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Abstract. This work proposes a technique for constructing a statistical closure model for reduced-order models
(ROMs) applied to stationary systems modeled as parameterized systems of algebraic equations.
The proposed technique extends the reduced-order-model error surrogates (ROMES) method [13] to
closure modeling. The original ROMES method applied Gaussian-process regression to construct a
statistical model that maps cheaply computable error indicators (e.g., residual norm, dual-weighted
residuals) to a random variable for either (1) the norm of the state error or (2) the error in a
scalar-valued quantity of interest. Rather than target these two types of errors, this work proposes
to construct a statistical model for the state error itself; it achieves this by constructing statis-
tical models for the generalized coordinates characterizing both the in-plane error (i.e., the error
in the trial subspace) and a low-dimensional approximation of the out-of-plane error. The former
can be considered a statistical closure model, as it quantifies the error in the ROM generalized
coordinates. Because any quantity of interest can be computed as a functional of the state, the
proposed approach enables any quantity-of-interest error to be statistically quantified a posteriori,
as the state-error model can be propagated through the associated quantity-of-interest functional.
Numerical experiments performed on both linear and nonlinear stationary systems illustrate the
ability of the technique (1) to improve (expected) ROM prediction accuracy by an order of mag-
nitude, (2) to statistically quantify the error in arbitrary quantities of interest, and (3) to realize
a more cost-effective methodology for reducing the error than a ROM-only approach in the case of
nonlinear systems.
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uncertainty propagation; supervised machine learning

1. Introduction. Computational models of stationary systems modeled as parameterized 
systems of algebraic equations (e.g., those arising from the spatial discretization of a partial-
differential-equations problem) are being increasingly used in complex decision-making sce-
narios. However, such scenarios are often many query or real time in nature. For example, un-
certainty propagation often requires hundreds or thousands of solutions to the parameterized 
system in order to adequately characterize uncertainties; in-situ structural health monitoring 
requires such solutions to be computed in near real time. As a result, employing truly high-
fidelity models characterized by large-scale systems of algebraic equations (e.g., arising from 
a fine spatial discretization) is often computationally intractable. To mitigate this computa-
tional burden, analysts often replace such computationally expensive high-fidelity ‘full-order
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models’ (FOMs) with computationally inexpensive surrogate models, which can be catego-
rized as (i) data fits, which construct a regression model (e.g., via polynomial interpolation)
that directly approximates the mapping from (parameter) inputs to (quantity-of-interest)
outputs; (ii) lower-fidelity models, which introduce modeling simplifications (e.g., coarsened
mesh, neglected physics); and (iii) reduced-order models (ROMs) constructed by performing
a projection process on the equations governing the high-fidelity model to reduce the state-
space dimensionality. Although typically more intrusive to implement, ROMs often yield more
accurate approximations than data fits, and usually generate more significant computational
gains than lower-fidelity models. For this reason, this work considers ROMs as the surrogate
of interest. See, e.g., Refs. [5, 37, 19] for reviews on reduced-order-modeling techniques.

To rigorously apply ROMs within a decision-making scenario, their error with respect
to the FOM must be quantified and properly accounted for in the ultimate prediction or
assessment. In uncertainty quantification (UQ) applications, for example, the epistemic un-
certainty∗ introduced by the surrogate model should be statistically quantified [13, 29, 35];
on the other hand, risk-averse scenarios may demand a deterministic bound on a quantity of
interest to ensure it does not exceed a specified threshold.

To this end, a variety of approaches have been proposed to quantify the error introduced
by reduced-order models.

1. Error indicators. Error indicators are quantities that are informative of the error,
yet are relatively inexpensive to compute. One example is the residual norm, i.e.,
the norm of the FOM residual evaluated at the ROM solution. This quantity can
be used as an error indicator to guide greedy methods for parameter-space sampling
[7, 6, 20, 1, 46, 48] and when employing ROMs within a trust-region setting [50, 49].
Alternatively, dual-weighted residuals employed in adjoint error estimation provide a
first-order approximation of the error in a scalar-valued quantity of interest; they are
often used for error estimation and adaptive mesh refinement, as well as in nonlinear
model reduction [31, 8]. Unfortunately, error indicators alone are not easily amenable
to UQ, as they generate a prediction of the error that is both deterministic and is
often significantly biased.

