and at the technology
level, to exploit the best gains out of these two solutions, which in
the future can also be combined to form a hybrid solution serving
multiple modalities of neural network execution at the edge.
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B. Flash memories

Gerardo Malavena and Christian Monzio Compagnoni

1. Status
Thanks to a relentless expansion in all the application fields

of electronics since their conception in the 1980s, flash memories
became ubiquitous non-volatile storage media in everyday life and a
source of market revenues exceeding $60B in 2021. The origin of this
success can be traced back to their capability to solve the trade-off
against cost, performance, and reliability in data storage much bet-
ter than any other technology. Multiple solutions to that trade-off, in
addition, were devised through different design strategies that, in the
end, allowed flash memories to target a great variety of applications
in the best possible way. Among these different design strategies, the
two leading to the so-called NOR flash memories145 and NAND flash
memories146 became by far the most important.

As in all flash memory designs, NOR and NAND flash mem-
ories store information in memory transistors arranged in an array
whose operation relies on an initialization, or erase, step performed
in a flash on a large number of devices simultaneously. In particular,
the erase step moves the threshold-voltage (VT) of all the mem-
ory transistors in a block/sector of the array to a low value. From
that initial condition, data are stored through program steps per-
formed in parallel on a much smaller subset of memory transistors,
raising their VT to one or more predefined levels. This working
scheme of the array allows us to minimize the number of service
elements needed for information storage and, in the end, is on the
basis of the high integration density, high performance, and high
reliability of flash memories. Starting from it, the structure of the
memory transistors, the architectural connections among them to
form the memory array, the array segmentation in the memory chip,
the physical processes exploited for the erase and program steps, and
many other aspects are markedly different in NOR and NAND flash
memories.

NOR flash memories follow a design strategy targeting the
minimization of the random access time to the stored data, reach-
ing latencies as short as a few tens of nanoseconds. A strong array
segmentation is then adopted to reduce the delay time of the word-
lines (WLs) and bit-lines (BLs) driving the memory transistors. As
depicted in Fig. 8(a), moreover, the memory transistors are indepen-
dently connected to the WLs, BLs, and source lines (SLs) of the array
to simplify and speed up the sequence of steps needed to randomly
access the stored data and to allow device operation at relatively high
currents (currents in the microampere scale are typical to sense the
data stored in the memory transistors). Fast random access is also
achieved through a very robust raw array reliability, with no or lim-
ited adoption of error correction codes (ECCs). This design strategy,
on the other hand, does not make NOR flash memories the most
convenient solution from the standpoint of the area and, hence, the
cost of the memory chip and limit the chip storage capacity to low
or medium sizes (up to a few Gbits).

NAND flash memories rely on a design strategy pointing to
the minimization of the data storage cost. Therefore, limited array
segmentation is adopted and the memory transistors are in series

FIG. 8. Schematic for the connection of the memory transistors in (a) a NOR flash
memory array (a common ground architecture of stacked-gate memory transistors
has been assumed); (b-1) a planar and (b-2) a vertical (3D) NAND flash memory
array.

connection along strings to reduce the area occupancy of the mem-
ory chip. Figures 8(b-1) and 8(b-2) schematically show the arrange-
ment of the memory transistors in a planar and in a vertical (or, 3D)
NAND flash array, respectively. At present, 3D arrays represent the
mainstream solution for NAND flash memories, capable of pushing
their bit storage density up to 15 Gbits/mm2,147 a level unreachable
by any other storage technology. Such an achievement was made
possible also by the use of multi-bit storage per memory transistor
and resulted in memory chips with capacity as high as 1 Tbit.147 The
NAND flash memory design strategy, on the other hand, makes the
random access time to the stored data relatively long (typically, a few
tens of microseconds). That is the outcome of time delays of the long
WLs and BLs in the microsecond timescale, low sensing currents
(tens of nanoampere) during data retrieval due to series resistance
limitations in the strings, and the need of multi-bit detection per
memory transistor. In addition, array reliability relies on powerful
ECCs.

Given the successful achievements of flash memories as non-
volatile storage media for digital data, exploiting them in the emerg-
ing neuromorphic-computing landscape appears as a natural expan-
sion of their application fields and is attracting widespread interests.
In this landscape, flash memories may work not only as storage ele-
ments for the parameters of artificial neural networks (ANNs) but
also as active computing elements to overcome the von Neumann
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bottleneck of conventional computing platforms. The latter may
represent, of course, the most innovative and disruptive application
of flash memories in the years to come. At the same time, the use of
flash memories as active computing elements may boost the perfor-
mance, enhance the power-efficiency, and reduce the cost of ANNs,
making their bright future even brighter. In this context, relevant
research has been focusing on employing flash memory arrays as
artificial synaptic arrays in hardware ANNs and as hardware acceler-
ators for the vector-by-matrix multiplication (VMM), representing
the most common operation in ANNs. Quite promising results have
already been reported in the field, through either NOR148,149 or
NAND150–155 flash memories. In these proofs of concept, different
encoding schemes for the inputs (e.g., voltage amplitude or pulse
width modulation, with signals on the BLs or WLs of the memory
array) and different working regimes of the memory transistors have
been successfully explored. Interested readers may go through the
references provided in this section for a detailed description of the
most relevant schemes proposed so far to operate a flash array as a
computing element.

2. Challenges and potential solutions
Despite the encouraging proofs of concept already reported,

the path leading to flash memory-based ANNs still appears long
and full of challenges. The latter can be classified into the following
categories:

a. Challenges arising from changes in the design strategy of
the array. As previously mentioned, the success of flash memories
as non-volatile storage media for digital data arises from precise
design strategies. Modifying those strategies to meet the requests
of ANNs may deeply impact the figures of merit of the technol-
ogy and should be carefully done. For instance, ANN topologies
requiring to decrease the segmentation of NOR flash arrays may
worsen their performance in terms of working speed. Increasing the
segmentation of NAND flash arrays to meet possible ANN topol-
ogy constraints or to enhance their working speed may significantly
worsen their cost per memory transistor.

The cost per memory transistor of flash memories, in addi-
tion, is strictly related to the array capacity. Modifying the latter
or not exploiting it all through the ANN topology may reduce the
cost-effectiveness of the technology. In this regard, the very differ-
ent capacities of NOR and NAND flash arrays make the former
suitable for small/medium size ANNs (less than 1 giga parameters)
and the latter suitable for large size ANNs (more than 1 giga para-
meters). The organization of the memory transistors into strings in
NAND flash arrays represents an additional degree of complexity
for the exploitation of their full capacity in ANNs. In fact, the num-
ber of memory transistors per string is the outcome of technology
limitations and cost minimization and, therefore, cannot be freely
modified. Exploiting all the memory transistors per string, then, nec-
essarily sets some constraints on the ANN topology (the number of
hidden layers, the number of neurons, etc.), which, of course, should
be compatible with the required ANN performance.

Another important aspect to consider is that the accurate
calibration of the VT of the memory transistors needed by high-
performance and reliable ANNs may not be compatible with the
block/sector erase scheme representing a cornerstone of all the
design strategies of flash memories. Solutions to carry out the erase

step on single memory transistors are then to be devised. These
solutions may require a change of the array design as in Refs. 148
and 149 or new physical processes and biasing schemes of the array
lines to accomplish the erase step as in Refs. 156–158. All of these
approaches, however, necessarily impact relevant aspects of the tech-
nology, affecting its cost, performance, or reliability, and should be
carefully evaluated.

The change of the typical working current of the memory tran-
sistors when exploiting flash memories for ANN applications is
another critical point to address. In fact, reducing the working cur-
rent of the memory transistors may make it more affected by noise
and time instabilities. Increasing it too much, on the other hand, may
raise issues related to the parasitic resistances of the BLs and SLs,
and, in the case of NAND flash arrays, of the unselected cells in the
strings.

b. Challenges arising from array reliability. Flash memories are
highly reliable non-volatile storage media for digital data. That, how-
ever, does not assure that they can satisfactorily meet the reliability
requirements needed to operate as computing elements for ANN
applications. Especially in the case of NAND flash memories, in
fact, array reliability in digital applications is achieved through mas-
sive use of ECCs and a variety of smart system-level stratagems to
take under control issues, such as electrostatic interference between
neighboring memory transistors, lateral migration of the stored
charge along the charge-trap storage layer of the strings, and degra-
dation of memory transistors after program/erase cycles. All of that
can hardly be exploited to assure the reliable operation of flash
arrays as computing elements. In addition, the requirements on the
accuracy of the placement and the stability over time of the VT
of the memory transistors when using flash arrays as computing
elements may be more severe than in the case of digital data stor-
age. The possibility to satisfy those requirements in the presence
of the well-known constraints to the reliability of all flash memory
designs146,159,160 is yet to be fully demonstrated. In this context, peri-
odic recalibration of the VT of the memory transistors and on-chip
learning155 may mitigate the array reliability issues.

c. Challenges arising from the peripheral circuitry of the array.
As in the case of flash memory chips for non-volatile storage of
digital data, the peripheral circuitry of flash memory arrays used as
computing elements for ANNs should not introduce severe burdens
on the chip area, cost, power efficiency, and reliability. In the latter
case, this aspect is particularly critical due to the need to integrate
on the chip not only the circuitry to address the memory transis-
tors in the array and to carry out operations on them, but also, for
instance, the circuitry to switch between the digital and the analog
domain in VMM accelerators or to implement artificial neurons in
hardware ANNs. Along with effective design solutions at the circuit
level,150 process solutions, such as CMOS-under-array integration147

or heterogeneous integration schemes,152 should be exploited for
successful technology development.

3. Conclusion
Flash memories may play a key role in the neuromorphic-

computing landscape. Expanding their fields of application, they can
be the elective storage media for ANN parameters. However, they
can also be active computing media for high-performance, power-
efficient, and cost-effective ANNs. To achieve this intriguing goal,
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relevant challenges must be faced from the standpoint of the array
design, reliability, and peripheral circuitry. Winning those chal-
lenges will be a matter of engineering and scientific breakthroughs
and will pave the way for years of unprecedented prosperity for both
flash memories and ANNs.

V. EMERGING TECHNOLOGIES (COMPUTING
APPROACHES)

Zhongrui Wang and J. Joshua Yang

A. Resistive switching and memristor
1. Status

Resistive switches (often called memristors when device non-
linear dynamics are emphasized) are electrically tunable resistors, of
a simple metal–insulator–metal structure. Typically, their resistance
changes as a result of redox reactions and ion migrations, driven by
electric fields, chemical potentials, and temperature.64 There are two
types of resistive switches according to the mobile ion species. In
many dielectrics, especially transition metal oxides and perovskites,
anions such as oxygen ions (or equivalently oxygen vacancies) are
relatively mobile and can form a conduction percolation path, lead-
ing to the so-called valence change switching. For example, a conical
pillar-shaped nanocrystalline filament of the Ti4O7 Magnéli phase
was visualized using a transmission electron microscope (TEM) in
a Pt/TiO2/Pt resistive switch.161 On the other hand, the conduction
channels can also be created by the redox reaction and migration of
cations, which involves the oxidation of an electrochemically active
metal, such as Ag and Cu, followed by the drift of mobile cations
in the solid electrolyte and the nucleation of cations to establish a
conducting channel upon reduction. The dynamic switching pro-
cess of a planar Au/SiOx:Ag/Au diffusive resistive memory cell was
captured by in situ TEM.89

Resistive switches provide a hardware solution to address
both the von Neumann bottleneck and the slowdown of Moore’s
law faced by conventional digital computers. When these resistive
switches are grouped into a crossbar array, they can naturally per-
form vector–matrix multiplication, one of the most expensive and
frequent operations in machine learning. The matrix is stored as
the conductance of the resistive memory array, where Ohm’s law
and Kirchhoff’s current law physically govern the multiplication and
summation, respectively.64 As a result, the data are both stored and
processed in the same location. This in-memory computing con-
cept can largely obviate the energy and time overheads incurred by
expensive off-chip memory access on conventional digital hardware.
In addition, the resistive memory cells are of simple capacitor-like
structures, equipping them with excellent scalability and 3D stack-
ability. So far, resistive in-memory computing has been used for
hardware implementation of deep learning models to handle both
unstructured (e.g., general graphs, images, audios, and texts) and
structured data, as discussed in the following.

General graph: Graph-type data consist of a set of nodes
together with a set of edges. The theoretical formulation has
been made for graph learning using resistive memory on datasets

such as WikiVote.162,163 Experimentally, a resistive memory-
based echo state graph neural network has been used to clas-
sify graphs in MUTAG and COLLAB datasets as well as nodes
in the CORA dataset,164 including few-shot learning of the
latter.165

Images: Images are special graph-type data. Both supervised
and unsupervised learning of ordinary images have been experi-
mentally implemented on resistive memory. For supervised learn-
ing, offline trained resistive memory, where optimal conductance
of memory cells is calculated by digital computers and trans-
ferred to resistive memory, is used to classify simple patterns,166,167

MNIST handwritten digits,168–171 CIFAR-10/100 datasets,172–174

ImageNet,175 and Omniglot one-shot learning dataset.176 In addi-
tion to offline training, online training adjusts the conductance of
resistive memory in the course of learning, which is more resilient to
hardware nonidealities in classifying simple patterns,37,166 Yale Face
and MNIST datasets,177,178 CIFAR-10 dataset,179 and meta-learning
of Omniglot dataset.180 Besides supervised learning, unsupervised
offline learning with resistive memory is used for sparse coding of
images181 and MNIST image restoration.182

Audios and texts: Learning sequence data, such as audios
and texts, have been implemented on resistive memory. Super-
vised online learning using recurrent nodes has been done on the
Johann Sebastian Bach chorales dataset.183 In addition, delayed-
feedback systems based on dynamic switching of resistive memory
are used for temporal sequence learning, such as spoken number
recognition and chaotic series prediction.66,184,185 For offline learn-
ing, resistive memory is used for modeling the Penn Treebank
dataset;186 Wortschatz Corpora language dataset and Reuters-21578
news dataset;187 and Bonn epilepsy electroencephalogram dataset
and NIST TI-46 spoken digit dataset.188,189

Structured data: Despite unstructured data, structured data,
such as those of a tabular format, have been tackled by resistive
memory, including supervised classification of the Boston housing
dataset on an extreme learning machine;190 K-means clustering of
IRIS dataset and principal component analysis of the breast can-
cer Wisconsin (diagnostic) dataset;191,192 and correlation detection
of quality controlled local climatological database.193

2. Challenges
Major challenges can be categorized at different levels.
Device level: The ionic nature of resistive switching, although

benefits data retention, imposes challenges on programming pre-
cision, energy, and speed. The programming precision limits the
representation capability of the resistive switch, or equivalently how
many bits a device can encode. In addition, the programming energy
and speed impact online learning performance. In addition, the
degradation of the representation capability is further intensified
by the read noise, manifestation by the current fluctuation under a
constant voltage bias.

Circuit level: Analog resistive memory arrays are mostly inter-
faced with up- and downstream digital modules in a computing
pipeline. As such, there is inevitable signal acquisition and conver-
sion cost, which leads to the question of how to achieve trade-off
between signal acquisition rate, precision, and power consumption.
In addition, the parasitic resistance and capacitance, like the non-
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zero wire resistance, incur the so-called IR drop in the resistive
memory crossbar array.

Algorithm level: So far, many applications of resistive memory
suffer from significant performance loss in the presence of resistive
memory nonlinearities (e.g., noises), thus defeating their efficiency
advantage over alternative digital hardware.

3. Potential solutions
Device level: Various approaches are used to address the pro-

gramming stochasticity, such as the local confinement of conducting
filament.194 A denoising protocol using sub-threshold voltages has
recently been developed to suppress the fluctuation of the device
state and achieve up to 2048 conductance levels.195 In addition,
homogeneous switching may suppress stochasticity at the cost of
larger program energy and time overheads.64 In terms of pro-
gramming energy, small redox barriers and large ion mobilities
may reduce switching energy and accelerate switching speed, at the
expense of retention and thermal stability though.

Circuit level: Typically, resistive in-memory computing relies
on Ohm’s law and Kirchoff’s current law, resulting in current sum-
mation. However, there is a recent surge of interest in replacing
current summation by voltage summation, which lowers down
the static power consumption by eliminating current summation
incurred Joule heating. In addition, fully analog neural networks
have been proposed to get rid of the frequent analog-to-digital and
digital-to-analog conversions.196 To combat with the parasitic wire
resistance, a simple solution is to increase device resistance in both
ON and OFF states, such as that demonstrated in a 256 × 256
in-memory computing macros.195

Algorithm level: A recent trend is hardware–software co-design
to leverage resistive memory nonlinearities and turn them into
advantages. For example, the programming stochasticity can be
exploited by neural networks of random features (e.g., echo state
networks164,165 and extreme learning machines190) and Bayesian
inference using Markov Chain Monte Carlo (MCMC), such as
Metropolis–Hastings algorithm.197 In addition, such programming
noise is a natural regularization to suppress overfitting in online
learning.198 Moreover, hyperdimensional computing187 and mixed-
precision design, such as high-precision iterative refinement algo-
rithm paired with low-precision conjugate gradient,199 can with-
stand resistive memory programming noise. The reading noise can
also be exploited for solving combinatorial optimization problems
using simulated annealing, serving as a natural noise source to
prevent the system from falling into the local minimum.200,201

4. Conclusion
The advent of resistive switch-based in-memory computing in

the past decade has demonstrated a wide spectrum of applications
in machine learning and neuromorphic computing, reflected by its
handling of different types of data.

However, there is still plenty of room, at device, circuit, and
algorithm levels, to improve, which will help fully unleash the power
of in-memory computing with resistive switches and potentially
yield a transformative impact on future computing.

B. Phase change materials

Abu Sebastian and Ghazi Sarwat Syed

1. Introduction
Phase-change memory (PCM) is arguably the most advanced

memristive technology. Similar to conventional metal-oxide based
memristive devices, information is stored in terms of changes in
atomic configurations in a nanometric volume of material and the
resulting change in resistance of the device.202 However, unlike
the vast majority of memristive devices, PCM exhibits volumet-
ric switching as opposed to filamentary switching. The volumetric
switching is facilitated by certain material compositions along the
GeTe–Sb2Te3 pseudo-binary tie line, such as Ge2Sb2Te5, that can
be switched reversibly between amorphous and crystalline phases of
different electrical resistivities.203 Both transitions are Joule-heating
assisted. The crystalline to amorphous phase transition relies on a
melt-quench process, whereas the reverse transition relies mostly on
crystal growth (Fig. 9).

There are essentially two key properties that make PCM devices
particularly well suited for neuromorphic computing204 (see Fig. 10).
Interestingly, this was pointed out by Stanford Ovshinsky, a pioneer
of PCM technology, way back in 2003 when PCM was being consid-
ered just for memory applications.205 The first property is that PCM
devices can store a range of conductance values by modulating the
size of the amorphous region typically achieved by partial RESET
pulses that melt and quench a certain volume of the PCM material.
This analog storage capability, combined with a crossbar topology,
allows for matrix–vector multiplication (MVM) operations to be
carried out in O(1) time complexity by leveraging Kirchhoff’s circuit
laws. This makes it possible to realize an artificial neural network
on crossbar arrays of PCM devices, with each synaptic layer of the
DNN mapped to one or more of the crossbar arrays.67,206 The sec-
ond property referred to as accumulative property results from the
progressive crystallization of the PCM material upon application of
an increasing number of partial SET pulses. It is used for implement-
ing DNN training;207 temporal correlation detection;193 continual
learning;208 local learning rules, such as spike-timing-dependent
plasticity;209,210 and neuronal dynamics.211

PCM is at a very high maturity level of development and has
been commercialized as both stand-alone memory212 and embed-
ded memory.213 This fact, together with the ease of embedding PCM
on logic platforms (embedded PCM),206 makes this technology of
unique interest for neuromorphic computing.