2. A posteriori error bounds. These approaches derive deterministic bounds for the norm
of either the state error or (quantity-of-interest) output error; they typically require
evaluating the FOM residual at the ROM solution, as well as stability/continuity
constant bounds, and dual quantities related to the quantity of interest. Such ap-
proaches aim to derive bounds that are rigorous, sharp, and inexpensive to compute
[42]. However, these objectives are often competing, as improving bound sharpness
can significantly increase the computational cost [23, 22]. Heuristic strategies to speed
up error bound evaluation have been proposed [25, 28, 45], which yield error estimates
rather than strict bounds. Alternatively, Ref. [18] proposes a hierarchical error esti-
mator that can compute sharper estimates without requiring the computation of these
constants, at the cost of solving a higher-dimensional ROM. Similarly to error indi-
cators, deterministic error bounds are not directly useful for UQ applications, where
a probability distribution for the ROM error is more amenable to quantifying the
ROM-induced epistemic uncertainty.

∗The ROM error can be considered a source of epistemic uncertainty, as it can be reduced by employing
either the original high-fidelity model or a higher-fidelity surrogate model.
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3. Error models. These methods directly construct a regression model for the ROM error,
i.e., they construct an approximation of the mapping from chosen regression-model
inputs (or features) to a prediction of the ROM error. Nearly all approaches in this cat-
egory employ the parameter inputs as the regression-model inputs [16, 33, 30, 14, 34].
These approaches are effective when the ROM error exhibits a low variability in the
parameter space and the parameter space is low dimensional. However, the ROM
error is often a highly oscillatory function of the inputs and the parameter space
dimension is often high-dimensional in many practical settings, which can cause the
approach to fail [33, 13]. The reduced-order-model error surrogates (ROMES) method
[13] addresses this problem in the case of stationary systems. Rather than employing
parameter inputs as regression-model inputs, the ROMES method instead employs
the aforementioned error indicators and rigorous error bounds for this purpose. Be-
cause these quantities are cheaply computable, low-dimensional, and are often highly
informative of the ROM error, the resulting error model is typically computationally
inexpensive to evaluate, exhibits low variance, and can be sufficiently trained and
validated using a relatively small amount of training data. Further, because the ap-
proach employs Gaussian-process regression, its prediction corresponds to a Gaussian
random variable for the ROM error that can be readily integrated into UQ analyses;
the variance of this random variable can be interpreted as the ROM-induced epistemic
uncertainty. Ref. [41] extended this work to dynamical systems; rather than requiring
the user to hand select a small number of error indicators, this approach employs high-
dimensional regression models from machine learning (e.g., LASSO, random forests)
to enable a large number of candidate error indicators to be used as inputs of the
error model. Ref. [15] also extended the method in several ways: (1) it enabled the
quantity-of-interest errors incurred by any approximate solution to be quantified, (2) it
proposed a much wider range of inexpensive-to-compute residual-based features (e.g.,
gappy POD approximation of the residual), and (3) it applied a wide range of re-
gression methods of varying capacity (e.g., support vector regression, artificial neural
networks) within a model-selection framework.

Due to its ability to generate inexpensive-to-evaluate, low-variance, statistical error models
that can be trained with relatively small amounts of training data, this work considers the
ROMES method for constructing error models. We focus in particular on addressing one
major shortcoming of the approach: it requires constructing of a separate error model for
each quantity of interest. In many engineering applications, the analyst is often interested in
field quantities (e.g., the solution field itself, the pressure field); constructing an error model
for each element of the associated discrete error vector—whose dimension is the same as that of
the full-order model—is computationally intractable. Alternatively, in exploratory contexts,
the analyst may not have a priori knowledge of which quantities will be of interest; while
ROMES models for each quantity of interest could in principle be constructed a posteriori in
this case, this violates the natural offline–online decomposition leveraged by model reduction.

To address these shortcomings of the ROMES method, this work proposes to construct a
statistical model for the state error itself. To avoid the need to construct a model for each
element of the high-dimensional state error vector, the approach decomposes the state error
into the in-plane error (i.e., the component belonging to the low-dimensional trial subspace)
and the out-of-plane error (i.e., the component orthogonal to the trial subspace). Because
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the orthogonal complement of the trial subspace is high dimensional, the method employs a
low-dimensional subspace—which is orthogonal to the trial subspace—to represent the out-
of-plane error. Then, the method constructs a statistical error model for each generalized
coordinate characterizing the low-dimensional representations of the in-plane and out-of-plane
errors. The error model for the in-plane error can be considered a statistical closure model,
as it aims to model the error in the preserved state variables (i.e., the generalized coordinates
of the ROM solution) due to omitting the remaining variables from the formulation. The
resulting error model can then be employed to statistically quantify the error in the entire
state. Further, it can be used to generate an error model for any quantity of interest (including
field quantities) a posteriori by propagating the state error through the associated quantity-
of-interest functional. Numerical experiments demonstrate the ability of the method (1) to
improve (expected) ROM prediction accuracy by an order of magnitude, (2) to statistically
quantify the error in arbitrary quantities of interest a posteriori, and (3) to realize a more
cost-effective methodology for reducing the error than a ROM-only approach in the case of
nonlinear stationary systems.