2. Challenges
PCM devices offer write operations in the tens of nanosecond

timescale, which is sufficient for most neuromorphic applications,
in particular those targetting deep learning inference. The cycling
endurance could also exceed a billion cycles (dependent on the
device geometry), which is several orders of magnitudes higher than
commercial flash memory.214 This is sufficient for deep learning
inference applications. The cycling endurance for partial SET pulses
is much higher than that for full SET–RESET cycling and hence is
widely considered sufficient for other neuromorphic applications as
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FIG. 9. Summary of emerging memories, such as memristors, and their capabilities in processing various data types, such as images, audios, texts, 3D points, graphs, and
events. Image samples are taken from the ImageNet dataset. The audio waveform visualizes a sample from the TIDIGITS dataset. 3D points visualize a sample from the
ModelNet10 dataset. The graph sample is from the CORA dataset.

well. The read endurance is almost infinite for PCM when suffi-
ciently low read bias is applied. Another key attribute is retention,
which is typically tuned through material choice.215 However, the
use of analog conductance states in neuromorphic computing makes
the retention time of intermediate phase configurations even more
important, which could be substantially lower than that of fully
RESET states.

One of the primary challenges for PCM is integration den-
sity. For example, for DNN inference, it is desirable to have at least
10–100 × 106 on-chip weight capacity. The crossbar array for neu-
romorphic computing comprises metal lines intersected by synaptic
elements, which are composed of one or more PCM devices and

selector devices. Access devices, such as bipolar junction transistors
or metal oxide–semiconductor field effect transistors, are preferred
for accurate programming, while two-terminal polysilicon diodes
offer scalability. To achieve high memory density, stacking multi-
ple crossbar layers vertically is beneficial. Back-end of-line (BEOL)
selectors, such as ovonic threshold switches, show promise but face
challenges in achieving precise current control. Edge effects and
thermal crosstalk between neighboring cells become significant at
smaller feature sizes.247–249

Compute precision is a crucial aspect especially for DNN
inference applications. The key challenges are 1/f read noise
and conductance drift216 (see Fig. 11). Drift is attributed to the
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FIG. 10. Operational regimes of a phase change device when used for neuromor-
phic computing. On the right plot, the direct overwrite regime utilizing melt-quench
dynamics is illustrated. The programming curves display the achievable conduc-
tance values in response to partial RESET pulses of varying amplitudes. As the
RESET pulse is increased in amplitude, a larger amorphous volume is created
mostly independent of the phase configuration prior to the application of the pulse.
On the left plot, the characteristic accumulative property is demonstrated. It show-
cases the evolution of conductance values over successive applications of a SET
pulse with a constant amplitude. As the amorphous region reduces in size due to
crystallization dynamics, the device conductance progressively increases. Multiple
experimental traces are overlaid in both plots.

structural relaxation of the melt-quenched amorphous phase and
exhibits a log time dependence. Conductance variations arising from
temperature variations could also impact the compute precision.217

Another potential source of imprecision is voltage polarity depen-
dence.218 The intrinsic stochasticity associated with the accumula-
tive behavior could also be a challenge for applications such as online
learning.219

For applications that exploit the accumulative behavior, there
is a significant incentive to minimize the programming current.
In fact, reducing the programming currents could also help with
achieving better integration density by minimizing the require-
ments on the access devices. The primary way to achieve lower
programming current is via scaling down the volume of switching
material. PCM devices have decreased in programming energies by a
factor of 1000 since the first memory chip was reported. Some device
structures now exhibit programming energies in the tens of femto-
joules (i.e., on par with the most efficient charge-based memories)
via extreme volume scaling.220–223 However, analog capability is typ-
ically compromised, and extreme scaling also leads to fabrication
challenges.

3. Potential solutions
Two main approaches have been taken to improve PCM

devices: material engineering and device engineering. Material engi-
neering involves exploration of new phase-change material compo-
sitions as well as alloying of phase-change materials with elements
such as germanium, silicon, carbon etc.215 Yet another approach
is the use of superlattice heterostructures.224,225 They utilize alter-
nating layers of two different phase change materials that are

only a few atoms thick, which create an electro-thermal confine-
ment effect that enhances write efficiency.226,227 This approach also
improves the write endurance and reduces the resistance drift and
noise.228 However, additional research is necessary to fully com-
prehended the mechanisms and examine the impact of device
geometries and the randomness that accompanies crystal growth
and amorphization.229–232

Device engineering involves creating devices such as pro-
jected phase-change memory, which have a noninsulating projection
segment that is placed in parallel to the phase-change material
segment.233,234 Another fascinating approach is that of relying on
nanoscale confinement of simple materials such as antimony to
design better PCM devices.235 Besides improving the PCM devices
themselves, one could also conceive innovative synaptic units with
more than one PCM device to enhance the conductance window
and to improve the compute precision.236 There is also potential to
enhance the compute precision by programming approaches such
as gradient-descent programming that relies on minimizing the
MVM error as opposed to minimizing the programming error per
device.237

Phase-change materials have functional properties in the opti-
cal domain that enable neuromorphic computing on photonic inte-
grated circuits using photonic phase-change memory devices.238

By integrating these materials onto silicon waveguides,239,240 ana-
log multiplication of incoming optical signals becomes feasible.
Additionally, spike aggregation and convolution operations can be
conducted in a single time step using wavelength division multiplex-
ing.241,242 The accumulative behavior of phase-change materials also
allows for more intricate operations such as correlation detection
with high efficiency.243 This opens opportunities for the develop-
ment of novel phase-change materials engineered specifically for
photonic applications.

There are also reports of PCM device non-idealities being
exploited for computational purposes. For example, the stochastic-
ity associated with the accumulative behavior can create biorealistic
randomly spiking neurons,211 and structural relaxation can be used
to implement eligibility traces for reinforcement learning.244 The
conductance fluctuations in PCM have also been exploited in an
in-memory factorizer to disentangle visual attributes.245 Finally, the
ability to induce field effect modulation in PCM devices combined
with the analog storage capability can be exploited to realize mixed
synaptic plasticities for solving optimization and sequential learning
problems.246

4. Conclusion
With well-understood device physics models, established man-

ufacturability, and proven integration capability with state-of-the-
art CMOS logic platforms using BEOL processing, PCM becomes
arguably the most advanced memristive technology. More recently
PCM has been extensively researched for neuromorphic comput-
ing by exploiting its analog storage capability and accumulative
behavior. However, commercialization of such technology requires
improvements in achievable compute precision, integration density,
all within the purview of BEOL compatible materials and processing.
Moreover, as with commercialization of any emerging technology, a
key deciding factor would be the manufacturing cost. The expec-
tation is that the manufacturing cost barrier when PCM is used
for computing applications is not as limiting as for storage-class
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FIG. 11. PCM non-idealities. (a) Device data after programming show variability, reflected in broad distributions of analog conductance values due to programming inaccura-
cies, read noise, and drift variability (the top panel). Temperature increase raises state conductivity due to thermal carrier excitation and accelerates structural relaxation. (b)
The conductance fluctuations manifest as synaptic weight noise, here shown as additive noise in terms of the percentage of the maximum synaptic weight. Using two PCM
devices per synapse reduces this error. (c) The accumulative behavior exhibits significant stochasticity mostly attributed to variations in the crystallization kinetics.

memory applications. Most likely, neural processing units for DNN
inference based on embedded PCM for analog in-memory com-
puting would be commercialized first. Depending on the level of
commercial acceptance of this technology, full-edged PCM-based
accelerators could be developed to serve high-end edge applications
or even cloud-based applications.

C. Ferroelectric materials

Thomas Mikolajick, Stefan Slesazeck, and Beatriz
Noheda

1. Status
Ferroelectric materials are, in theory, ideally suited for infor-

mation storage tasks since their switching is purely field-driven,
holding the promise of extremely low write energy, and non-volatile
at the same time. Moreover, unlike competing concepts, such as
resistive switching or magnetic switching, ferroelectric materials
offer three different readout possibilities giving a lot of flexibility in
device design.250 In detail, the following read schemes can be applied
(see also the middle part of Fig. 12):

● Direct sensing of the switched charge during polarization
reversal, as used in the ferroelectric RAM (FeRAM) concept,
results in a cell design similar to a dynamic random-access
memory (DRAM).251

● Coupling of the ferroelectric to the gate of a field effect
transistor and readout of the resulting drain current, as
used in the ferroelectric field effect transistor (FeFET). This
results in a cell that is similar to classical transistor-based
charge storage (floating gate or charge trapping) memory
cell, which is most prominently used in flash memories.252

● Modulation of the tunneling barrier in a ferroelectric tunnel-
ing junction (FTJ). As a result, we can realize a two-terminal

device, which is essentially a special version of a resistive
switching memory cell (see Sec. V A).253

Each of the mentioned readout schemes has advantages and disad-
vantages, and therefore, the flexibility to use one of the three is a
plus, especially in applications that go beyond pure memories, such
as neuromorphic computing.

However, traditionally, ferroelectricity was only experienced
in chemically complex materials, such as lead-zirconium titanate
(PZT), strontium bismuth tantalate (SBT), or bismuth ferrite (BFO),
which all are very difficult to incorporate into the processing flow
for integrated electronic circuits, due to their limited stability in
reducing environments. Another pervasive issue for the integration
of ferroelectrics is their tendency to depolarize upon downscal-
ing, an issue that is accentuated by their high permittivity. Organic
ferroelectrics, the most prominent example being polyvinylidene
difluoride (PVDF), can mitigate this problem, as their low permit-
tivities reduce the depolarization fields, while a rather high coercive
field increases the stability of the polarization state. Such materi-
als are ideally suited for lab scale demonstrations of new device
concepts, due to their simple fabrication using a solution-based
process, and are highly preferred for flexible and biocompatible
electronics.254 However, their limited thermal stability has taken
them out of the game for devices in integrated circuits. There-
fore, although the technology in the form of FeRAM255 is on the
market for more than 25 years, it has lacked the ability to scale
in a similar manner as conventional memory elements and, there-
fore, it is still limited to niche applications that require a high
rewrite frequency together with non-volatility as in data logging
applications.

2. Challenges
With the discovery of ferroelectricity in hafnia (HfO2) and

zirconia (ZrO2), the biggest obstacle of the limited compatibility
with integrated circuit fabrication could be solved.256 HfO2 and
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ZrO2 are stable both in reducing ambient and in contact with sili-
con, and their fabrication using established atomic layer deposition
processes is standard in modern semiconductor process lines. How-
ever, new difficulties, especially with respect to reliability,257 need
to be solved. Challenges in this direction are aggravated by the
metastable nature of the ferroelectric phase, which appears mostly
at the nanoscale, making a full understanding of the polar phase
quite demanding. While their high coercive field makes them very
stable with respect to classical retention, the ferroelectric phase typ-
ically exists together with other non-polar phases, which prevents
them from reaching the predicted polarization values (of the order
of 50 μC/cm2).258 Moreover, the most serious problem of any non-
volatile ferroelectric device, the imprint, becomes very complex to
manage in hafnia/zirconia-based ferroelectrics. The imprint is a shift
of the hysteresis loops due to an internal bias. While this effect leads
to a classical retention of the stored state that may look perfect,
after switching, retention will be degraded and fixing the so-called
opposite-state retention loss needs to be carefully done by material
and interface engineering. Moreover, the high coercive field in this
material class becomes a problem as HfO2 and ZrO2 often show
a pronounced wake-up and fatigue behavior and the field-cycling
endurance is in many cases limited by the dielectric breakdown of
the material.

While the issues mentioned so far are valid for any non-volatile
device application, in neuromorphic systems, additional challenges
arise, including the linearity of the switching behavior and tuning

of the retention to achieve both short-term and long-term plastic-
ity, as well as specific effects to mimic neurons, such as accumulative
switching,250,259 which need to be explored using material and device
design measures. Finally, large-scale neuromorphic systems will
require a high integration density that demands three-dimensional
integration schemes, realized either by the punch-and-plug technol-
ogy well-known from NAND flash or by integrating devices into the
back-end of the line.

3. Potential solutions
Since the original report on ferroelectricity in hafnium oxide,256

the boundary conditions for stabilizing the ferroelectric phase have
been much better understood, although there are still a number
of open questions. The goal is to achieve a high fraction of the
ferroelectric phase without dead layers of non-ferroelectric phases
at the interface to the electrodes or in the bulk of the film. This
needs to be done under the boundary conditions of a realistic
fabrication process, which means that sophisticated methods to
control the crystal structure based on epitaxial growth are not pos-
sible. Epitaxial growth can help clarify scientific questions, but the
achieved results need to be transferred to chemical vapor deposi-
tion (CVD), including most prominently atomic layer deposition
(ALD), or physical vapor deposition (PVD) processes using elec-
trodes such as TiN or TaN that can be integrated into electronic
processes.

In the past years, it became obvious that oxygen vacancies are,
on the one hand, required to stabilize the ferroelectric phase260 and,

FIG. 12. Ferroelectric materials (center) enable three different basic memory cells (middle ring). These can be used in various ways in neuromorphic circuits (for examples,
see the outer part of the figure). The rich switching dynamics of ferroelectrics allow us to tailor new devices mimicking neurons and synapses in a much more flexible and
area efficient way as compared to their pure CMOS counterparts.
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on the other hand, detrimental to both the imprint and the field
cycling behavior.261 Therefore, many proposals to integrate the fer-
roelectric layer with additional thin layers in the film stack have
been made, and currently, a lot of work is going in that direction.
Moreover, it is clear that the interface to the electrodes needs careful
consideration. In this direction,262 facilitating the transport of oxy-
gen, not only in the ferroelectric layer but also across the electrode
interfaces, by minimizing the strain effects, may be key to improv-
ing device performance.263 When it comes to structures that are in
direct contact with silicon, a recent observation of a quasi-epitaxial
growth of extremely thin hafnium-zirconium oxide films on sili-
con could be an interesting direction.264 For concrete neuromorphic
applications, the rich switching dynamics can be very helpful (see
Fig. 12).265 While in large devices, a continuous switching between
different polarization states is possible, devices scaled in the 10 nm
regime show abrupt and accumulative switching.259 The former can
be used for mimicking synaptic functions, while the latter is helpful
to mimic neurons. In classical non-volatile memories, the depolar-
ization fields created by non-ferroelectric layers or portions of the
layer in series to the ferroelectric are a concern for the retention of
the device. However, when creating short and long-term plasticity in
synaptic devices, this can be turned into an advantage such that the
device retention can be tailored.

D. Spintronic materials for neuromorphic computing

Bernard Dieny and Tuo-Hung (Alex) Hou

1. Status
Spintronics is a merging of magnetism and electronics in which

the spin of electrons is used to reveal new phenomena, which are
implemented in devices with improved performances and/or new
functionalities. Spintronics has already found many applications in
magnetic field sensors, in particular in hard disk drives and, more
recently, as non-volatile memory (MRAM) in replacement of e-
FLASH and last-level cache memory. Spintronics can also bring very
valuable solutions in the field of neuromorphic computing both as
artificial synapses and as neurons.

Artificial synapses are devices supposed to store the potential
weight of the bounds linking two neurons. Various types of spin-
tronic synapses have been proposed and demonstrated.65 They are
magnetoresistive non-volatile memory cells working either as binary
memory, as multilevel memory, or even in an analog fashion. Their
resistance depends on the history of the current that has flown
through the device (memristor). Most of these devices are based on
magnetic tunnel junctions (MTJs), which basically consist of two
magnetic layers separated by a tunnel barrier. One of the magnetic
layers has a fixed magnetization (the reference layer), whereas the
magnetization of the other (the storage layer) can be changed by
either a pulse of magnetic field or current using phenomena such
as spin transfer torque (STT) or spin–orbit torque (SOT).266 The
resistance of the device depends on the amplitude and orientation of
the magnetic moment of the storage layer relative to that of the ref-
erence layer (tunnel magnetoresistance effect—TMR). For a binary
memory as in STT-MRAM or SOT-MRAM, only the parallel and
antiparallel magnetic configurations are used.267 For multilevel or

analog memory, several options are possible as illustrated in Fig. 13.
One consists of varying the proportion of the storage layer area
that is in parallel or antiparallel magnetic alignment with the ref-
erence layer magnetization. This can be achieved by step-by-step
propagation of a domain wall within the storage layer using the STT
produced by successive current pulses [Fig. 13(a)],268 or by gradually
switching the magnetization of the storage layer exchange coupled to
an antiferromagnet using the SOT produced by the pulsed current
flow in the antiferromagnet [Fig. 13(c)],269 or by gradually switching
the grains of a granular storage medium similar to the ones used
in hard disk drives [Fig. 13(d)],270 or by nucleating a controlled
number of magnetic spin nanotextures in the storage layer, such
as skyrmions [Fig. 13(e)].271 Alternatively, the memristor resistance
can also be varied by changing the relative angle between the mag-
netization of the reference and storage layers using all intermediate
angles between 0○ and 180○ instead of only parallel and antiparal-
lel configurations [Fig. 13(b)].103 Chains of binary magnetic tunnel
junctions can also be used to achieve spintronic memristors but at
the expense of a larger footprint.272

Concerning artificial neurons, the conventional CMOS neu-
ron circuit is limited by its large area because a large number of
transistors and a large-area membrane capacitor are required for
implementing Integrate-and-Fire (I&F) functions.273 Recently, sev-
eral spintronic neuron devices have been reported to generate spike
signals by leveraging nonlinear and stochastic magnetic dynamics
without the need for additional capacitors and complex peripheral
circuitry. Spintronic neurons potentially show a great advantage for
compact neuron implementation.274

Assembly of interacting spin-torque nano-oscillators (STNOs)
based on the structure of magnetic tunnel junctions (MTJs) was
proposed to achieve neuron functionality. An unstable conductance
oscillation that mimics spike generation is induced at hundreds
of MHz to several tens of GHz by flowing a current through the
device. The frequency and amplitude of oscillation vary with the
applied current and magnetic field. Torrejon et al. demonstrated
spoken-digit or vowel recognition using such an array of nanoscale
oscillators.275

Superparamagnetic tunnel junctions can also be used to mimic
stochastic neurons. They have much lower thermal stability com-
pared to the MTJ used for memory, so they stochastically switch
between antiparallel (AP) and parallel (P) states due to thermal
fluctuations, which is referred to as telegraphic switching.276 This
switching mode can be used to generate Poisson spike trains in
spiking neural networks (SNNs) as well as for probabilistic com-
puting.277 A MTJ device with high thermal stability, which can
implement not only synapses but also neurons in an all-spin neu-
ral network, was proposed by Wu et al.278 The reduction in the
thermal stability factor is induced by self-heating at a high bias volt-
age for neuron operations.279 At a low bias, it stably stores weight
information as synapses.

Many other new spintronic materials and mechanisms were
also investigated for the feasibility of neuron devices, in partic-
ular based on magnetoelectric effects. For instance, by playing
with magneto-ionic effects influencing the anisotropy at mag-
netic metal/oxide interfaces, the density of skyrmions280 and even
their chirality could be controlled electrically.281 Jaiswal et al.
designed a magnetoelectric neuron device for SNNs.282 Zahedinejad
et al. demonstrated that electrically manipulated spintronic mem-
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FIG. 13. Various realizations of spintronic memristors: (a) based on domain wall propagation in the storage layer; (b) based on variation of angle between storage layer and
reference layer magnetization; (c) based on SOT in ferromagnetic storage layer exchange coupled to an antiferromagnetic SOT line; (d) implementing a storage layer made
of a granular layer similar to the one used in recording technology; and (e) based on a controlled number of skyrmions nucleated in the storage layer.

ristors can be used to control the synchronization of spin Hall
nano-oscillators for neuromorphic computing.283

2. Challenges
Building useful fully functional neuronal circuits requires large-

scale integration of layers of artificial neurons interconnected with
spintronic synapses. Crossbar architectures can achieve cumulate
and multiply functions very efficiently in an analog manner. An
advantage of magnetic tunnel junctions over other technologies
based on materials such as resistive oxides or phase change is their
write endurance associated with the fact that their resistance change
does not involve ionic migration. However, they exhibit a lower
ROFF/RON ratio (∼4 for MRAM vs 10–100 for RRAM or PCM) and
also narrower cell-to-cell distribution of resistance in ROFF and RON
states. In crossbar architectures, MTJs should have high resistance to
minimize power consumption. Therefore, efforts should be pursued
to further increase the TMR amplitude of MgO-based MTJs and
bring it closer to the expected theoretical values of several 1000%.284

In high-resistance MTJs, other approaches, such as SOT or voltage
control of anisotropy (VCMA), could be used to change the MTJ
resistance. In all cases, the control of the resistance change induced
by current or voltage pulses must be improved. The operating tem-
perature has often also a significant impact on magnetic properties,
which imposes challenges on system design.

Concerning artificial neurons, the DC power required to trig-
ger the magnetization dynamics of STNO neurons is still rel-
atively high (mW range).285 Ways must be found to reduce it
by using different materials or new designs. The switching speed

and endurance in superparamagnetic tunnel junctions and self-
heating-assisted MTJ neurons could be further enhanced to improve
processing speed and system reliability.286,287 How to continue
improving variability across millions of synapses and thousands
of neurons to ensure high accuracy in future neuromorphic sys-
tems remains an actively research topic. Interconnecting all these
devices is also a challenge, and innovative approaches beyond classi-
cal interconnects must be found notably by taking advantage of 3D
integration.

3. Potential solutions
STT-MRAM entered volume production in 2019 at major

microelectronic companies.288 This marked the adoption of this
hybrid CMOS/magnetic technology by the microelectronic indus-
try. Thanks to the combined efforts of the chip industry, equipment
suppliers, and academic laboratories, spintronics is progressing very
fast. Materials research is very important to increase magnetore-
sistance amplitude, switching currents, STT and SOT efficiency,
and VCMA efficiency; reduce dependence on operating tempera-
ture; reduce current to trigger oscillations in STNOs; and reduce
disturbance due to parasitic field. Investigations are in progress
involving antiferromagnetic materials for reduced sensitivity to the
field and access to THz frequency operation;289 half-metallic mate-
rials, such as Heusler alloys, for enhanced TMR amplitude and
reduced write current;104 and topological insulators for very effi-
cient spin/charge current interconversion possibly combined with
ferroelectric materials.290

Concerning interconnects, fortunately, magnetic materials are
grown in backend technology and can be stacked but at the expense
of complexity and cost. Long-range information transmission can
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be carried out via spin-current or magnons or by propagating mag-
netic textures, such as domain walls291 or skyrmions.292 Light could
also be used to transmit information in conjunction with recent
developments related to all-optical switching of magnetization.293 In
addition, a great advantage of spintronic stacks is that they can be
grown on almost any kind of substrates, provided that the rough-
ness of the substrate is low enough compared to the thickness of
the layers comprised in the stack. This enables the use of the third
dimension by stacking several spintronic structures, thereby gaining
in interconnectivity.294

4. Concluding remarks
Spintronics can offer valuable solutions for neuromorphic

computing. Considering that STT-MRAM is already in commercial
production, it is very likely that the first generation of spintronic
neuromorphic circuits will integrate this technology. Next, crossbar
arrays implementing analog MTJs may be developed as well as neu-
ronal circuits based on the dynamic properties of interacting STNOs
for learning and inference. Still, many challenges are on the way
toward practical applications, including speed, reliability, scalabil-
ity, and variation tolerance, which need to be addressed in future
research.

E. Optoelectronic and photonic implementations

Akhil Varri, Frank Brückerhoff-Plückelmann, and
Wolfram Pernice

1. Status
Computing using light offers significant advantages in highly

parallel operation exploiting concepts such as wavelength and
time multiplexing. Moreover, optical data transfer enables low
power consumption, better interconnectivity, and ultra-low latency.
Already in the 1980s, first prototypes were developed; however, the
bulky tabletop experiments could not keep pace with the flourishing
CMOS industry. At present, novel fabrication processes and mate-
rials enable the (mass) production of photonic integrated circuits,
allowing photonic systems to compete with their electronic counter-
parts. Especially in the area of data-heavy neuromorphic computing,
the key advantages of photonic computing can be exploited.

Scientific efforts in neuromorphic photonic computing can be
segregated in two major directions: (i) one approach is building
hardware accelerators that excel at specific tasks, e.g., computing
matrix–vector multiplications, by partially mimicking the working
principles of the human brain, and (ii) the other is creating designs
that aim to emulate the functionality of biological neural networks.
Such devices are able to replicate the behavior of a neuron, a synapse,
and learning mechanisms and to ultimately implement a spiking
neural network.

There has been considerable progress in the (i) direction since
2017 when Shen et al.295 demonstrated vowel recognition where
every node of the artificial neural network is physically repre-
sented in the hardware using a cascaded array of interferometers.
This scheme has also been scaled to implement a three-layer deep
neural network with in situ training capability.296 In addition,

Feldmann et al.297 have demonstrated neurosynaptic networks on-
chip and used them to perform image recognition. The photonic
circuit deploys a non-volatile phase change material (PCM) to emu-
late the synapses and exploits the switching dynamics as a nonlinear
activation function. As highlighted in Sec. V B, the integration of
PCMs also leads to in-memory computing functionality owing to
their non-volatile nature.

For the (ii) direction, significant work has been done on a
device level to mimic individual components of the brain. Excitable
lasers combining different material platforms, such as III–V com-
pounds, and graphene have been shown to demonstrate leaky
integrate and fire-type characteristics of a neuron.73 In addition,
neurons based on optoelectronic modulators have been shown in
the literature. For synapses, photonic devices combined with PCMs,
amorphous oxide semiconductors, and 2D materials have been used
to demonstrate synaptic behaviors, such as spike-time-dependent
plasticity and memory.73,298,299 Furthermore, key synaptic functions
have also been demonstrated using optically controlled reversible
tuning in amorphous oxide memristors.300,301 Optical control of
the conductance levels in memristors, such as those described in
Sec. V A, enables low-power switching dynamics important to
neuromorphic computing efforts.

In the following, we break down the challenge of building neu-
romorphic photonic hardware to various subtopics, ranging from
increasing the fabrication tolerance of the photonic circuit to co-
packaging the optics and electronics. Then, we review the current
advances in those areas and provide an outlook on the future
development of neuromorphic photonic hardware.

2. Challenges
A major challenge is combining the various building blocks

shown in Fig. 14. Silicon on insulator is the platform of choice for
building large circuits owing to the matured CMOS process flow and
the high refractive index contrast between the silicon waveguide and
oxide cladding. However, silicon has no second-order nonlinear-
ity as it is centrosymmetric. Furthermore, silicon being an indirect
bandgap material cannot emit light. This strongly limits the options
for implementing nonlinear functions and spiking dynamics crucial
for an all-optical neural network. Therefore, most of the research
on mimicking neurons is focused on novel material platforms that
support gain. A key challenge is integrating those different material
platforms. For example, a circuit may deploy neurons based on III–V
semiconductor heterojunctions and synapses built with PCMs on
silicon. Therefore, compact and fabrication error-tolerant optical
interconnects are crucial for the performance of the whole system.

Apart from packaging various optical components, the electro-
optic interface imposes an additional challenge. Typically, the input
data are provided by digital electrical signals, whereas optical data
processing is analog. This requires analog-to-digital converters
(ADCs) and digital-to-analog converters (DACs) for digital systems
to interface with the chip as shown in Fig. 14. For large circuits, co-
packaging electronics and photonics increases the footprint and cost
significantly. This negatively affects the throughput.

In addition to the above, fabrication imperfections will also
impact the performance of a photonic circuit. Components such
as ring resonators, cavities, and interferometers employed in many
photonic circuits are designed to operate at a certain wavelength.
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FIG. 14. An illustration of an optoelectronic system capable of performing comput-
ing operations. The electro-optic modulator (EOM) encodes the input data from the
memory or a real-time sensor into the light fields. The encoded light fields are then
coupled to a photonic processor that emulates the neurosynaptic behavior. The
results from the processor are passed on to detectors that transform the signals
back into the electronic domain and are finally stored in a memory.

However, due to factors such as etching rate, sidewall angle, and sur-
face roughness, the wavelength of operation many times does not
match with the design. Hence, in many cases, active methods such
as thermo-optic phase shifters are employed to post-fabricate trim
the wavelength. This results in unnecessarily increased electronic
circuitry adversely affecting the scalability of the system.

Finally, a challenge that may be critical in the future is the
electro-optic modulator (EOM) efficiencies that depend on the
material properties and configurations. An important figure of merit
for EOM efficiency is VpiL. This merit shows the voltage that needs
to be applied and the length of the modulator required to obtain a
pi phase shift to the input. A smaller merit figure suggests increased
power efficiency and a compact footprint. As photonic neuromor-
phic circuits are supposed to scale up in the future, the power budget
and space available on-chip will play an essential role in influencing
the designs.

3. Potential solutions
Solutions addressing the challenges mentioned above lie on

multiple fronts. First, we discuss how the scalability can be improved
from a device-level perspective. The compact footprint, power effi-
ciency, and cascadability of the neurons are essential characteris-
tics for improving the scalability. In this regard, modulator-based
neurons can be improved by integrating with materials such as
electro-optic polymers. These materials have an order of magnitude

higher r33 electro-optic coefficient compared to bulk lithium nio-
bate, which has been conventionally the material of choice for mod-
ulators. As a result, electro-optic polymers integrated with silicon
waveguides show very low VpiL among fast modulators.302 In addi-
tion, novel materials, such as epsilon-near-zero (ENZ), which are
promising for optical nonlinearity, can also be explored.303 Never-
theless, for the widespread use of these devices, a better understand-
ing of the material properties and engineering efforts to integrate
them into the existing manufacturing process flow is required.

Particularly, integration techniques, such as micro-transfer
printing, flip-chip bonding, and photonic wire bonding, will play
a key role. To solve the problem of packaging with electronics,
strategies such as monolithic fabrication, where the photonics and
electronics are on the same die, need to be investigated. Foundries
are now offering multi-project wafer runs with these state-of-the-art
packaging techniques.

For improving the scalability of spike-based processing sys-
tems, another class of neurons that is very promising is the vertical
cavity surface emitting lasers (VCSELs). VCSELs can integrate 100
picosecond-long pulses and fire an excitable spike when the sum
crosses a certain threshold, emulating biological neurons. Recently,
it has been shown that the output of one layer of VCSEL neurons
combined with a software-implemented spiking neural network can
perform 4-bit image recognition.304 In order to build the entire sys-
tem on hardware and perform larger experiments, 2D VCSEL arrays
flip-chip bonded on a silicon die can be examined.

Finally, to address the challenge of fabrication imperfections,
passive tuning approaches can be of interest, which need no addi-
tional circuitry and are non-volatile. One direction could be the use
of phase change materials, such as GaS and Sb2S3, to correct for the
variability in photonic circuits.305 These materials are very interest-
ing since their real part of the refractive index can be tuned while
keeping low absorption at telecom wavelengths. Another approach
for post-fabrication passive trimming could be to use an electron
beam or ion beam to change the material properties of the wave-
guide. This method is also scalable as these tools are widely used in
the semiconductor industry.

4. Concluding remarks
Applications such as neuromorphic computing are particu-

larly promising for optics where their unique advantages (i.e., high
throughput, low latency, and high power efficiency) can be utilized.
At present, there have been instances in the literature where different
devices have been proposed to emulate the individual characteris-
tics of a neurosynaptic model. However, there is a lot of scope for
research in materials science to pave the way for more compact,
cascadable, and fabrication-friendly implementations. Furthermore,
large-scale networks are expected to scale in the near future by inte-
grating state-of-the-art packaging techniques that are now available
to research groups and startups.

To summarize, the growth of integrated photonics has led to a
resurgence of optical computing not only as a research direction but
also commercially. It is exciting to see how the field of neuromorphic
photonics will shape as advancements in science and technology
continue to happen.
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F. 2D materials

Mario Lanza, Xixiang Zhang, and Sebastian Pazos

1. Status
Multiple studies have claimed the observation of resistive

switching (RS) in two-dimensional layered materials (2D-LMs),
but very few of them reported excellent performance (i.e., high
endurance and retention plus low switching energy, time, and volt-
age) in a reliable and trustable manner and in a device small
enough to be attractive for high-integration-density applications
(e.g., memory and computation).

The best RS performance observed in 2D-LMs is based on out-
of-plane ionic movements. In such types of devices, the presence
and quality of the RS phenomenon mainly depend on three fac-
tors: the density of native defects, the type of electrode used, and the
volume of the dielectric (thickness and area). In general, 2D-LMs
with excellent crystallographic structure (i.e., without native defects,
such as those produced by mechanical exfoliation) do not exhibit
stable resistive switching. Reference 306 reported that mechanically
exfoliated multilayer MoS2 does not show RS; only after oxidizing
it (i.e., introducing defects), it shows RS based on the migration
of oxygen ions. Along these lines, Ref. 307 showed that mechani-
cally exfoliated multilayer hexagonal boron nitride (h-BN) does not
exhibit RS; instead, the application of voltage produces a violent
dielectric breakdown (DB) followed by material removal. The more
violent DB phenomenon in h-BN compared to MoS2 is related to the
higher energy for intrinsic vacancies formation: >10 eV for boron
vacancies in h-BN vs <3 eV for sulfur vacancies in MoS2. Some
articles claimed RS in mechanically exfoliated 2D-LMs, but very
few cycles and poor performance were demonstrated; those obser-
vations are more typical of unstable DB than stable RS. Reference
308 reported good RS in a crossbar array of Au/h-BN/graphene/h-
BN/Ag cells produced by mechanical exfoliation, but in that study,
the graphene film shows an amorphous structure in the cross-
sectional transmission electron microscope images. Hence, stable
and high-quality RS based on ionic movement has never been
demonstrated in as-prepared mechanically exfoliated 2D-LMs. This
is something expected because ionic-movement-based RS is only
observed in materials with high density of defects (e.g., high-k mate-
rials and sputtered SiO2) but not in materials with low density
of defects (e.g., thermal SiO2), as the higher energy-to-breakdown
forms an irreversible DB event.

On the contrary, 2D-LMs prepared by chemical vapor deposi-
tion (CVD) and liquid phase exfoliation (LPE) have exhibited stable
RS in two-terminal memristors309 and three-terminal (memtransis-
tors) configurations,310 although in the latter, the switching mech-
anism is largely different. In two-terminal devices, RS is enabled
by the migration of ions across the 2D-LM. In transition metal
dichalcogenides (TMDs), the movement of chalcogenide ions can
be enough to leave behind a metallic path (often referred to as
conductive nanofilament or CNF) that produces switching (simi-
lar to oxygen movement in metal-oxides).306 However, in h-BN,
metal penetration from the adjacent electrodes is needed, as this
material contains no metallic atoms.307 In 2D-LMs prepared by

CVD and LPE methods, ionic movement takes place at lower ener-
gies (than in mechanically exfoliated ones) due to the presence of
native defects (mainly lattice distortions and impurities). The best
performance so far has been observed in CVD-grown ∼6 nm-thick
h-BN, as it is the only material with enough insulation and thickness
to keep low the current in the high resistive state.72 This includes
the coexistence of bipolar and threshold regimes (the second one
with highly controllable potentiation and relaxation), bipolar RS
with endurances >5 × 106 cycles (similar to commercial RRAM
memories and phase-change memories),311 and ultra-low switching
energies of ∼8.8 zJ in the threshold regime.312 Moreover, a high yield
(∼98%) and low variability have been demonstrated.312 In 2D-LMs
produced by LPE or other solution-processing methods,313 the junc-
tions between the flakes and their size play a very important role,
and while there is evidence of potentially good endurance, synaptic
behavior, and variability, sub-μm downscaling still has not shown
equivalent performance.314

Apart from ionic movement, 2D-LMs can also exhibit RS
based on ferroelectric effect.250 A remarkable example is In2Se3,
which has electrically switchable out-of-plane and in-plane electric
dipoles. Recent works have demonstrated that RS in ferroelectric
In2Se is ensured by three independent variables (polarization, initial
Schottky barrier, and barrier change) and that it delivers multidi-
rectional switching and photon storage.315 However, the endurance
and retention time are still limited to hundreds of cycles, and sta-
ble ferroelectric RS at the single-layer limit remains unexplored.
Finally, tunable optoelectronic properties and unique electronic
structure attainable through 2D-LM heterostructures present enor-
mous potential for near-/in-sensor computing in neuromorphic
systems. The responsiveness to physical variables (light, humidity,
temperature, pressure, and torsion) of 2D-LM memristor and mem-
transistor devices allows us to mimic biological neurosynaptic cells
(visual cortex and tactile receptors).316

2. Challenges and potential solutions
The main challenge of RS devices (of any type) is to exhibit

high endurance in small devices. Many studies have reported RS
in large devices with sizes >10 μm2 and claimed that their devices
are “promising” for memory and computing applications. This is a
huge and unreasonable exaggeration; these two applications require
high integration density, as commercial devices for those applica-
tions have sizes down to tens or hundreds of nanometers. It should
be noted that in ionic-movement-based RS devices, the CNF always
forms at the weakest location of the sample; when the device size
is reduced, the density and size of defects are (statistically) reduced,
which produces an increase in the forming voltage.317 Hence, the
CNF of smaller devices is wider due to the larger amount of energy
delivered during the forming. This has a huge effect on state resis-
tances, switching voltages, time, and energy, as well as endurance,
retention time, and device-to-device variability. In other words, the
fact that a large device (>10 μm2) exhibits good RS does not mean
that a small device (<1 μm2) made with the same materials will also
exhibit it; hence, RS “promising for memory and computation” is only
the one that is observed in devices with sizes of tens/hundreds of
square nanometers.

Taking this into account, the main challenge in 2D-LM based
devices is to observe RS in small devices, and the most difficult
figure-of-merit to obtain is (by far) the endurance. Reference 318
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demonstrated good RS in 5 × 5 μm2 Au/h-BN/Au devices, in which
h-BN was ∼6 nm-thick and grown by the CVD method; however,
when the size of the devices was reduced to 320 × 420 nm2, the
yield and the number of devices observed were very limited. The
main issue was the current overshoot during the switching, which
takes place randomly and produced irreversible DB in most devices.
Similarly, solution-processed Pt/MoS2/Ti devices319 showed excel-
lent performance across all figures-of-merit observed in 25 μm2

devices, but such performance has not been reported for
500 × 500 nm2 devices patterned via electron beam lithography. In
this case, the large size of the nanoflakes (slightly below 1 μm min-
imum) may be imposing an intrinsic scaling limitation. Meanwhile,
the scaling and overshoot problem was problem was solved in Ref. 72
integrating CVD-grown h-BN right on top (via the wet-transfer
method) of a silicon complementary metal–oxide–semiconductor
(CMOS) transistor, which acted as an instantaneous current lim-
itation. Moreover, this approach brings the advantage of a very
small device size (in Ref. 72, it was only 0.053 μm2, as the bot-
tom electrode of the RS device is from one of the metallization
levels). The heterogeneous integration of the 2D-LMs at the back-
end-of-line (BEOL) wiring of silicon microchips could be a good
way of testing materials for RS applications and directly integrat-
ing selector devices with each memristor (into one transistor–one
memristor (1T1M) cells), which is fundamental for the realization
of large memristive synapse arrays—all state-of-the-art demonstra-
tions of memristive neural accelerators based on mature memristor
devices use 1T1M cells or differential implementations of such cells
(2T2M and 4T4M). So far, these CMOS testing vehicles for RS mate-
rials have mainly been employed by the industry; in the future,
spreading this type of testing vehicles among academics working in
the field of RS could improve the quality of the knowledge gener-
ated. In addition, these devices may benefit from common practices
in the field of silicon microchip manufacturing, such as surface
planarization, plug deposition, and high-quality thick interconnect
techniques.