We note that many existing works have proposed closure models for reduced-order models;
see, e.g., Refs [43, 24, 39, 36, 47]. However, these methods are all applied to dynamical
systems (typically in the context of fluid dynamics), and none of these techniques constructs
a statistical model, which is essential for uncertainty quantification.

The paper is structured as follows. Section 2 formulates the problem by presenting the
full-order model, the reduced-order model, and the state and quantity-of-interest errors as-
sociated with parameterized systems of algebraic equations. Section 3 describes the decom-
position of the state error into in-plane and out-of-plane components, as well as computable
dual-weighted-residuals that approximate the error in the associated generalized coordinates.
Section 4 describes the proposed approach, i.e., the proposed statistical model (Section 4.1),
the proposed error indicators (Section 4.2), a summary of Gaussian-process regression (Sec-
tion 4.3), the application of the method to construct statistical error models for the state and
quantities of interest (Section 4.5), and the offline–online decomposition of the approach (Sec-
tion 4.6). Finally, Section 5 presents numerical experiments that assess the proposed method
on both linear and nonlinear stationary systems, focusing particularly on model validation,
the expected accuracy of the error models, and the computational efficiency of the proposed
technique.

2. Problem formulation. This section presents the formulations of the FOM and ROM
(with attendant state and quantity-of-interest errors) in the context of stationary systems.

2.1. Full-order model. In this work, the FOM corresponds to a stationary system mod-
eled as a parameterized system of algebraic equations

(2.1) r(x;µ) = 0,

where r : (w;ν) 7→ r(w;ν) with r : RN ×D → RN denotes the residual operator, µ ∈ D ⊂ Rd
denotes the system parameters, and x ≡ x(µ) ∈ RN denotes the state implicitly defined as the
solution to (2.1) given parameters µ. If the residual operator r is linear in its first argument,
then it takes the form

(2.2) r : (w;ν) 7→ b(ν)−A(ν)w
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where b : D → RN and A : D → RN×N? denote the (parameterized) right-hand-side vector
and the system matrix, respectively, and Rm×n? denotes the set of full-column rank m × n
matrices (the non-compact Stiefel manifold). If instead the residual is nonlinear in its first
argument, then Eq. (2.1) can be solved iteratively, e.g., via globalized Newton’s method by
executing the following iterations: given initial guess x(0), solve the linear system

∂r

∂w
(x(k−1);µ)δx(k) = −r(x(k−1);µ),

and set
x(k) = x(k−1) + α(k)δx(k),

for k = 1, . . . ,K, where α(k) ∈ R denotes a step length that can be computed to ensure global
convergence (e.g., by satisfying the strong Wolfe conditions), and K is determined by the
satisfaction of a convergence criterion. Many practical scenarios in science and engineering
are characterized by the following attributes:

1. The FOM is high-dimensional, i.e., N is large. This arises when the FOM corresponds
to the fine spatial discretization of a stationary partial-differential-equations problem,
for example.

2. The primary goal of the analysis is compute quantities of interest that are functionals
of the state, i.e., for a given parameter instance µ, the goal is to compute q(µ) with
q : ν 7→ s(x(ν);ν) and s : RN ×D → Rs denoting the quantity-of-interest functional.

3. The scenario is many-query in nature, i.e., it requires the computation of q(µ) for
µ ∈ Donline ≡ {µ?i }nonline

i=1 ⊆ D with nonline large. This arises in parameter studies, UQ
applications, and design-optimization settings, for example.

In such cases, simply solving Eq. (2.1) for µ ∈ Donline and subsequently computing the
quantities of interest is usually computationally intractable, and a surrogate model is required
to reduce the computational cost. As discussed in the introduction, this work focuses on
applying reduced-order models for this purpose.

2.2. Reduced-order model. Reduced-order models reduce the dimensionality of the FOM
governing equations (2.1) via projection. In particular, they seek approximate solutions
xROM ≈ x in an n-dimensional affine trial subspace (with n� N), i.e.,

(2.3) xROM(µ) = xref(µ) + Φx̂(µ) ∈ xref(µ) + V,

with xROM : D → RN . Here, xref : D → RN denotes a reference state (e.g., the mean of
the snapshots in the case of proper orthogonal decomposition); the trial-basis matrix Φ ≡
[φ1 · · · φn] ∈ RN×n? may be constructed by a variety of means (e.g., the reduced-basis method
[40, 19, 37], proper orthogonal decomposition [21]); V := Ran(Φ) denotes the linear part of
the affine trial subspace, where Ran(A) denotes the range of matrix A; and x̂ : D → Rn
denotes the generalized coordinates of the ROM solution.