Next steps in the field of 2D-LMs for RS applications consist
in improving the materials quality to achieve better reproducibil-
ity of the experiments (from one batch to another) and adjust the
thickness and density of defects to achieve better figures-of-merit in
nanosized RS devices while growing 2D-LM at the wafer-scale.320

Recent studies successfully synthesized large-area single-crystal 2D-
LMs via CVD,321 although in most cases, it is only monolayer.
However, monolayer 2D-LMs are less than 1-nm-thick, and when
they are exposed to an out-of-plane electrical field, a very high
leakage current is generated even if no defects are present, which
increases a lot the current in the high-resistance state (HRS) and the
energy consumption of the device. Reference 322 presented the syn-
thesis of single-crystal multilayer h-BN using scalable methods, but
controlling the number of layers is still difficult. Electrical studies in
such types of single-crystal multilayer samples should be conducted.
Improving manipulating methods to prevent the formation of cracks
during transfer is also necessary, although it is worth mentioning
that multilayer h-BN materials are more mechanically stable than
monolayers.

Recent demonstration of vector–matrix multiplication using
MoS2 memtransistors323 is a promising advance in terms of a
higher-level functional demonstration, although the fundamental
phenomenon exploited is the well-known floating gate memory

effect, not unique to 2D-LM themselves. Meanwhile, understand-
ing the role of flake size in the functionality of solution-processed
2D-LM two-terminal synaptic devices is critical to address the true
scaling limitations of such an approach, a key aspect to define poten-
tial realistic applications in neuromorphic systems. On the other
hand, sensing capabilities emerge with great potential for biological
synaptic mimicking. The full potential of different 2D-LM material
heterostructures and memtransistors opens a huge design-space
worth of exploration. In that sense, the complex physical character-
istics offered by different 2D-LMs hold the potential not only for
basic neuromorphic functionality but also for higher-order com-
plexity. This could be exploited to achieve high-complexity neural
and synaptic functions,100 more closely mimicking actual biological
systems. However, in parallel to elucidating the physical proper-
ties and capabilities of these material systems, efforts should be put
into strengthening the quality of the reported results, focusing on
proper characterization methods, reliable practices, and statistical
validation.

3. Concluding remarks
Leading companies, such as TSMC, Samsung, IBM, and Imec,

have started to work with 2D-LMs, but mainly for sensors and tran-
sistors. In the field of 2D-LM based neuromorphic devices, most
work is being carried out by academics. In this regard, unfortu-
nately, many studies make a simple proof-of-concept using a novel
nanomaterial without measuring essential figures-of-merit, such as
endurance, retention, and switching time. What is even worse, in
many cases, the studies employ unsuitable characterization proto-
cols that heavily overestimate the performance (the most popular
case is the erroneous measurement of endurance324), withholding
information regarding the failure mechanisms that lead to certain
performance metrics not being achieved on some devices. This
working style often result in articles with striking numbers (i.e.,
performance), but those are unreliable, and it is really bad for the
field because it creates a hype of expectations and disillusion among
investors and companies. The most important is that the scien-
tists working in this field follow a few considerations: (i) always
aim to show high performance in small (<1 μm2) devices fabricated
using scalable methods (even better if they are integrated on a func-
tional CMOS microchip, not on an unfunctional SiO2 substrate);
(ii) measure all the figures-of-merit of several (>100) memristive
devices for the targeted application (this may vary depending on
the application);214 (iii) clearly define the yield-pass criteria and the
yield achieved, as well as the device-to-device variability observed;
and (iv) whenever a failure mode is observed preventing reach-
ing a desired figure-of-merit, clearly convey it to maximize the
probabilities of finding a solution.

VI. MATERIALS CHALLENGES AND PERSPECTIVES

Stefan Wiefels and Regina Dittmann

A. Materials challenges
For the neuromorphic computing approaches addressed in

Sec. III, the use of emerging memories based on novel materials will
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FIG. 15. Materials challenges for neuromorphic computing. Novel NVMs need to
be scalable, fast, and reliable and allow for analog operation.

be key in order to improve their performance and energy-efficiency.
This chapter discusses the most relevant properties and challenges
for different use cases and how they relate to the respective mate-
rials properties. However, it is important to note that a dedicated
co-development of materials with the readout and write algorithms
and circuitry will be required in order to advance the field (Fig. 15).

1. Scaling
One main driving force to use emerging materials and devices

is to gain space and energy efficiency by the fabrication of highly
dense crossbar arrays. For STT-MRAM, scaling down to 11 nm cells
has been demonstrated, as well as the realization of 2 Mb embed-
ded MRAM in 14 nm FinFET CMOS.325 However, due to the small
resistance ratio of 2–3, the readout of magnetic tunnel junctions
(MTJs) is more complex than for other technologies. Nevertheless, a
64 × 64 MTJ array, integrated into 28 nm CMOS, has recently been
realized.75 Advancements from the material side will be needed in
order to increase the resistance ratio of MTJs in the future.

For ferroelectric HfO2-based devices, the main challenge with
respect to scaling is to decrease the thickness reliably in order to
enable 3D capacitors with 10 nm node and to obtain a uniform
polarization at the nanoscale of a material that currently still con-
tains a mixture of different phases. Therefore, ultrathin films with
the pure ferroelectric orthorhombic phase and without any dead-
layers at the interfaces will be key to approach the sub-20 nm regime
of hafnia-based ferroelectric devices.9

PCM devices can be fabricated on the sub-10 nm scale.326 The
limiting factor for CMOS integrated PCM devices is the high RESET
current, which is required to implement larger access transistors.202

Commercially available ReRAM cells with conventional geometries
have been co-integrated on 28 nm CMOS technology. By employ-
ing a sidewall technique and nanofin Pt electrodes, small arrays with
1 × 3 nm2 HfO2

202 cells and 3 × 3 arrays of Pt/HfO2/TiOx/Pt cells
with a 2 nm feature size and a 6 nm half-pitch have been fabricated,
respectively.327

With respect to ultimate scaling, the loss of oxygen to the envi-
ronment might pose limitations to the retention times for ReRAM
devices scaled in the sub-10 nm regime.328 However, filaments in
the size of 1–2 nm can be stable if they are stabilized by structural
defects, such as grain boundaries or dislocations. Therefore, finding

materials solution for confining oxygen vacancies to the nanoscale
might retain the required retention for devices in the few nm scale.

2. Speed
Although the extensive parallelism leads to high demands for

scaling, it is considered an advantage as it makes the race for ever
increasing clock frequencies obsolete.329 In contrast, the operation
speed is closely linked to the respective application, i.e., the timing
is based on real physical time.329 As signals processed by humans
are typically on a time scale of milliseconds or longer, the expected
speed benchmark is well below the reported speed limits of emerg-
ing NVMs. Nevertheless, it is reasonable to understand the ultimate
speed limits of NVM concepts in order to estimate maximum learn-
ing rates, to explore the impact of short spiking stimulation. Further-
more, novel computing concepts, as discussed in Sec. VII, might still
benefit from higher clock frequencies. For MRAM, reliable 250 ps
switching has been demonstrated by using double spin-torque MTJs,
which consist of two reference layers, a tunnel barrier, and a non-
magnetic spacer.330 FeRAM arrays have successfully been switched
with 14 ns at 2.5 V. Ferroelectric field effect transistors (FeFETs)
have been shown to switch with <50 ns pulses in 1 Mbit memory
arrays.9 PCM devices can be switched with pulses <10 ns.326 In gen-
eral, their speed is limited by the crystallization time of the material.
It has been shown exemplarily on GexSnyTe samples that this time
can be tuned in a broad range of 25 ns up to 10 ms by adjusting the
material composition.331 Thus, it has a high potential to match the
operation time of an NC system to the respective application. For
VCM ReRAM, SET and RESET switching with 50 and 400 ps have
been demonstrated.332 Both are so far limited by extrinsic effects and
device failure modes rather than by intrinsic physical rate limiting
steps.

3. Reliability
Independent of the application, the reliability of the memory

technology has to be taken into account. In the case of implement-
ing NVMs as artificial synapses, the requirements of learning and
inference phases have to be distinguished. Whereas the endurance is
more relevant for learning schemes, the stability of the programmed
state, i.e., the retention and robustness against read disturb, has to be
sufficient for reliable inference operations.

4. Endurance
While MRAM has, in principle, unlimited endurance, all mem-

ristive devices that are based on the motion or displacement of
atoms, such as ReRAM, PCM, and ferroelectric systems, have limited
endurance. For silicon-based FeFETs, the endurance is typically on
the order of 105, which is mainly limited by a dielectric breakdown in
the SiO2 at the Si–HfO2 interface.9 Regarding the endurance of VCM
ReRAM, it has been demonstrated with convincing statistics that
> 106 cycles are realistic. Some reports suggest maximum cycle num-
bers of more than 1010.324 Depending on the material system, various
failure mechanisms for endurance are discussed. The microstructure
of the switching material might degrade or be irreversibly pene-
trated by metallic atoms.9 In VCM ReRAM, an excessive generation
of oxygen vacancies was discussed as an endurance limiting fac-
tor.333 Novel material solutions, which confine ions to the intended
radius of action, might be a pathway to increase the endurance of

APL Mater. 12, 109201 (2024); doi: 10.1063/5.0179424 12, 109201-30

© Author(s) 2024

 22 O
ctober 2024 11:00:59

https://pubs.aip.org/aip/apm


APL Materials ROADMAP pubs.aip.org/aip/apm

ReRAM devices. For PCM, it was suggested to implement multi-
PCM synapses. Arbitration over multiple memory elements might
circumvent endurance and variability issues.9

A typical limitation with respect to a reliable operation of fer-
roelectric memories is the so-called wake-up effect, which causes an
increasing polarization after a few cycles and the fatigue resulting
in a decrease in the polarization for high cycle numbers. Both are
induced by the motion of defects such as oxygen vacancies and will
have to be tackled in the future by intense materials research in this
field.

5. Retention
After training, the state of the non-volatile memory synapse is

required to be stable for 10 years at an operating temperature of
85 ○C. However, for many applications in the field of neuromorphic
applications, the requirement is much more relaxed in particular
for the training phase. From a thermodynamical point of view, the
states in ferroelectric or ferromagnetic memories might both be sta-
ble. In contrast, ReRAM and PCM devices store information in
the configuration of atoms where both low-resistance state (LRS)
and HRS are metastable states and the retention is determined by
material parameters, such as the diffusion coefficient of the respec-
tive species.9 Here, the degradation is not a digital flipping of states
but a gradual process. For PCM, the drift of the resistance state is
caused by the structural relaxation of the melt-quenched amorphous
phase.202 Apart from a drifting of the state, a broadening of the pro-
grammed state distribution (e.g., resistance) is typically observed for
ReRAM.334 Furthermore, since analog or multi-level programming
is highly relevant for NC, it should be considered that intermedi-
ate resistance states might have a reduced retention compared to the
edge cases of high and low resistive states as demonstrated for PCM
devices.9

6. Read disturb
During inference, frequent reading of the memory elements is

required, which should not change the learned state. For a bipo-
lar ReRAM memory, a read disturb in the HRS/LRS occurs mainly
when reading with a SET/RESET polarity since the read-disturb can
be considered as an extrapolation of the SET/RESET kinetics to
lower voltages. Nevertheless, the HRS state in bipolar filamentary
VCM has been demonstrated by extrapolation to be stable for years
at read voltages up to 350 mV.335

7. Variability
Variability is most pronounced for systems that rely on the

stochastic motion and redistribution of atoms, such as ReRAM and
PCM. Here, the variability from device to device (D2D), from cycle
to cycle (C2C), and even from one read to the next (R2R) has
to be distinguished. By optimizing fabrication processes, the D2D
variability can be kept comparatively low. In contrast, the C2C vari-
ability for filamentary resistive ReRAM and PCM can be significant
due to the randomness of filament335 or crystal202 growth, respec-
tively. However, using smart programming algorithms, the C2C
variability can be very well reduced to a minimum.335 By contrast,
R2R variations remain in the form of read noise in filamentary VCM.
It is typically attributed to the activation and deactivation of traps or
the random redistribution of defects335 and strongly depends on the
material.336 For PCM, R2R variations are caused by 1/f noise and

temperature induced resistance variations. One approach to address
these issues as well as the drift is to use the so-called projected phase
change memory with a non-insulating projection segment in parallel
to the PCM segment.

Although the variability is a challenge for storage applica-
tions, it might be possible to design neuromorphic systems to
exploit it.329 In the end, a thorough understanding of the intrinsic
variability might enable to match neuromorphic applications and
materials.336

8. Analog operation
For most computing concepts described in Sec. III, their oper-

ation with binary memory devices is strongly limited and the
possibility to adjust multiple states is of crucial importance. For
devices with thermodynamically stable states, such as ferroelec-
tric or magnetic memory, intermediate states rely on the presence
of domains. As a result, the performance strongly depends on
the specific domain structure and scaling might be limited by the
size of the domains. Nevertheless, multilevel switching has been
demonstrated by fine-tuning of programming voltages for both FTJ
and FeRAM.337

For ReRAM and PCM, the metastable intermediate states have
to be programmed in a reliable manner. Since these states are kineti-
cally stabilized during programming, the success depends strongly
on the switching kinetics of the specific system, the operation
regime, and the intrinsic R2R variability of the material. For PCM
devices, intermediate states can be addressed by partial reset pulses,
which result in partial amorphization. As a result of the crystalliza-
tion kinetics, a gradual crystallization can be obtained by consecutive
pulses.

Filamentary ReRAM devices usually undergo an abrupt SET,
which is caused by the self-accelerating, thermally driven filament
formation. However, it is possible to obtain intermediate states
with good control of the SET current, by precisely controlling
the timing of the SET voltage pulses, or by slowing down the
switching kinetics. This is the case for non-filamentary systems,
which show a very pronounced gradual behavior for both SET and
RESET.327

Furthermore, resistive switching devices with purely elec-
tronic switching mechanisms, such as trapping and de-trapping
of electrons at defect states, might be promising for analog
operation.338

B. Characterization techniques

Adnan Mehonic, Wing H. Ng, Mark Buckwell, Horatio
R. J. Cox, Daniel J. Mannion, and Anthony J. Kenyon

1. Status
Memristive devices pose challenges to the experimentalist both

in investigating the physics underpinning the device behavior and
in optimizing functionality. The wide range of physical phenom-
ena involved in memristance—from metal diffusion in dielectrics
to Mott metal–insulator transitions, phase changes, and the forma-
tion of oxygen vacancy filaments—requires comprehensive physical,
electrical, and chemical characterization and even the development

APL Mater. 12, 109201 (2024); doi: 10.1063/5.0179424 12, 109201-31

© Author(s) 2024

 22 O
ctober 2024 11:00:59

https://pubs.aip.org/aip/apm


APL Materials ROADMAP pubs.aip.org/aip/apm

of novel analytical techniques.339 Here, rather than an exhaustive lit-
erature survey, we provide examples to illustrate the recent progress
in characterization of memristive materials and devices. While we
concentrate on oxide-based RRAM materials and devices for rea-
sons of space, most techniques reviewed here are applicable to other
memristor types (PCM, MRAM, and FeRAM), which require sim-
ilar characterization of structural, chemical, and electrical changes
occurring in devices as a result of operation. The challenges pre-
sented to the experimentalist, particularly when it comes to struc-
tural and chemical analyses, are largely similar across all memristive
devices.

2. Challenges and potential solutions
Looking first at resistance switching materials and devices, we

see that early work from the 1960s on dielectric breakdown sug-
gested the formation of conductive filaments in electrically biased
oxide340 and, while experimental techniques at the time were unable
to image them, the authors correctly surmised their existence. The
small sizes of these filaments, which can be of the order of a few
nanometers in diameter, make studying their formation and disrup-
tion difficult. This is particularly true for oxygen vacancy filaments
in oxides; the minimal contrast between the oxide matrix and the
oxygen-deficient filament when imaged using electron beam tech-
niques, such as TEM-EELS, means that there are few direct observa-
tions of such filaments. This contrasts with several published TEM
studies of metal filaments in oxides, including the seminal work by
Yang et al.,341 which demonstrated field-driven movement of silver
ions through SiO2, Al2O3, and amorphous silicon to form dendritic
conductive filaments. The large contrast between metal ions and
oxide matrix makes it a more tractable problem to image individual
conductive filaments. Subsequent work demonstrated different fila-
ment growth modes that depend on the relative magnitudes of metal
ion mobility and the applied field.342 The work by Waser et al.343

details earlier TEM work on electrical and physical characteriza-
tion of resistive switching dielectrics, including observations dating
from as early as 1976 of silver dendrites formed in AgS under the
application of an external field. Here again, the contrast between the
silver filaments and the surrounding matrix provides a significant
advantage. It is worth noting that the use of TEM measurements
to characterize phase change memory (PCM) materials and devices
is rather easier than in the case of oxide-based RRAM as the con-
trast between amorphous and crystalline phases of PCM materials
is easier to detect, although in situ and in operando measurements
can pose significant challenges, thanks to the fast switching speeds
of PCM devices.344

The difficulty of imaging oxygen vacancy filaments using elec-
tron beam techniques can be overcome using conductive atomic
force microscopy (CAFM) tomography (“scalpel AFM”), a review of
which can be found in Ref. 345. In this technique, sequential CAFM
scans of a sample surface imaged using a conductive diamond tip
contacting the sample with sufficient force to scrape away the sur-
face provide layer-by-layer conductivity maps that, when stacked,
provide three-dimensional images of conductive regions within the
oxide. Such studies reveal that electroforming generates large-scale
changes beneath device top electrodes, modifying the conductivity
of large volumes of material, while one or more highly localized
conductive filaments bridge the inter-electrode gap. The technique

also reveals details of the internal microstructure of the oxide, show-
ing, for example, the columnar structure of sputter-deposited oxides,
as the edges of columns are more conductive than their cores.346 It
should be noted that this technique only maps conductive regions
that are connected to the bottom electrode, so they may be better
thought of as a measure of connectivity rather than of regions of high
conductivity.

The need to apply multiple analysis techniques to probe the
movement of oxygen within, and emission of oxygen from, oxides
under electrical stress was demonstrated by Mehonic et al.347 TEM,
EELS, CAFM, XPS, and mass spectrometry measurements of oxy-
gen emission from samples under electrical stress combine with
atomistic modeling to give a fuller picture of the dynamics of oxy-
gen movement and its role in resistance switching. It is clear from
such measurements that electrically biasing oxides—particularly
those with some structural inhomogeneities—can drive large-scale
changes in stoichiometry, reinforcing the CAFM tomography results
referred to above. It has been known for some time that this can
cause surface distortions and localized bubbling of both electrode
and oxide surfaces.340,348 While the work reported in Ref. 347 exam-
ines such features using AFM and TEM, the question of how mobile
oxygen interacts with electrode materials is partly addressed in a
recent work by Cox et al.349 Oxide-based RRAM devices rely on the
repeated reduction and oxidation of the switching oxide. To com-
pete with high density flash, at least 104 cycles are required, and for
many applications, more than 107 are needed. For such high num-
bers of cycles, oxygen should not be lost from the switching region
around the conductive filament, implying the need for an oxygen
reservoir that can both accommodate and release oxygen under
appropriate electrical biases. This may be within the oxide, at an
oxide/electrode interface, or within one or the other electrode. The
need to measure oxygen movement is critical. Cox et al.349 demon-
strated that both the electrode material and the microstructure of the
oxide layer influence the reversibility of oxygen movement. In the
case of electrode metals with high oxygen affinities, oxygen moves
easily from the oxide into the electrode, but its movement back
again varies significantly between metals. Molybdenum, for exam-
ple, both accepts and releases oxygen readily when the bias polarity
is reversed, while titanium is easily oxidized when positively biased
(and when neutral) but does not release oxygen back again when
negatively biased. Platinum, having a very low electron affinity, does
not accept or release oxygen.

Oxide porosity and sensitivity to moisture are important factors
in resistance switching both by metal diffusion (extrinsic switch-
ing) and oxygen vacancy formation (intrinsic switching).350 The
presence of moisture in the switching oxide can lead to a highly
variable resistance switching behavior. While the origin of such
effects remains somewhat unclear, electrical measurements must be
interpreted with care in the presence of moisture. The difficulty
in measuring hydrogen content in materials and devices reliably
and quantitatively is a particular challenge, not only for RRAM
but also for other memristive devices. Hydrogen, even in relatively
low concentrations, can affect the electrical properties of oxides
and electrode stacks, as has been recognized for decades in the
CMOS community. However, there have been very few studies on
the role of hydrogen in memristive devices. At the same time, there
is considerable interest in reducing variability and increasing sta-
bility in memristors. One cannot help but suppose that detailed
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studies of hydrogen, and control of its presence, could help these
efforts.

Electrical characterization of memristive devices poses other
challenges. A critical issue in RRAM is electroforming conductive
filaments. While some materials and devices are forming-free, the
majority require an initial conditioning step in which a voltage
higher than the normal programming (SET or RESET) voltages is
applied to form a conductive filament that will subsequently be
partially oxidized (RESET) and reduced (SET) by a sequence of
voltage sweeps or pulses. Electroforming causes an abrupt drop in
oxide resistance, which can span several orders of magnitude, over a
timescale of nanoseconds or shorter. Without an appropriate limit
on delivered current, this can destroy the device by irreversible
oxide breakdown due to Joule heating. It is, therefore, essential to
implement fast current limiting during electroforming. Response
times of standard characterization instruments are generally too
long, so current overshoots can over-stress the oxide, leading to
breakdown or to conductive filaments too large (hence, too strong)
to reset. Consequently, full electrical characterization of devices
requires integrated current limiting devices, such as transistors or
series resistors. Care must be taken to avoid parasitic capacitances
or inductances, so the most reliable methods involve on-chip series
resistors or transistors in the 1R1R or 1T1R configurations, where
the first R or T label refers to the integrated current limiter (resis-
tor or transistor) and the second R refers to the resistance switching
element.

On the other hand, electrical characterization of RRAM devices
can reveal important clues to the physical mechanisms respon-
sible for resistance switching. Careful analysis of current/voltage
curves can indicate a range of electron transport mechanisms,
including various forms of tunneling (direct, trap-assisted, and
Fowler–Nordheim), thermally assisted transport (Poole–Frenkel),
and Ohmic conduction. These, in turn, provide evidence for micro-
scopic processes, such as charge trapping/detrapping, formation
of Schottky barriers, or various interface-related electronic states.
However, more than one transport mechanism may contribute as,
for example, currents may flow in parallel both through a conductive
filament and through a highly defective surrounding oxide.351 In the
case of nanoscale filament formation, the thinnest point of the fila-
ment can behave as a quantum constriction, allowing only currents
that are multiples of the conductance quantum, G0, to flow. Such
effects can be seen easily at room temperature.351 Reviews of electri-
cal characterization techniques for resistance switching devices can
be found in Refs. 324 and 352.

3. Concluding remarks
The inherently interdisciplinary approach that is needed to

fully characterize memristive devices poses challenges to the experi-
mentalist. A wide range of techniques are required, which is often
beyond the capabilities of a single laboratory, and in some cases,
these techniques are operating close to their limits. While there
have been significant advances in characterization (CAFM tomog-
raphy, for example), more work is needed, for instance, to better
characterize the role of hydrogen in resistance switching. Where
characterization has been most successful has been when there is
close collaboration, not only between experts in different experi-
mental techniques but also with theorists who provide models to
interpret experimental results.

C. Comparison between different material systems

Yuchao Yang and Yingming Lu

1. Status
Various types of memristors can be realized based on the abun-

dant resistive switching mechanisms in different materials. Each
type of memristor has certain characteristics (such as power con-
sumption and switching speed) that are suited for specific applica-
tions, while different materials also have their own shortcomings
and limitations. A clear understanding of the respective advantages
and shortcomings of each material is key to its development and
application.

Among various types of resistive switching materials, transition
metal oxides (TMOs) are the most widely used due to their rich resis-
tive switching mechanisms and characteristics. The retention time of
TMO-based memristive devices, which indicates how long the resis-
tive state can be maintained after electrical stimulation, is distributed
in a wide range from μs to years. According to the retention time,
TMOs can be generally divided into non-volatile TMOs and Mott
TMOs.

The resistive switching of non-volatile TMOs, such as HfOx
and TaOx, originates from the migration and redox reactions of oxy-
gen ions or vacancies driven by an external electric field or thermal
effects, which in turn create or destroy conductive filaments between
the electrodes. The filaments can exist stably for a long time, and
the continuous electrical modulation of geometric characteristics of
the filaments, such as their lengths or diameters, results in multi-
level resistive states. Therefore, the non-volatile TMO can be used to
imitate the long-term plasticity (LTP) of biological synapses169 and
can accelerate the computationally intensive matrix–vector multi-
plication (MVM) in artificial neural networks. Furthermore, due to
the mature and CMOS-compatible manufacturing process, a vari-
ety of in-memory computing chips based on non-volatile TMOs
have been demonstrated.56 One of the challenges of non-volatile
TMO in circuit applications is the existence of the forming pro-
cess, which requires a high voltage to initialize the TMO layer
and subsequently increases the requirements for the voltage and
robustness of peripheral circuits. In addition, due to the switching
mechanism of non-volatile TMOs, the conductance change during
the programming process usually shows nonlinear characteristics,
along with obvious variations and noises, which increases the dif-
ficulty of programming, for example by necessitating closed-loop
write-and-verify programming.

There are many other similar TMO systems, such as WOx
and TiOx. Depending on the robustness of the formed filaments,
the retention time can be gradually reduced as a result of filament
dissolution, and the conductance of volatile TMOs can undergo a
continuous decay process. This can effectively map information in
time series into high-dimensional vectors, which is widely used in
reservoir184 for image classification or time series prediction.

Mott TMOs, mainly including VO2 and NbO2, show high resis-
tance in body-centered tetragonal (BCT) or monoclinic (M) phases
at low temperatures. Once the temperature of Mott TMOs exceeds
a threshold, the reversible Mott transition occurs and results in
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structural transition into the rutile (R) phase, accompanied by a sig-
nificant resistance drop. Based on threshold switching, Mott TMOs
are widely used in artificial neurons for constructing neuromor-
phic computing or sensory systems.353 Meanwhile, the nonlinear
transport mechanism of NbO2 shows high-order complexity dur-
ing current sweeps, which can effectively realize the rich dynamics of
biological neural systems.7 However, as the Mott transition is closely
related to temperature, the operation of Mott TMOs can be affected
by ambient temperature. On the other hand, this could serve as
the physical foundation for temperature sensing. Furthermore, the
metallic domains produced by previous switching events have been
found to remain in VO2 for a long time, which will affect the switch-
ing threshold voltage of the devices354 subsequently. The transition
temperatures of VO2 and NbO2 are around 70 and 800 ○C, respec-
tively, which are too low and too high from the perspective of circuit
applications. A Mott TMO with ideal transition temperature is yet
to be developed.

Phase change materials mainly refer to chalcogenide glass
materials with reversible phase transition processes. Phase change
materials show high resistance in the amorphous state and relatively
low resistance in the crystalline state. The phase change memory
(PCM) constructed by these materials shows multilevel non-volatile
conductance states, and hence, PCM can also be exploited to accel-
erate MVM combined with a crossbar.355 Traditional phase change
materials are the ternary GeSbTe compounds along the pseudo-
binary tie lines of GeTe–Sb2Te3, Ge–Sb2Te3, and GeTe–Sb.356 By
adjusting the proportions of the three elements in the compound
or by incorporating other elements into the compound, these phase
change materials can exhibit advantages in various aspects, such as
ON/OFF ratio, switching speed, and retention. Among these materi-
als, Ge2Sb2Te5, with its outstanding recyclability, is currently widely
used and has been applied in commercial products. In addition
to compound-type phase change materials, monatomic Sb exhibits
completely different resistances in the crystalline and amorphous
states, making it also suitable as a phase change material.357 This type
of simplest material can effectively avoid the problem of stoichiom-
etry deviation during the phase change process, which is important
for further reducing the size of PCM devices. One of the chal-
lenges faced by PCM comes from its conductance drift, caused by
the spontaneous structural relaxation in unstable amorphous mate-
rials, which leads to a gradual conductance decay over time and
seriously affects computing accuracy and reliability. Therefore, a
compensation circuit or strategy for conductance drift is desired.
Another challenge originates from the long heating time required
for the crystallization of PCM, which not only affects the program-
ming speed358 but also results in higher energy consumption during
programming.

In addition, magnetic material-based magnetic random access
memory (MRAM) is also widely used in neuromorphic computing,
which has relatively mature technology, high endurance, etc. The
typical structure of MRAM is a magnetic tunnel junction (MTJ),
which is composed of two layers (pinned and free) of a magnetic
material and an insulator (usually MgO) sandwiched in between.
There are two types of magnetic materials mainly used in MTJs.359

The first one is the multilayers formed by transition metals (e.g.,
Co and Fe) and noble metals (e.g., Pt and Pd), such as (Co/Pd)n
and (Co/Pt)n. These materials have advantages in terms of ther-
mal stability and scalability. Another important magnetic material

is CoFeB, which shows extremely low programming currents and
good matching with the lattice of the MgO barrier layer. By tuning
the magnetization orientations of the free magnetic layer to parallel
(P) or antiparallel (AP) orientation with the pinned layer, MTJs can
exhibit low or high resistance, respectively. Because only the mag-
netization orientation of the material is changed without large-scale
atomic migration or rearrangement, MRAM has low device varia-
tion and high reliability. However, the main shortcoming of MRAM
is reflected in its relatively low resistance even in the high resistance
state,75 which will increase the power consumption for MVM com-
puting. Moreover, it has a small ON/OFF ratio, which supports only
two states, indicated P and AP, and limits its applications in analog
computing.

Similar to MTJs, ferroelectric tunneling junctions (FTJs) also
change their resistance by adjusting the polarization orientations
of the ferroelectric material sandwiched between two metal elec-
trodes. The commonly used ferroelectric material systems include
perovskite oxides, fluorite ferroelectric materials, and wurtzite fer-
roelectric materials. Perovskite oxides are the most widely used
ferroelectric materials with advantages of scalability and switch-
ing speed.360 Among these materials, Pb[ZrxTi1−xO3] (PZT) and
Sr2Bi2TaO9 (SBT) have more mature technology and have been
applied in commercial memory devices. The fluorite ferroelectric
materials, such as HfZrO2, are also widely utilized and studied due
to their CMOS-compatible fabrication process and good scalabil-
ity.361 The wurtzite materials, such as Al1−xScxN, belong to a new
type of ferroelectric material system, characterized by their high
ON/OFF ratio, thermal stability, and retention.362 Since the polariza-
tion orientations of the ferroelectric layer can be tuned by the electric
field with a very low tunneling current, the programming of FTJs
consumes low power. Meanwhile, the FTJ shows multilevel conduc-
tance363 for MVM acceleration in the edge AI platforms. However,
ferroelectric materials can have retention degradation caused by
intrinsic depolarization fields in the ferroelectric layer, while recent
Hafnium Zirconium Oxide (HZO) based ferroelectric materials
exhibit relatively high coercive voltages and low endurance.

Ion-gated transistors (IGTs) are a type of three-terminal device,
where the electric field from the gate drives small ions (such as H+

and Li+) in electrolytes into the device channels to continuously tune
the conductance of the channel.364 Among the reported material sys-
tems for IGTs, the most chosen material for channel is TMOs, which
shows the potential for mass production and environmental stabil-
ity. For the material consideration of electrolyte, the phosphosilicate
glass shows clear advantages over previously used Li-ions elec-
trolyte, which is more mature and compatible in the COMS process
platform. Owing to the low gate leakage current and separated pro-
gramming and reading terminals, the IGT shows significantly lower
power consumption during programming compared with most two-
terminal devices. Furthermore, the weight modulation of IGTs can
be much more linear, which can greatly reduce the overhead for
weight programming compared with devices based on other mate-
rials. However, the IGT devices shown to date usually have lower
compatibility with standard fabrication processes and have difficulty
in the fabrication of large-scale arrays.

2. Conclusion
In conclusion, memristors based on resistive switching mate-

rials with different mechanisms have demonstrated a variety of
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encouraging characteristics, such as low power consumption, high
scaling potential, fast switching speed, long retention, multilevel
conductance, and high-order complexity. The MVM engines, arti-
ficial neurons, artificial synapses, and sensory systems constructed
using memristive devices have shown great potential in highly effi-
cient and functional neuromorphic computing. However, depend-
ing on the specific resistive switching mechanism, technological
maturity, and manufacturing cost, there are still technical chal-
lenges related to the above material systems. It is important to
compensate and correct the adverse effects existing in the appli-
cation of the materials through the improvement from materials,
systems, and even algorithms, such as reducing the impact of con-
ductance drift and programming noise on the accuracy of PCM
based convolutional neural networks (CNNs) by improving the
training algorithms.175 On the other hand, we can also design sys-
tems and algorithms to exploit the non-ideal effects in various
memristors as resources for improving computational efficiency,
such as utilizing the variations and noise in memristor arrays
for accelerating the convergence of Hopfield neural networks.200

Once the physical attributes of the memristive devices are prop-
erly utilized, they can play important roles in efficient neuromorphic
computing.

VII. NOVEL COMPUTING CONCEPTS
A. Embracing variability

Damien Querlioz, Louis Hutin, and Elisa Vianello

1. Status
Emerging nanoelectronic components, such as memristors

and spintronic devices, offer exceptional features. However, these
devices also exhibit a high degree of variability in their behavior due
to their atomic-level features and reliance on sophisticated, some-
times incompletely understood, physics. This variability has made
it necessary to model these devices using statistical tools, effectively
treating them as random variables. Interestingly, multiple applica-
tions, particularly in machine learning and security, require random
variables, which are expensive to generate using the traditional
CMOS technology. Therefore, exploiting the inherent variability of
these nanodevices presents a unique opportunity to develop efficient
random number generators and stochastic computing models (see
Fig. 16).

FIG. 16. Illustration of some leading approaches exploiting the variability of nanodevices for computing. Top: measurements of the programming variability of hafnium-oxide
filamentary memristors. The statistical rule that this variability naturally implements can be used to perform Markov chain Monte Carlo training. Bottom: measurement of
stochastic magnetic tunnel junctions, naturally implementing p-bits, used, for example, in Ising machines. Both devices can also be used for random number generation.
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The first idea stems from utilizing the cycle-to-cycle read
or programming variability to create random number generators
(RNGs) that consume less power than traditional pseudo-random or
truly random number generators. By harnessing the inherent vari-
ability in these devices, we can develop RNGs that are not only
more energy-efficient but also offer improved security and robust-
ness for various applications. Experimental realizations using fila-
mentary memristors,90 phase change memories,365 and spintronic
devices366,367 have validated this concept. An interesting application
is stochastic computing, an alternative approximate low area/low
energy computing scheme that has been held back by the lack
of compact RNGs: It requires large amounts of RNGs, which in
conventional implementations dominate the area of circuits.368,369

Stochastic computing can, therefore, strongly benefit from such
stochastic nanodevices.370,371

The second idea involves making these RNGs adjustable, i.e.,
the probability for an output to be one can be controlled by an
input signal, effectively creating probabilistic bits or “p-bits.”372 Such
structures are analogous to stochastic binary neurons,373,374 and they
have been used in adaptive inference models designed for optimiza-
tion problems, wherein a set of variables evolves through local and
more-or-less random transformations toward configurations that
are increasingly probable as they minimize energy.277,372 A par-
ticularly exciting opportunity is their use within Ising machines,
which have shown potential for solving highly complex tasks using
reduced resources.375 Some of the most promising p-bit imple-
mentations use spintronics, as low-energy barrier magnetic tunnel
junctions provide a p-bit functionality almost intrinsically.277,372,373

Some recent studies376,377 have used a limited number of stochastic
devices as fast high-quality randomness sources for larger FPGA-
based circuits, while stressing that the projected benefits of utilizing
nanodevices at a larger scale intrinsically harnessing randomness
from the thermal bath remain significant and appealing. Memris-
tors with high random telegraph noise378 could also be used in that
direction.

The third idea underscores the striking parallels between the
behavior of nanodevices and the principles of Markov Chain Monte
Carlo (MCMC) algorithms, a class of stochastic optimization tech-
niques. This correspondence is particularly evident in the case of
the Metropolis–Hastings MCMC algorithm. In this context, it is
required to generate and store multiple random values for a single
parameter, a process that can be naturally implemented using the
inherent variability of nanodevices. For instance, the programming
current can be employed to determine the mean value, while the
imperfections of the devices provide the necessary randomness. This
family of algorithms has been extensively used for sampling synap-
tic weight distributions in training Bayesian models, which excel
at modeling uncertainty in complex situations. The most impor-
tant experimental demonstration, using filamentary memristors, is
presented in Ref. 197.

While MCMC algorithms serve as a compelling illustration,
they are by no means the only example of stochastic computing
methods that can benefit from the unique properties of nanodevices.
Indeed, a diverse and rapidly evolving field of research is currently
exploring the potential of other stochastic computing techniques for
a wide range of applications, from neural networks to combina-
torial optimization problems. As our understanding of nanodevice

behavior continues to deepen, the opportunities to leverage their
inherent variability in novel and transformative ways promise to fuel
further innovation in stochastic computing and beyond.

2. Challenges
The primary challenge in exploiting the imperfection of nan-

odevices lies in the imperfect nature of the imperfections themselves.
To harness the inherent variability of these devices for practical
applications, it is necessary to achieve a certain level of “controlled”
imperfection, which refers to maintaining the desired degree of
variability without compromising the reliability and stability of the
devices.

The details of memristor or superparamagnetic tunnel junction
imperfections are subject to variability. This variability stems from
various factors, such as manufacturing variations, environmental
conditions, and the complex interplay of atomic-level features and
underlying physics. In the case of superparamagnetic tunnel junc-
tions, additional variability in time can occur due to their sensitivity
to magnetic field, which is higher than in stable magnetic tunnel
junctions. Magnetic shielding can be required to suppress this sen-
sitivity.367 Overall, modeling the imperfections of these nanodevices
accurately becomes a challenging task, as capturing these variations
in a consistent manner is difficult.

This challenge is further exacerbated by the fact that different
types of imperfections have different impacts on the performance
and usability of the devices. Therefore, identifying and understand-
ing the specific imperfections that can be harnessed for the devel-
opment of efficient RNGs and stochastic computing models is of
utmost importance.

3. Potential solutions
To address the challenges associated with exploiting the imper-

fections in nanodevices, it is essential to acknowledge that not all
imperfections are equally exploitable. For instance, cycle-to-cycle
(C2C) variability and device-to-device (D2D) variability differ in
terms of their usability and intrinsic nature. C2C variability arises
from the inherent variability in the behavior of a single device across
different operational cycles, making it more directly applicable and
intrinsic to the device. On the other hand, D2D variability occurs
due to variations in the performance of different devices, which may
be influenced by manufacturing inconsistencies or other external
factors.

C2C variability in nanodevices can manifest in two distinct
forms: the variability resulting from two consecutive read operations
on a device and the variability arising from two programming oper-
ations on the device. Distinguishing between these two effects can be
challenging, particularly because both types of variability are highly
dependent on the read and programming conditions of the devices.
These two forms of C2C variability offer unique advantages from an
algorithmic perspective, but they are utilized differently in various
applications. For instance, read variability is especially well-suited
for RNGs or probabilistic bits,277,367 while programming variability
is specifically tailored for MCMC algorithms.197

Even if C2C variability is, in general, more appealing than D2D
variability from an algorithmic perspective, D2D variability also has
applications: It enables generation of distinct and irreproducible
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signatures for each device. Physically unclonable functions (PUFs)
are cryptographic primitives that derive their security from the
unique and unpredictable physical characteristics of individual
devices and are therefore an excellent example of harnessing D2D
variability for practical applications.379

Understanding the specific physics underlying different nan-
odevices can greatly impact their suitability for exploiting imper-
fections. For example, in hafnium-oxide memristors, only the low-
resistance state (LRS) can be readily exploited for our proposed
applications, as this state exhibits a much-more controlled degree
of variability compared to the high-resistance state (HRS).197 Spin-
tronic devices also show promising potential in this regard, as they
rely on physical phenomena that inherently exhibit a degree of
randomness, which can be understood and modeled.277,367,373,374,380

For example, the switching time of a magnetic tunnel junction is
directly connected to the initial angle of the free layers’ magne-
tization, a random quantity, which can be well-modeled381 and,
to some extent, controlled. When using low-barrier MTJs as arti-
ficial spins in Ising machines, D2D variability may cause an
unwanted spread in threshold values or even effective pseudo-
temperature across the network. It was shown that these non-
ideal and non-uniform activations could be compensated to some
degree by relearning the synaptic weights following the initial
mapping.382

Another core idea for dealing with nanodevice imperfections
can be to utilize multiple devices instead of relying on a single one.
By employing an ensemble of devices, we can achieve better statis-
tical properties, resulting in improved performance and robustness
of the RNGs and stochastic computing models. This approach also
helps mitigate the impact of individual device variations and reduces
the reliance on any single device, thereby enhancing the overall reli-
ability and stability of the systems (examples of this strategy are seen
in Refs. 383–385).

4. Concluding remarks

Embracing the inherent variability of emerging nanoelec-
tronic components, such as memristors and spintronic devices,
presents a unique opportunity to advance stochastic computing,
machine learning, and security applications. By understanding and
exploiting the intricate relationship between the variability of these
devices and the requirements of various algorithms, we can develop
efficient random number generators, p-bits, and Markov chain
Monte Carlo implementations, among other stochastic computing
techniques.

However, not every nanodevice imperfection can be exploited.
To fully harness the potential of these nanodevices, it is essential
to address the challenges associated with their imperfect nature.
Achieving a “controlled” level of imperfection, understanding the
impact of different types of variability, and leveraging the specific
physics underlying each device are crucial steps in this endeavor. By
employing multiple devices in an ensemble, we can further enhance
the reliability, stability, and performance of the resulting systems.
As our understanding of the nanodevice behavior and the opportu-
nities to exploit their inherent variability continues to deepen, we
can anticipate a surge in innovation in stochastic computing and
beyond.

B. Spiking-based computing

Sayeed Shafayet Chowdhury and Kaushik Roy

1. Status
Spiking neural networks (SNNs) are a promising energy effi-

cient alternative to traditional artificial neural networks (ANNs).
While ANN based deep learning has achieved tremendous progress
in fields such as computer vision and natural language process-
ing, it comes at a cost of huge compute requirements. Spike-based
neuromorphic computing386 provides a potential solution to this
issue using brain-inspired event-driven processing. SNNs use binary
spikes for computation contrary to analog values used in ANNs. A
schematic of spiking neurons with their temporal dynamics is shown
in Fig. 17. The spiking neuron receives spike inputs over time, which
are accumulated in the membrane potential (Vmem), which upon
crossing a threshold (Vth), emits an output spike.

A key characteristic of SNNs is the notion of time. While
conventional feedforward ANNs are able to map static inputs to
outputs with very impressive performance, learning long-term tem-
poral correlations using them is challenging. On the other hand,
recurrent neural networks (RNNs) are more suited to process tem-
poral information efficiently,387 although recent developments, such
as transformers, have shown that ANNs can perform well in tem-
poral processing too,388 albeit with a higher training and memory
cost. Different variants of RNNs, such as vanilla RNNs,389 long-short
term memory networks (LSTMs),390,391 and gated recurrent units
(GRUs),392,393 have been proposed, which differ in their degree of
complexity and capability to capture temporal information. How-
ever, they all contain explicit feedback connections and memory
elements to handle temporal dependencies. On the contrary, SNNs
can be regarded as a simpler form of RNNs, where the recurrent
dynamics of Vmem acts as an internalized memory.394 Interestingly,
the leak in SNNs can play the role of a lightweight gating mechanism,
thereby temporally filtering out some irrelevant information.395 In
addition, SNNs may lead to a lower parameter count and an easier
training overhead compared to LSTMs.396

The sequential nature of processing in SNNs leads to unique
opportunities in terms of input representation. Traditional feed-
forward ANNs, such as CNNs, and the more recent vision trans-
formers397 process several temporal inputs by merging them into
a single large representation. On the other hand, SNNs can pro-
cess the sequential inputs in a streaming fashion, using the inherent

FIG. 17. A leaky-integrate-and-fire (LIF) neuron. (a) Schematic connection
between three pre-neurons and a post-neuron; (b) temporal dynamics of the
post-neuron. Adapted from Ref. 387.
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recurrence of neuronal membrane potential. As a result, SNNs are
inherently suitable to process temporal event camera40 data. How-
ever, for analog inputs, it becomes a key challenge to efficiently
encode the data into a spike train. Initial studies398,399 use Poisson
rate-coding, where the input is compared to a random number at
each time step and a spike is generated if the input is higher than the
random number. However, this process suffers from high inference
latency. Temporal coding schemes, such as phase coding,400 burst401

coding, DCT-encoding,402 time-to-first-spike (TTFS) coding,403 and
temporal coding,404 attempt to capture the temporal correlation in
the data. However, their accuracy is often lower than ANNs. More
recently, direct encoding approach405,406 has become popular, where
analog values are given directly to the SNN and the first layer of the
neural network layer acts as a spike generator. Such a method has
provided impressive performance on complex tasks with very few
time steps. Besides the analog input modalities, DVS cameras (such
as DAVIS240407) provide discrete spikes directly as inputs, which
are inherently more amenable to SNNs. Conventional ANN-based
approaches tackle the event streams by accumulating them over
time and subsequently processing the lumped input altogether.408,409

However, the rich temporal cues present in the event data may not
be optimally leveraged in this process. Therefore, recent studies pro-
posed to process the event streams using SNNs,410 which leads to a
synergistic alliance between the inputs and spike-based processing.
We believe that this is a promising direction to pursue as it enables
harnessing the inherent temporal processing capabilities of SNNs
with event data.

2. Challenges and potential solutions
A crucial bottleneck in the advancement of SNNs is the lack

of suitable training methods. Sparsity of activations and the discon-
tinuous derivative of spike functions lead to training complexity in
SNNs. To counter that, initial approaches mostly used ANN–SNN
conversion.398,411 Although the conversion method provides high
accuracy, it suffers from significant inference latency. Following this,
surrogate gradient-based backpropagation (BP) methods have been
proposed399,412,413 to train SNNs from scratch. Note that, due to the
sequential nature of inputs, SNNs are trained with backpropagation-
through-time (BPTT), similar to RNNs. However, simpler neuron
models and lower parameter complexity makes the optimization
of SNNs simpler compared to RNNs. Although these surrogate
gradient-based BPTT methods have advanced the field of SNNs by
obtaining high accuracy, the training workloads are still quite inten-
sive in addition to considerable inference latency (100 time steps).
To overcome these, the authors in Ref. 414 propose to merge the
conversion and BP-based training methods (termed “hybrid” train-
ing), where first, an ANN is trained to use it as initialization for
subsequent surrogate gradient-based BP. More recently, advanced
training approaches, such as temporal pruning,415 custom regulariz-
ers,416 and modified neuron models,417 have been proposed, which
enable reducing the latency of SNNs to unit time step. A comple-
mentary research direction proposes to utilize equilibrium prop-
agation to train SNNs.418,419 These approaches provide a promis-
ing more bio-plausible alternative to backpropagation. However,
challenges remain in their large scale implementation.

Parallel to algorithmic developments, advancements in neuro-
morphic hardware fabrics are equally critical to unearth the true
potential of SNNs. Due to the sequential nature of data processing,

SNNs present unique challenges on the hardware front as cur-
rent graphics processing units (GPUs) and tensor processing units
(TPUs) are sub-optimal to exploit the high temporal as well as spa-
tial sparsity.420 Furthermore, information processing using mem-
brane potential over multiple time steps leads to memory-intensive
operations, an overhead that is non-trivial to mitigate using off-
the-shelf digital accelerators. Taking such issues into account, sev-
eral research directions have been pursued in recent years across
the stack from devices and circuits to architectures. Event-driven
neuromorphic chips, such as Neurogrid421 and TrueNorth,50 are
notable, which are based on mixed signal analog and digital circuits,
respectively. Two standout features of these neuromorphic chips
are asynchronous address event representation and networks-on-
chip (NOCs). Another promising direction is investigating various
beyond von Neumann computing models to counter the “memory
wall bottleneck.” To this end, near-memory and in-memory50,422,423

computing paradigms are being explored to improve throughput
and energy efficiency. To realize these emerging computing plat-
forms, exciting progress is being achieved in the device domain
utilizing non-volatile technologies.424 Some noteworthy approaches
based on memristive technologies include resistive random-access
memory (RRAM),343 phase-change memory (PCM),356 and spin-
transfer torque magnetic random-access memory (STT-MRAM).425

RRAMs provide analog programmable resistance but are prone
to process and cycle variations and read/write endurance. Devices
based on PCM can achieve comparable programming voltages and
write speed to RRAMs; however, high write-current and resis-
tance drift over time cause issues. On the other hand, compared to
RRAMs and PCMs, advantages of spin devices426 are almost unlim-
ited endurance, lower write energy, and faster reversal. However,
their ON/OFF ratio is much smaller than in PCMs and RRAMs,
requiring proper algorithm/hardware co-design.427 Note that each of
these technologies has its pros and cons and there is no single winner
at the moment. Floating-gate transistors148 are another class of non-
volatile devices that are being explored for synaptic storage. While
their compatibility with MOS fabrication process is attractive, chal-
lenges persist regarding reduced endurance and high programming
voltage.

3. Conclusion
To conclude, SNNs are a promising bio-plausible alternative

to conventional deep neural networks. However, it is imperative to
understand the “why” and “where” of their proper usage. While SNN
algorithms have largely focused on static vision tasks428 until now,
their true potential lies in processing sequential information. To
that effect, several works are exploring event-based vision for opti-
cal flow, depth estimation, egomotion, etc. We believe that immense
opportunities lie ahead in further exploration of SNNs in varied
avenues requiring temporal processing, such as video processing,
reinforcement learning, speech, and control. In order to achieve
that, there is a need of concerted synergistic efforts on algorithms
as well as hardware. On the algorithmic aspect, we need to focus
on investigating learning approaches that can leverage the unique
data representation provided by spiking neurons. In addition, devel-
oping hardware geared toward SNN-specific algorithms is critical
for the whole field to move forward. Overall, while domain-specific
challenges are prevalent in spike-based computing, we believe that
the next few years will be exciting as we discover the niche of
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SNNs, most likely comprising temporal applications with low power
requirements.

C. Analog computing for linear algebra

Zhong Sun, Piergiulio Mannocci, and Yimao Cai

1. Status
Linear algebra problems are being solved in every corner of

the information world. Solving these problems by running algo-
rithms in digital computers, however, is generally hard and resource-
demanding, featuring a high computational complexity, such as
O(n3), where n is the number of variables. To overcome the inad-
equacy of digital computers whose performance is fundamentally
limited by the ultimate scaling of Moore’s law and the intrinsic
bottleneck of von Neumann architecture, analog computing arises
as a promising solution, thanks to its efficient information encod-
ing, massive parallelism, fast response, and the emerging resistive
memory technology.429 Analog matrix computing (AMC) is con-
veniently realized with a crosspoint resistive memory array, which
forms a physical matrix by storing entries as crosspoint device con-
ductances and thus can be used for linear algebra computations.
There are several resistive memory device concepts that rely on dis-
tinct underlying physics, including two-terminal devices, such as

resistive random-access memory (RRAM), phase change memory
(PCM), magnetoresistive RAM (MRAM), and ferroelectric tunnel
junction (FTJ),430 and three-terminal devices, such as ferroelectric
field-effect transistor (FeFET) and electrochemical RAM (ECRAM).
They are all simply used as programmable resistive devices to imple-
ment AMC.75,199,431–434 In this context, one of their differences lies
in the conductance range that may limit the capacity of mapping
matrix elements, say one bit or multiple bits. It is possible to replace
one type of resistive memory device that has been demonstrated
for AMC application by another one. For simplicity, we limit our
discussion to RRAM that we have used frequently.

The most straightforward AMC implementation is to per-
form the matrix–vector multiplication (MVM) in one step. By
simply applying simultaneously a set of voltages (representing an
input vector) to the crosspoint columns, the currents through the
crosspoint array are collected at the grounded rows, constituting
the output vector, which in turn is converted and read out with
transimpedance amplifiers (TIAs) [Fig. 18(a)]. By adopting the
conductance compensation strategy,435 MVM of a mixed matrix
that contains negative entries can be implemented with the same
number of TIAs as shown in Fig. 18(a). MVM is the backbone
of many important algorithms, such as neural networks and dis-
crete transformations. Consequently, RRAM-based AMC has widely
been considered as an accelerator approach, showing more than
two orders of magnitude improvements of throughput and energy
efficiency.178

FIG. 18. AMC circuits for (a) matrix–vector multiplication, (b) matrix inversion, (c) generalized left inverse, (d) generalized right inverse, and (e) eigenvector computations.

FIG. 19. AMC circuits for (a) matrix–matrix–vector multiplication and (b) solving sparse approximation problems, e.g., compressed sensing recovery.
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In addition to the naive MVM application, more complicated
linear algebra computations have been realized through configur-
ing AMC circuits with feedback loops. Figure 18 shows closed-loop
AMC circuits for other basic matrix operations, including matrix
inversion (INV), generalized inverse, and eigenvector. The INV
circuit in Fig. 18(b) is constructed based on the global feedback
connections between crosspoint rows and columns through opera-
tional amplifiers (OPAs). It solves a system of linear equations when
an input current vector is provided, with the output voltages of
OPAs representing the solution.436 INV is exactly the inverse prob-
lem of MVM. Both circuits utilize the same electronic components,
whereas the different connection topologies define the opposite
functions. The INV concept can be generalized to non-square matri-
ces, by configuring AMC circuits with two sets of crosspoint arrays
and amplifiers. Depending on the matrix shape (tall or broad), the
generalized left [Fig. 18(c)] and right [Fig. 18(d)] inverse circuits
have been designed, both based on the same feedback loops while
showing differences in terms of input terminals and matrix storage
(transpose or not).190 INV and generalized inverse find application
in many scenarios, such as machine learning, wireless communi-
cations, and scientific computing.437–439 Unlike MVM, INV suffers
from the condition number issue, where the input error would be
amplified for an ill-conditioned matrix (with a large condition num-
ber), resulting in a low computing precision. Consequently, it is
appropriate to use the INV circuit as an analog preconditioner,
and the performance of scientific computing may be improved by
more than three orders of magnitude.437 The eigenvector circuit
in Fig. 18(e) uses global feedback as well, but it is a fully self-
sustained system with no external inputs, while working by positive
feedback mechanism.436 It finds application in typical scenarios,
including quantum simulations, PageRank for Google search, or
recommender systems.

Recently, more AMC circuits have been developed for solving
more complicated matrix problems. Figure 19(a) shows a design
for matrix–matrix–vector multiplication (MMVM), by mapping
two matrices (or two copies of one matrix) in a RRAM array,
assisted by the use of conductance compensation.440 By connecting
this MMVM circuit with other analog components, and particu-
larly a nonlinear function module based on operational amplifiers,
to form a feedback loop, the resulting circuit solves the sparse
approximation problem in Fig. 19(b) in one step without discrete
iterations. Notably, the nonlinear function may also be implemented
by a volatile resistive switching device, thus substantially improv-
ing the compactness of the AMC circuit.441 It has been used for
compressed sensing recovery of sparse signal, natural images, and
medical images, representing a highly promising solution for the
backend processor to deliver real-time processing capability in the
microsecond regime.

2. Challenges
Thanks to the manufacturability and compatibility of RRAM

devices in modern CMOS technology processes, large-scale RRAM
arrays have been fabricated for AMC implementations. In particular,
RRAM macros including peripheral circuitries are usually designed
to deliver MVM accelerations. By contrast, closed-loop AMC has
been limited to small-scale concept demonstration, e.g., for 3 × 3
matrices. The reason behind the developmental stagnation might
be ascribed to the unconventional analog circuitry. Different from

MVM that consists of only local feedback, closed-loop AMC cir-
cuits contain complicated, hard-wired global feedback connections
across the entire RRAM array. Since all elements are involved to
provide a collective circuit response, the operation may become sen-
sitive, risking the damage of RRAM devices under excessive electric
stimulus. In addition, for large-scale circuits, the non-ideal factors
of devices and circuits will jointly lead to an exaggerated deviation
from the correct result. In addition, the time response of the circuit
might be influenced by non-idealities, such as parasitic resistances
and capacitances, which may even cause an instability issue.

Despite the lack of large-scale demonstration at this moment,
it is quite promising to build closed-loop AMC circuits based on
the relatively mature RRAM technology in the near term, given that
lots of theoretical and simulation works have intensively examined
the potential issues. In the long term, the following aspects shall be
addressed to support the development of AMC circuits for linear
algebra:

(1) Device/array level: At present, the largest available array size
is 512 × 512.173 In practice, only a fraction of the array is
turned on for computation, due to the current/power over-
load and the accuracy limitation. We believe that such an
array size is already sufficient to well support the advan-
tages of AMC over other paradigms. Otherwise, we should
put the stress on the analog conductance tunability of RRAM
devices, which are expected to show as many distinguish-
able conductance levels as possible. In turn, fast and accurate
programming of the RRAM conductance is essential to max-
imizing the AMC efficiency. The linearity and symmetry of
device conductance update have been continuously empha-
sized for the online training of neural network weighs;442

such a characteristic should also be favored for real-time
update of matrix elements in general AMC applications. On
the other hand, there should be a trade-off consideration
on the RRAM conductance range, which is associated with
the power consumption, alleviation, or exacerbation of the
impacts of resistive and capacitive parasitics. The device vari-
ations should matter most to affect the computing precision.
In particular, for solving inverse problems with the closed-
loop circuits, the matrix structure related to the condition
number should also be a deterministic factor.

(2) Circuit/architecture level: The scalability of AMC circuits
comes at the cost of the reduced precision, where the accu-
mulated error may eventually decline the nominal result.
As a result, there is a trade-off between the desired com-
puting accuracy and the possible array size. For solving
extremely large-scale problems, especially for the inverse
matrix problems, it is imperative to have algorithmic solu-
tions to recover the result correctly. Therefore, a clever
design of efficient algorithms for matrix processing would
be very helpful. In particular, as RRAM-based AMC uses
two physical attributes, namely conductance and voltage, the
cascading of an algorithm may require transition between
the two attributes, which will inevitably make the operation
complicated. To this end, algorithms featuring as less such
transitions as possible are precious. In addition, since AMC
circuits are all based on the core RRAM array, it is valuable
to have a reconfigurable architecture for performing different
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matrix operations. As amplifiers play another critical role in
AMC, it is highly beneficial to design efficient amplifiers that
are well suited to the circuits.

(3) Software and application: During the AMC operation, multi-
ple rows/columns of the array are simultaneously activated
to carry out computation, indicating a primary require-
ment of such instructions in an AMC program. In addition,
instructions for circuit reconfigurations should be included
to enable a general AMC architecture. Therefore, the efforts
on compiling and programming for AMC will be of signifi-
cant importance.443 To support the AMC concept, finding a
killer application that well matches the advantages of AMC
will be most convincing. The application of MVM to neu-
ral network acceleration has attracted enormous attention
in past years, with a few successful silicon demonstrations
toward real-world applications. For closed-loop AMC cir-
cuits, we believe that nonlinear matrix problems and related
applications would be most promising, since they are more
tolerant to errors as in the neural network.

3. Potential solutions
RRAM-based AMC is extremely fast in that the computation is

basically a parallel reading process. To prevent the memory writing
process being a bottleneck, parallel writing schemes have been devel-
oped. For instance, the weight matrix in the array can be updated
by using the outer product operations, sometimes assisted by gra-
dient decomposition methods.444 However, these methods usually
overlooked the memory nature of RRAM, that is, the analog infor-
mation needs to be reliably read out. To this end, a verification
circuit should be included to confine the conductance distribu-
tions. In particular, fast writing with less/no iterations will be very
beneficial to saving the latency. One example is the closed-loop
write scheme that uses current feedback to control the resistive
switching process.445 Because of the underlying ionic migration
mechanism of RRAM devices, the endurance capability has con-
stantly been a critical issue for both memory and AMC applica-
tions.62 It is unlikely that this issue can be overcome solely by
test method innovations; new physical mechanisms may be needed
to solve it from the source. In addition, investigations on device
materials and structures to fundamentally optimize analog RRAM
performance and to empower the array extension are always highly
desired.

The scale–accuracy trade-off of RRAM-based AMC should be
elaborated to balance the efficiency and reliability. Efficient algo-
rithms for matrix tiling and result recovery are vital for solving
large-scale problems. Recently, a scalable AMC method, termed
BlockAMC, has been proposed for solving large-scale linear systems.
It partitions a large original matrix into smaller ones on different
memory arrays and performs MVM and INV operations with the
block matrices to recover the original solution.446 To reduce the
impact of non-idealities, AMC systems with both algorithmic and
architectural innovations should be designed. For MVM, it is conve-
nient to implement the bit slicing method to extend the computing
precision, by using only low-precision memory devices.447 However,
as the INV circuits contain global feedback loops, it is difficult to
apply this method to improve the precision of INV operations. Even-
tually, an analog–digital hybrid system may be required to deliver

this capability. With the RRAM array as the core, the peripheral
circuits and the connections can be reconfigured to perform differ-
ent AMC operations. In this regard, the basic models shall include
RRAM arrays, amplifiers, and reconfigurable routing. Different cir-
cuit configurations are actually hardware-embedded instructions of
matrix operations.

It is of great practical convenience to have a set of fixed AMC
primitives that can be adopted to realize general matrix computa-
tions, together with vector processing, parameter scaling, and vari-
able attribute conversion. There is a trend that takes MVM and INV
as two primitives to enable a reconfigurable, general-purpose AMC
system, which may be used for linear regression, generalized regres-
sion, and eigen-decomposition.448–450 Given the intrinsic noises in
analog computing, we believe that nonlinear closed-loop AMC that
is inherent in error tolerance is more promising toward real-world
applications. Typical examples include solving some optimization
problems, such as sparse coding, compressed sensing recovery, and
linear/quadratic programming. These problems appear in many
common scenarios, such as wireless channel estimation, magnetic
resonance imaging, and signal processing.451 In addition, front-end
integration with sensors for signal processing would be encouraging,
which helps save data conversions and thus reduces the accumu-
lation of noise effects.452 These problems typically favor relatively
small RRAM arrays, thus alleviating the rigorous requirements on
the device/array performance. Eventually, as the RRAM technology
matures, the application to large-scale and high-precision prob-
lems will be advanced, with the help of innovative algorithms and
architectures.

4. Conclusion
In the modern era, due to the strong demand for linear algebra

acceleration and the rapid development of emerging resistive mem-
ory devices/architectures, analog computing has gained a renewed
interest across academia and the industry. Various AMC circuits
have been successfully demonstrated for fast solutions of matrix
problems that constitute the basic operations for linear algebra
computations. However, most of the AMC concepts still remain
in the laboratory prototype stage, calling for a roadmap cover-
ing different aspects to guide system integration, optimization,
and application. Next steps toward effective AMC shall include
developing (1) reliable analog conductance programming meth-
ods, (2) architecture and algorithm designs for large-scale problems,
(3) circuit designs for non-ideality mitigation, (4) reconfigurable
systems, (5) more AMC circuits, e.g., for nonlinear matrix oper-
ations, and (6) application to near-term and long-term typical
scenarios.

D. Analog content addressable memories (CAMs)
for in-memory computing

Giacomo Pedretti

1. Status
Content addressable memories (CAMs) are a class of memory

structures that, given an input query, return their stored location or
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FIG. 20. Illustration of a TCAM (a) and an analog CAM (b). (c) Circuit schematic of a 6T2M analog CAM, capable of returning a match if the input on the DL is within a function
of the memristor conductance (inset). (d) Example of decision tree and (e) its mapping to an in-memory computing circuit for single/few cycle inference.

address. A wildcard, “X,” can be added allowing for “fuzzy” searches,
resulting in a ternary CAM (TCAM).453

Figure 20(a) shows a TCAM schematic. An input query is
applied along the columns, or search lines (SLs), and outputs are
returned along the rows, or match lines (MLs). A given row is
matched (returning a “1”) if each value qj of q is equal to the cor-
responding key-value K ij stored in the row i (column j), which
corresponds to performing the operation

MLi =∏
j
(qj ⊕ Kij).

CMOS/SRAM-based TCAMs are ubiquitous in networking, but
they are usually bulky and power-hungry. Memristor-based TCAMs
have been shown to outperform CMOS circuits, but given the rel-
atively low speed and inefficient writing of memristors, they are
currently being proposed for in-memory computing applications. In
this framework, we have recently proposed an analog CAM454 that
stores ranges and returns a match on the MLs if the analog input is
within the stored ranges or

MLi =∏
j
(Tl,ij ≤ qj < Th,lj),

where T l and Th are the stored upper and lower bounds thresh-
olds, respectively. Figure 20(c) shows a conceptual representation
of an analog CAM, and Fig. 20(c) shows the schematic of a 6-
transistor–2-memristor (6T2M) analog CAM. Two 1T1R voltage
dividers compare the analog input on their gate with the stored
value in the memristor conductance, and their drain node controls

either a pulldown transistor (left side) or a series of an inverter and a
pull-down transistor (right side) to discharge the pre-charged ML if
the input is lower than the lower bound or higher than the upper
bound, respectively. For example, if the input voltage is high enough
to turn on the input transistor, resulting in a voltage on the leftmost
1T1R drain lower than the pulldown threshold, the latter will not
be activated. Similarly, if the same input voltage is low enough such
that the input voltage of the inverter is above its threshold of the
rightmost 1T1R, its pulldown transistor would not be activated. This
results in a match, given that the ML would not discharge.

Other implementations of analog CAMs have been proposed
based on compact ferroelectric structures, although given the
absence of the inverter, a proper conditioning of the input should
be performed.455

While the in-memory computing community in the past
decade have been focused on the acceleration of deep neural net-
works (DNNs), tree based machine learning (ML) still outperforms
DNN when processing tabular data due mainly to the presence of
missing and categorical features.456 Figure 20(d) shows a schematic
representation of a decision tree (DT), which is essentially a collec-
tion of conditional branches (nodes) in a tree structure. Given the
irregular structure, ensembles of DTs are not well suited for being
accelerated in CPU and GPU, due to thread synchronization issues,
load imbalance, and uncoalesced memory accces.457 Recently, we
have shown that DT ensembles can be mapped to analog CAMs,
providing a one-cycle and conversion-less inference, given that
the output is already digital and ready to be post-processed.458

Figure 20(e) shows the DT of Fig. 20(d) mapped into an analog CAM
array, where each root-to-leaf path is encoded in a row. The digital
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ML outputs are connected to a conventional RAM storing the leaf
values or prediction. All branches are executed in parallel, providing
size-independent inference latency.

2. Challenges
Most of the challenges in building reliable analog CAMs are

shared with crossbar arrays of memristors, although some circuit
and device requirements are different. Similarly, a wide range of
programmable levels in the memristor conductance is desirable, but
different from crossbar arrays, slicing techniques for increasing pre-
cision459 cannot be performed. Range-based analog CAMs have a
unary encoding; thus, connecting multiple adjacent analog CAMs
on a given row doubles the number of levels as opposed to bit-slicing
in crossbar arrays, which doubles the number of bits, leading to an
exponential overhead. Linear approaches for an improved analog
CAM precision have recently been shown,460 although with a sig-
nificant circuit complexity overhead. Moreover, given the voltage
divider operation performed directly on the memristor, its conduc-
tance needs to be stable at higher read voltages, e.g., 1 V, to be able
to efficiently control the pulldown transistor.

While a small 2 × 2 array was realized in the 180 nm tech-
nology node and large array simulations at the 16 nm technology
node were performed,454 experiments on large arrays, i.e., 128 × 16,
have yet to be realized. There are several concerns to be solved at the
array level, for example, the impact of memristor variation and noise
on the search accuracy and the impact of parasitic capacitances and
resistances on a reliable operation. Moreover, due to the nonlinear
input/output relationship, even defining the appropriate patterns for
the program is challenging and ad hoc circuit-aware programming
routines should be performed.

Finally, a full and general architecture design has yet to be
performed, to feed and pull data with enough bandwidth to take
advantage of the single-cycle memory lookup operation, eventually
including multiple independent cores and performing operations
on a large amount of data in parallel. The architecture should be
programmable, not limited to tree-based ML inference, allowing
multiple tasks such as associative searches,455 and resilient to errors
due to memristor variations, for example, including error correction
codes routines.

3. Potential solutions
First, large arrays of CMOS-integrated analog CAMs with

memristor devices should be designed and fabricated. Techniques
for increasing the memristor conductance stability at relatively high
reading voltages have been presented and should be used to develop
an analog CAM-specific memristor stack. For example, a larger oxi-
dation layer and/or a controlled deposition to limit the oxygen defect
in it can be used to increase the set voltage of memristor devices,
which could result in better stability.

Analog CAM circuits to support a higher number of bits can be
designed by studying the appropriate logic functionalities in the case
of a separate comparison of the least significant and most significant
bits, for example by mapping different logic functions between adja-
cent cells.461 In principle, it is possible to implement any kind of logic
operation between adjacent CAM cells by opportunely connecting
the pulldown transistors. Custom program and verify algorithms,

efficiently including process variation and noise, are being devel-
oped,462 in order to design appropriate target patterns to program in
the memristor conductance while performing nonlinear operations.

Finally, a similar architecture to the crossbar array accelerators
with a custom instruction set architecture (ISA) compiled from pop-
ular tools, such as sk-learn, can be implemented.463 The analog CAM
operation should be abstracted enough in order to efficiently map
different workloads in a hierarchical way to the programmable accel-
erator, with multiple cores handling a different part of the problems,
and a global network on chip accumulating the results to finalize the
computation. In order to make each core operation reliable, an error
detection scheme already designed for TCAMs can be adapted to the
new analog CAM to efficiently re-program a given device once the
state has been drifted out of the desired one.464

4. Conclusion
While a lot of efforts have been spent in the past years by

academia and industry research for developing in memory comput-
ing structures based on linear operators, such as crosspoint arrays,
recently, a renewed interest in memristor-based CAMs has arisen.
Different circuits for memristive TCAMs and analog CAMs have
been proposed, targeting multiple applications, but a circuit-level
integration of CMOS circuitry with a BEOL-integrated memristor
device along with a system-level analysis of performance at scale
has yet to be shown. While engineering such required milestones,
researchers should also focus on exploring new applications exploit-
ing open-sourced circuit models, given the novelty of the idea;
it is, in fact, likely that we are just scratching the surface of the
potentiality of such computing primitives, given the inherited non-
linear operation performed with unprecedented speed and energy
efficiency.

E. Optimization solvers

John Paul Strachan and Dmitri Strukov

1. Status
One of the best examples of a high-risk–high-reward area for

novel computing is the area of optimization solvers. Here, the ambi-
tion is to offer some form of speedup or reduced resource require-
ments (memory, energy, etc.) in solving computationally expensive
combinatorial optimization problems. In such problems, the task
is to minimize a given cost (or energy) function by choosing the
best configuration within a large dimensional space. Well-known
examples include the traveling salesmen problem (finding a mini-
mal route uniquely visiting various cities), graph coloring (coloring
nodes such that connected nodes have different colors, while using
the fewest colors), or training the weights in an artificial neural net-
work (ANN). While some problem classes and instances can be
solved approximately and quickly using greedy algorithms, many
remain intractable and no known algorithm exists that can solve
them all with polynomial resources and in polynomial time. Even
a modest speedup could offer immediate benefits in practical appli-
cations across planning, wireless communication, bioinformatics,
routing, finance, and many more.
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The above challenge has inspired many research communi-
ties to develop both new algorithms and new physical hardware
approaches, often in conjunction. A prominent example of this was
the recognition that many optimization problems can be mapped to
problems in physics,465 such as finding the ground state of an Ising
system of coupled up-or-down spins. This has driven interest in the
so-called Ising solvers, which can have many physical realizations,
including optical parametric oscillators, coupled electrical oscilla-
tors, magnetic tunnel junctions, and analog memristors.375 From
the early neural-inspired communities, John Hopfield’s nonlinear
networks of analog neurons turned out to also solve planted opti-
mization problems.466 Quantum or quantum-inspired approaches
have also been pursued, leveraging the quantum adiabatic theorem,
where a ground state (optimal) solution is found by evolving slowly
from an initial, simple Hamiltonian toward a final Hamiltonian
that encodes the desired problem.467 Dynamical solvers are also
being pursued,468,469 where the large configuration space is explored
rapidly via coupled nonlinear dynamical equations, with optimal
configurations acting as attractor states.

It is important to realize that the variety of physics and
quantum-inspired approaches discussed above offer primarily an
algorithmic paradigm for solving optimization problems. The
underlying materials, physics, and computational elements remain
quite flexible. For example, traditional CPUs, GPUs, and FPGAs can
be used to simulate nonlinear dynamical equations. Or electronic
CMOS-based ring oscillators can be built and resistively or capac-
itively coupled in order to simulate the magnetically interacting
spins in an Ising model. Thus, there are many possible combinations
of algorithmic or computational models and the physical substrate
where computations are performed. It is easy to mistake one for
the other. Yet, despite such variety in possible physical realizations,
some common underlying challenges emerge, which must be han-
dled in order to successfully engineer an efficient and broadly useful
optimization solver. The remaining portion of this document lists
these challenges and opportunities.

FIG. 21. Typical steps for solving combinatorial optimization problems with Ising
machine. The original problem is formulated as a quadratic unconstrained opti-
mization (QUBO) problem. The QUBO problem may need to be modified, e.g.,
sparsified or decomposed to smaller subproblems, before it can be mapped on the
targeted Ising machine. Note that the figure shows a fully connected Ising machine
and the simplest baseline QUBO formulation. Efficient implementation of differ-
ent annealing techniques and approaches for solving constrained optimization
problems relies on the ability to adjust coupling weights during runtime.

2. Challenges
a. Challenges of mapping to hardware. Mapping optimization

problems to physical systems, such as a hardware Ising model (illus-
trated in Fig. 21), is an attractive approach, but it also highlights
many key challenges. An Ising model is based on pairwise couplings
of binary spins, and therefore, up to quadratic terms appear in an
energy function with binary variables, and there is no explicit mech-
anism to enforce additional constraints (such as summing to certain
integer values). This is also known as a Quadratic Unconstrained
Binary Optimization (QUBO) type, having an energy function in the
case of an Ising model,

EQUBO = 1
2∑i,j≠i

Wijsisj +∑
i

hisi.

Yet, many optimization problems involve higher than quadratic
interactions. For example, a k-Satisfiability problem (k-SAT)
involves terms of order k. Such higher-order interactions must
be mapped down to quadratic terms, through the introduction of
additional auxiliary variables. The result is a new total number
of variables that is polynomially larger than the original number
of variables, leading to, in the worst case, an exponential penalty
in terms of the configuration space that needs to be searched.
This has motivated explorations of algorithms with higher-order
interactions470 and their physical realizations.

In addition, QUBO formulations are sometimes inefficient,
even for natively quadratic problems. For example, the typical
QUBO approach for a K-city traveling salesman problem is to
encode each route with K one-hot-encoded K-bit vectors represent-
ing the visitation order of each city.465 The result is a quadratic scal-
ing for QUBO variables, i.e., N = K2, with the number of cities. This
can lead to a worst-case exponential penalty in the configuration
space to search as a function of the number of variables.

b. Scaling challenges. Efficient mapping (“embedding”) of an
optimization problem to the underlying Ising hardware may require
further modification of the QUBO formulation. Indeed, the naive
implementation of N-variable QUBO problems requires N2 cou-
pling weights to allow programmable coupling with unique weights
between any pair of neurons. N can be more than a million for
many practical sparsely coupled optimization problems [such as the
already mentioned TSP and SAT problems], which is clearly unac-
ceptable for most Ising model implementations. To address this
challenge, a general approach is to decompose the original QUBO
problem into smaller subproblems that can be implemented in the
hardware. For example, one can partition a large neuron connectiv-
ity graph into smaller subgraphs, with minimized number of edges
between subgraphs. The corresponding subgraph subproblems are
then solved independently, e.g., by fixing values of variables not par-
ticipating in the currently solved subgraph. The downside of such
an approach can be lower solution quality or longer time, even if all
subproblems are individually solved optimally. The scaling problem
is further exacerbated for hardware approaches with limited cou-
pling capabilities. For example, if only limited neighbor connectivity
is possible—such as in the so-called chimera graph topology imple-
mented in the DWave interconnected superconducting bits—then
the embedding comes with an even higher overhead. In this case,
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the original QUBO problem is first sparsified to meet the connectiv-
ity limitations by adding redundant variables and then partitioned
into subproblems. The result can be an exponential slowdown471 in
solution convergence.

c. Precision challenges. Many emerging device technologies do
not allow for realizing accurate weight couplings and performing
precise computation of node updates. On the other hand, the weight
precision should be sufficient to encode the weight dynamic range.
More generally, the non-idealities in the physical couplings need to
be low enough not to distort the global energy minima. Detailed
studies of non-idealities in, for example, Ising machine operations
are so far very limited; however, an initial insight is provided by
similar studies for training artificial neural networks, a type of opti-
mization task. Training to the highest accuracy requires at least
4-bit weight and dot-product computation precision for many deep
learning models.472 The precision requirements are higher for very
compact models, such as MobileNet, and lower for larger, redun-
dant models, such as VGG. This is likely inversely correlated with the
number of global minima and their basin volumes. Therefore, higher
precision requirements are expected for solving harder combinato-
rial optimization problems and/or when better solution quality is
sought.

3. Potential solutions
Advances are needed across algorithmic, device, and architec-

tural levels. On the algorithmic front, it was already stressed above
that improved mappings are needed to ensure efficient conversion
from the original optimization problem to QUBO, as well as efficient
embedding.

On the device front, we need to identify the best device and
material implementations to overcome challenges in connectivity
and interactions. Are there any material and device concepts that
would allow implementation of the higher order in the hardware?
The scaling issues highlight the importance of efficiently imple-
menting coupling weights. In this respect, emerging analog memory
devices and in-memory computing with dot-product circuits are
especially attractive. Optical computing approaches are attractive
because of the high fan-in interconnects that can be attained. Quan-
tum computing is attractive because of quantum annealing, which
offers a tunneling mechanism through energy barriers. Many tricks
on the device and circuit levels can be borrowed from the work on
neuromorphic inference to improve tolerance to non-idealities and
increase precision.

On the architectural side, we need more flexible designs to han-
dle broadly varying levels of difficulty and size. Many problems are
locally dense but globally sparse. For example, hard k-SAT problems
are sparse, with sparseness increasing with model size, and the archi-
tecture should take advantage of such sparseness by mapping highly
interconnected neuron subgraphs onto fully connected smaller size
Ising machines and interconnecting Ising machines with routing
networks.

A key feature for further advances on every front will be proper
benchmarking. The design space is very broad and is further compli-
cated by the wide range of applications with different characteristics
(hardness, coupling density, and problem size). Figure 22 shows the
key metrics—solution quality found as a function of hardware time
to solution at a fixed power consumption and hardware resource

FIG. 22. Benchmarking and design space for optimization hardware (shown
schematically). We expect solver implementations of type (A) that are suitable
for quickly finding lower-quality solutions but incapable of reaching higher solution
qualities, such as fast but approximate hardware heavily relying on parallel decom-
position algorithms and/or imprecise circuits. At the other end of the spectrum are
brute-force (complete) approaches (C), e.g., running an algorithm of checking all
possible solutions on the conventional high-precision computer, that are slow but
guaranteed to find the global optimum. Other approaches (B) may perform bet-
ter for medium solution quality and time cost. We expect a Pareto front formed
by different hardware approaches highlighting that linear improvements in solution
comes at exponentially longer hardware times. The figure is motivated by similar
dependencies at the algorithmic level (the so-called run-length distribution figures)
and similar hardware trade-offs in neuromorphic inference and training.473

budgets, highlighting the important trade-offs to identify promising
solutions and guide further design. Such a figure can be drawn for
a collection of benchmarks or an individual benchmark and, in the
general case, would change with the scale of the problems. Note that
the fixed resource budget in Fig. 22 is essential for a fair compar-
ison of different designs because time to solution can be improved
with parallelism, i.e., spending more energy and/or relying on higher
complexity hardware. (Alternatively, Fig. 22 can be extended to
show time, energy, and hardware complexity to the solution qual-
ity. Such characterization would be more complete, although less
insightful when sparse data are available.)

For example, we anticipate that low precision and/or restricted
connectivity systems will be much faster and energy-efficient when
worse precision is required. Such systems may never reach the
highest quality solutions, e.g., because inherent error modifies the
energy landscape or the subspace. On the other hand, a brute
force algorithm, e.g., performed on a conventional computer, would
guarantee finding optimal solutions. The first emerging optimiza-
tion solvers (such as Ising machines) can occupy intermediate
locations in these trade-off curves, tuned to the desired priority
metrics.

4. Conclusions
There is great potential to harness physics- and brain-inspired

approaches to improve today’s computing systems for solving opti-
mization problems. Yet, we see challenges that must be over-
come at many material, circuit, system, and algorithmic levels
in order to realize this potential. A variety of approaches are
under exploration that use optical, quantum, magnetic, or elec-
tronic components, sometimes in combinations. However, the core
requirements and issues are similar across all of them, as out-
lined here. In the end, it will be critical to engage other non-
hardware communities to become enthusiastic users and to help
in tool development for these emerging hardware systems. It will
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only be through continuous feedback between the users, devel-
opers, materials scientists, and engineers that a reliable and flex-
ible optimization solver can be developed for large-scale practical
problems.

VIII. TECHNOLOGICAL MATURITY
A. Current status and next steps

Manuel Le Gallo and Stefano Ambrogio

1. Status
The various neuromorphic computing technologies and con-

cepts covered in this roadmap have shown promising results
through various prototype chip demonstrations realized by aca-
demic and industrial institutions. SRAM-based in-memory com-
puting accelerator chips could demonstrate energy efficiencies >100
TOPS/W for 4-bit matrix–vector multiplications and provide sup-
port for all the additional CNN and LSTM inference operations
with on-chip digital arithmetic and logic units (ALUs).474 The recent
analog accelerator based on NOR flash memory from Mythic, sup-
porting 80M on-chip analog weights, demonstrated 3.3 TOPS/W
system-level energy efficiency for 8-bit calculation precision and
could run a pose-detection application while consuming only
3.73 W.475 While several alternative technologies have recently been
explored, such as ferroelectric and magnetic devices, 2D transis-
tors, and memtransistors, the investigations are still at the level
of single devices or small arrays, preventing a proper computa-
tion performance exploration. For this reason, in non-CMOS based
implementations, only the more mature PCM and RRAM emerg-
ing technologies have been integrated into multi-core in-memory
computing chips and could demonstrate various neural network
inference tasks, albeit not fully end-to-end. Near software-equivalent
accuracies and energy efficiencies of 10 TOPS/W or higher for
matrix–vector multiplications have been reported.56,173,476,477 Less
mature technologies, such as ferroelectric and magnetic memories,
have been successfully integrated into small arrays with on-chip
data converters.75 Memories based on spintronic, 2D, and atomistic
materials as well as photonic processors based on resistive memories
have been mainly investigated at the individual device level or inte-
grated into small arrays without peripheral circuits performing data
conversions.297,312

Besides chips that aim at accelerating matrix–vector multi-
plications for deep neural network inference tasks, platforms that
can execute more novel neuromorphic computing concepts via in-
memory computing have been demonstrated as well. A 64k-cell
PCM chip from IBM with in situ learning capability using Spike-
Timing-Dependent Plasticity (STPD) and leaky integrate-and-fire
neurons performing a simple associative learning task was demon-
strated.478 Another 1.4M-cell PCM chip implementing a restricted
Boltzmann machine with STDP learning rule could demonstrate
low-power on-chip training and inference on the MNIST dataset.170

Spiking implementations are also used to efficiently implement
Residual Network (ResNET) networks on CIFAR-10.479 Although
those platforms are small prototypes and do not support end-to-end
deployment of a variety of models, the key computational blocks

involved in the execution of the algorithms have been successfully
integrated on-chip together with the in-memory computing cross-
bar arrays. Nonetheless, such prototype demonstrations are still far
behind the maturity of digital CMOS computing platforms, which
support full deployment of a wide variety of models, often with an
end-to-end software stack. CMOS neuromorphic computing chips,
such as IBM TrueNorth50 and Intel Loihi,51 have been made avail-
able as research platforms to implement inference and training of
spiking neural networks with some software support being provided.
Moreover, several digital application-specific deep learning accel-
erators with an end-to-end software stack, such as Google Tensor
Processing Unit, Amazon Inferentia, Facebook’s M.2 accelerator,
and IBM Artificial Intelligence Unit, have reached a mature state in
terms of production and system-level integration.480

2. Challenges
Several challenges at the device- and system-level could hinder

the development of fully end-to-end in-memory computing accel-
erators. The growing interest in inference tasks, where the neural
network is first trained in software and then deployed on-chip to
get high throughput (number of inferences per second) and low
latency (time to process one input), requires chips with multiple
crossbar arrays, to account for multiple layers in neural networks,
and reasonably large size, to map extended network layers (e.g., first
layers in convolutional networks).476,481 This leads to several device-
level requirements, such as high HRS/LRS resistance ratio, moderate
endurance, high retention, and low intrinsic variability. It is also
beneficial to have a LRS resistance high enough to limit the impact
of the voltage drop in the lines of the crossbar array during writing
and readout. Although a single device can be designed to easily meet
one of those requirements, the challenge is to build multiple chips
each containing multiple arrays of devices that should meet all of
them. Because it is rather challenging to simultaneously achieve such
specifications with emerging technologies, often trade-offs have to
be made depending on the envisaged application. As an example, a
lower endurance can be acceptable to achieve trade-offs for a higher
HRS/LRS ratio for inference purposes. In addition, several aspects
regarding the operating voltages and currents of these devices need
to be considered when integrating them into crossbar arrays. Pro-
gramming voltages in excess of 2 V and large programming currents
(>100 μA) necessitate the use of large access transistors that can
block this voltage and drive this current. Therefore, minimizing the
programming voltages and currents is critical to achieve high device
density in the crossbar.

On training chips, where the weights of the neural network are
actively changed on-chip to get high-accuracy processing on sev-
eral tasks (classification and language processing), specifications are
higher. In addition to the inference requirements, data need to back-
propagate through the network. Such a behavior is critical in analog
cores, requiring fully symmetric peripheral circuitry during forward
and backpropagation and absence of any polarity dependence of the
resistive devices (since each memory element is generally biased in a
different way between forward propagation and backpropagation).
Clearly, device challenges are different: while inference requires
high retention, low drift, and low temperature dependence, train-
ing requires high endurance and symmetric conductance update
behavior, leading to different material choices.
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Moreover, to achieve highly competitive system-level perfor-
mance against existing CMOS-based accelerators, further improve-
ments in device-level precision and compute density are required.482

While this poses material challenges on resistive memories, it
also influences the peripheral circuitry by limiting its available
area while ensuring that it does not restrain precision. In addi-
tion, real workloads involve a variety of different operations other
than matrix–vector multiplications that need to be implemented in
separate digital computing units. Therefore, power-hungry analog-
to-digital conversion is needed at the crossbar outputs, which
limits energy efficiency. Moreover, a fast and flexible communica-
tion scheme together with highly efficient pipelining of the digital
compute units and intermediate SRAM storage is primordial to
ensure that they do not dominate the latency and power con-
sumption. Finally, a user-friendly software-stack that tightly inte-
grates such hardware with common machine learning frameworks
(PyTorch/TensorFlow) is key for its widespread adoption within the
community.

3. Potential solutions
The advancement in the field requires a joint development of

both material aspects of the memory, algorithms used to train the
neural networks, efficient network mapping techniques over multi-
ple crossbar arrays, and careful design of the peripheral circuitry. In
general, inference/training chips are required to have high-accuracy
computation and high energy (operations per energy) and high area
(operations per square millimeter) efficiency.

To improve the compute precision up to four or five-bit fixed-
point arithmetic, it is essential to minimize the temporal conduc-
tance fluctuations (such as noise, conductance drift, and temper-
ature dependence). To achieve this, additional materials research,
such as proper incorporation of dopants, memories composed of
multi-layer materials stacks,483 and exploiting material confinement
to change device properties,357 is essential. To improve the com-
pute density, besides scaling both the devices and the associated
access transistors, high-density arrays need to be integrated at the
backend of a CMOS wafer. To decrease the computational time
required to convert the integrated charge/voltage after a Multiply-
and-Accumulate (MAC) operation, column multiplexing should be
avoided, using a per-column circuitry, shrinking the area to accom-
modate Analog-to-Digital Converters (ADCs). Exploration of ADC
designs with a low-number of bits enables efficient integration,
while still keeping a reasonably high MAC accuracy.481 Another
approach uses fully analog peripheral circuitry, which is more power
efficient,476 posing, however, more stringent limitations on compu-
tation precision and available activation functions. As an example,
Rectify Linear Unit (ReLU) has been demonstrated in the analog
domain, while nonlinear sigmoid or tanh generally require digital
processing.

Even in the case of highly efficient crossbar arrays, the gen-
eral performance could still be poor due to Amdahl’s law, since
fast analog cores would generate large amounts of data that the
neighboring digital cores need to process.482 In other words, highly
efficient analog circuitry would require highly efficient digital blocks
closely located. Therefore, to improve the hybrid analog/digital chip,
spatial network mapping, analog/digital cores, spatial location, and
data communication need to be co-designed, leading to a general
trade-off between chip reconfigurability (ability to map any type

of network) and performance (ability to efficiently process specific
networks).482

4. Conclusion
Computing in memory has greatly improved in recent years,

thanks to several on-chip demonstrations. However, challenges need
to be overcome to get to product level, such as 4-to-5 bit comput-
ing precision together with performances in the range of 100/200
TOPS/W. Achieving such specifications is critical to provide a com-
petitive advantage over existing purely digital processing cores. This
will be obtained by optimizing the full computing stack: devices
will require large uniformity, reasonably high resistance levels, and
an overall low noise behavior. Compact peripheral circuitry will be
essential to reduce the chip area, and careful spatial mapping of ana-
log and digital dedicated cores will need to improve the performance
on a variety of neural networks.

IX. EPILOGUE AND CONCLUDING REMARKS
FOR THE ROADMAP

Ilia Valov, Rainer Waser, and Adnan Mehonic

After decades of reliance on transistor-based electronics, we are
now delving into an era where the exploration of innovative nano-
electronic technologies based on functional materials is more crucial
than ever. For instance, nanoscale memristive devices have emerged
as key components for future nanoelectronics. Their straightforward
stack structure, diverse functionalities, and specific benefits, such
as scalability, broad temperature stability and operation range, and
resilience to high-energy particles and electromagnetic interference
make them indispensable for numerous applications. Furthermore,
memristors and similar novel technologies now serve as founda-
tional units for the next generation of brain-inspired computing
architectures. From their introduction in the 1960s as resistive
switching memories, through the relation to Chua’s memristor and
their use as artificial neurons and synapses at present, memristive
devices have passed decades of intensive research with respect to
both fundamentals and applications by academia and industry.

Examining the foundational aspects of materials science is piv-
otal for developing new nanoelectronic technologies. Using mem-
ristive technology as an example, the appeal of memristive devices
stems from the multitude of benefits they provide, which are influ-
enced and modulated by the materials and processes that dic-
tate their behavior and functionalities. Here, the relation between
materials, material properties, physicochemical processes, and func-
tionalities should be particularly highlighted. A huge spectrum of
materials has been used for switching films—1D (single molecules
or molecular clusters), 2D (graphene, hBN, MoS2, MoSe2, etc.), and
3D, including inorganic, organic, and biomaterials. Several physical
phenomena were reported to lead to memristive behavior—phase
change, redox reactions and ionic transport, electronic effects, van
der Waals forces, and magnetic and magneto-resistance changes, all
covered in this roadmap.

All different phenomena, of course, depend strongly on the
used materials. The main challenge appears to properly select a
combination of appropriate materials and their dimensions (i.e.,
thickness and lateral scale). Apparently, a simple two-electrode cell
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is composed of a switching layer or in many cases more switching
layers, two electrodes, and capping film(s). The devices are exposed
to extreme operating conditions, such as current densities of up to
1 × 106 A per square centimeter and electric fields of 108 V/m.
Due to these extreme conditions and the nano-dimensions of the
films, their thermodynamic and kinetic behaviors typically deviate
strongly from their macroscopic counterparts going much beyond
the frame of the classical knowledge in terms of chemical and
mechanical stability, point defect chemistry, and transport proper-
ties. The nano-size effects are especially prominent considering the
switching films. These are typically materials that, in a macroscopic
sense, are insulators, which are sometimes used as high-k dielectrics,
but turn into mixed solid electrolytes at thicknesses below ∼50 nm.
Furthermore, due to enhanced surface energy excess, the layers react
chemically within the stack even if the change in the Gibbs energy
for the reaction is positive. As a result, intermediate films can be
formed, with similar thicknesses as the switching layers, which can
either inhibit or enhance charge and mass transport through inter-
faces, strongly influencing all related processes. Other effects caused
by impurities, absorption of moisture and/or oxygen, local changes
of concentrations, and nanocavities are known to additionally com-
plicate the control over the device’s behavior and characteristics.
This poses a challenge, yet also presents an opportunity to uncover
unique device physics and explore alternative device functionalities
(e.g., neuromorphic functionalities).

The way to keep control over the devices and to further expand
the horizon of functionalities is by using a materials science-based
approach where materials properties and processes are studied in
very detail, and this knowledge should be applied in the design of
the devices.

The “Roadmap to Neuromorphic Computing with Emerging
Technologies” roadmap seeks to tackle these issues and present
a contemporary perspective on the intersections between current
materials science, electronic engineering, and system design. Its
ultimate goal is to delve into alternative computing models, partic-
ularly brain-inspired (neuromorphic) computing. Eminent groups
and experts span a wide spectrum of relevant subjects and tech-
nologies, fostering a platform for idea exchange. In addition, they
highlight next-generation neuromorphic hardware, emphasizing the
foundational role of functional materials and innovative device
technologies. Although materials have been the main focus of the
roadmap, our aim was to provide a more holistic overview and high-
light a range of emerging and highly active research areas. As such,
there are many details and specific material considerations not cov-
ered here that we strongly recommend the authors explore in the
extensive background literature, much of which is published in spe-
cial issues13,484–486 or excellent reviews.8,12 Likewise, in order to keep
the format of the roadmap relatively compact, we have not elabo-
rated on a number of equally valid and highly promising approaches
in the context of neuromorphic technology development. Some
notable examples include adaptive matters and computation based
on disorder,316,487 systems based on organic perovskites,488,489 ionic-
liquid based devices,432,490 and molecular devices.63,491,492 Of course,
the list is not exhaustive, and other approaches, physical systems,
and technologies are emerging.

Likewise, in order to keep the format of the roadmap in a
relatively compact form, we have not elaborated on a number of

equally valid and highly promising approaches in the context of
neuromorphic technology development.

It is natural to ask what needs to happen next for neuromorphic
technologies to find their way into real-world applications. Unsur-
prisingly, this is a complex question and heavily depends on the
definition of neuromorphic and the specific application in question.
In a broader sense, the integration of memory within (in-memory
compute) or closer to the compute units will likely be the first step.
A prime example of this is within the context of embedded systems,
which are in dire need of better, more scalable non-volatile mem-
ory technology. Many memristive technologies are well-positioned
to meet this demand. Among these, the most successful will likely
be the technology that is the most practical (e.g., easy to embed
on the same CMOS die), cost-effective, and, of course, higher per-
forming (e.g., scalable beyond the 28 nm limit of current NOR
flash, faster, more energy-efficient, and reliable with a low bit error
rate). While replacing NOR flash may not be strictly neuromor-
phic, it will be an important step in providing better platforms
to test energy-efficient neuromorphic approaches. The next step
could be the development of true in-memory compute, specifically
analog, with the primary goal of providing more efficient linear alge-
bra accelerators (specifically matrix–vector multipliers). This would
accelerate neural network inference engines, both in speed and in
energy efficiency, and benefit other applications, such as combinato-
rial optimization and security. In the context of new nanoelectronic
devices and analog in-memory computing, the main challenge is
to achieve not only two well-separated digital states but also fully
gradual analog state programmability. Variability and retention thus
become significant challenges that need to be addressed. Beyond, for
any analog approach to make sense, honest system-level benchmark-
ing must be conducted, alongside an analysis of which specific target
applications this approach would best serve. One of the main open
questions is the translation of analog to digital signals and vice versa.
This conversion process could be more costly than compute alone
and might lead to overall inefficiencies compared to fully digital
implementations.

Perhaps, the first two examples are not truly neuromorphic,
so the next exploration, which genuinely seeks inspiration from
the working principles of the human brain, involves technolo-
gies and systems aiming to implement key neurobiological features
directly in hardware, whether synaptic or neuronal functionality.
Other functionalities, such as dendritic operations, have also been
explored. In this context, device functionalities that might typically
be seen as less useful in conventional digital or analog in-memory
computing may prove very helpful. For example, the volatility of
states is an important feature for implementing many neuromorphic
functionalities (e.g., short-term plasticity, spiking, eligibility traces,
and reservoir computing).

A useful way to consider the next steps in developing neuro-
morphic hardware technologies is to categorize them into short-
term goals (2–3 years: merging novel non-volatile memory and
compute for digital systems/fabricating them on the same die at
advanced processing nodes), mid-term goals (3–5 years and beyond:
analog compute), and long-term goals (truly neuromorphic func-
tionalities). While it is difficult to predict when these milestones
might be reached, the first steps are already evident with MRAM,
RRAM, and PCM finding their way into product offerings (e.g.,
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microcontrollers with novel non-volatile memories). Recent impres-
sive results suggest that some analog systems may be more widely
utilized in the next 3–5 years, while truly neuromorphic technolo-
gies might initially be implemented in specific scenarios before
achieving broader adoption (e.g., spiking systems to implement
smart vision cameras). The latter two predictions still remain highly
speculative.

Recommending the most promising material systems is a com-
plex task. In general, RRAM technology might have an advantage
due to its simplicity and CMOS-friendliness. However, recent devel-
opments in HfO2-based FeRAMs represent a highly active area
of research. MRAM is likely the most mature technology, with
already available products, while PCM has seen significant interest
recently. 2D materials are expected to integrate with all these tech-
nologies, providing further device improvements. It is important to
keep in mind that the requirements might be dramatically different
depending on targeted applications. For embedded systems, ease of
integration and full CMOS compatibility are likely the most impor-
tant factors. Conventional NVM devices need to outperform flash,
while in the context of computing, higher endurance will likely be
needed. In addition, the requirements for less conventional analog or
neuromorphic functionalities are somewhat less defined but equally
relevant and in development. One should also bear in mind the gap
that exists between academic research on proof-of-concept demon-
strators and industrial R&D. Industrial R&D must consider not only
technical factors but also economic feasibility.493

Neuromorphic technologies are undoubtedly poised to be
strong contenders for the future of computing, whether based on
conventional digital, analog, or conceptually different computing
and signal processing paradigms.
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