Model-reduction approaches compute the approximate solution by substituting x← xROM

in Eq. (2.1) and enforcing orthogonality of the residual to an n-dimensional linear test sub-
space, which yields the ROM governing equations

(2.4) Ψ(x̂;µ)T r(xref + Φx̂;µ) = 0,

where Ψ : Rn × D → RN×n? denotes the test-basis matrix that generally may depend on the
generalized coordinates and parameters. Common choices for the test basis include Galerkin
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projection, which employs Ψ = Φ, and least-squares Petrov–Galerkin (LSPG) projection
[6, 26, 10], which employs Ψ(x̂;µ) = ∂r

∂w (xref + x̂;µ)Φ and thus associates Eq. (2.4) with the
necessary optimality conditions for a minimum-residual problem; see Ref. [9] for a detailed
comparison of the two approaches in the context of nonlinear dynamical systems. When the
residual operator is nonlinear in its first argument or nonaffine in (functions of) its second
argument, additional ‘hyper-reduction’ techniques must be employed in order to ensure that
the ROM equations (2.4) can be solved with a computational cost that is independent of
the FOM dimension N . Such techniques include the empirical interpolation method (EIM)
[4, 27, 17], its discrete variant DEIM [12, 2], gappy POD [44, 11], and missing point estimation
[3].

Finally, we denote the ROM-predicted output as qROM : ν 7→ s(xROM(ν);ν). Critically,
because the ROM solution approximates the FOM solution, the ROM will generally introduce
both a state error and a quantity-of-interest error

δx : ν 7→ x(ν)− xROM(ν) and δq : ν 7→ q(ν)− qROM(ν),(2.5)

respectively, with δx : D → RN and δq : D → Rs.

3. State error decomposition and approximation. The objective of this work is to com-
pute statistical models of the state error δx and quantity-of-interest error δq in a manner
that does not require identifying the quantities of interest a priori. We now present the
mathematical framework that will be leveraged by the proposed method, which is presented
in Section 4. In particular, this section (1) decomposes the state error δx into in-plane and
out-of-plane errors (Section 3.1), (2) identifies low-dimensional subspaces for each of these
error components (Section 3.2), (3) derives first-order estimates of the generalized coordi-
nates characterizing these error components (Section 3.3), and (4) applies model reduction to
inexpensively approximate these estimates (Section 3.4).

3.1. State error decomposition. We begin by defining the in-plane projector, which is
the linear operator that computes the orthogonal projection onto the linear part V of the
affine trial subspace, as

(3.1) P‖ := Φ(ΦTΘΦ)−1ΦTΘ.

Here, Θ ∈ SPD(N) is a matrix defining an inner product (e.g., the discrete counterpart to
the inner product characterizing a Sobolev space) with (w,y)Θ := wTΘy and ‖w‖Θ :=√

(w,w)Θ, and SPD(N) denotes the set of N ×N symmetric-positive-definite matrices. The
in-plane projector P‖ inherits standard properties of orthogonal projectors, i.e., optimality

(3.2) P‖w = arg min
y∈V

‖w − y‖Θ;

orthogonality (w −P‖w,y)Θ = 0, ∀w ∈ RN , ∀y ∈ V; and idempotency, (P‖)2 = P‖.
The projector enables the state error to be decomposed as

(3.3) δx = δ‖ + δ⊥,

where the in-plane error lies within the linear part V of the affine trial subspace and is defined
as

δ‖ : ν 7→ P‖δx(ν)

: D → V,
(3.4)
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and the out-of-plane error is orthogonal to the linear subspace V and is defined as

δ⊥ : ν 7→ δx(ν)−P‖δx(ν)

: D → V⊥.
(3.5)

We note that (δ⊥(µ),y)Θ = 0, ∀y ∈ V, ∀µ ∈ D, and (δ⊥(µ), δ‖(µ))Θ = 0, ∀µ ∈ D. Figure 1
depicts this error decomposition graphically.

Figure 1. Graphical depiction of the decomposition of the state error δx ∈ RN into the in-plane error
δ‖ ∈ V and the out-of-plane error δ⊥ ∈ V⊥.

We note that the in-plane error δ‖(µ) can be interpreted as the closure error, as the in-
plane error expresses the error in the ‘preserved variables’ (i.e., the solution component in the
affine trial subspace xref +V) incurred by solving equations that omit the ‘neglected variables’
(i.e., the solution component in V⊥).

Remark 3.1 (Necessary conditions for zero in-plane error). The in-plane (i.e., closure) error
δ‖(µ) is zero if the residual r is linear in its first argument such that (2.2) holds and either:
(1) Galerkin projection is employed (i.e., Ψ = Φ), the system matrix is symmetric and
positive definite (i.e., A(µ) ∈ SPD(N)), and the chosen metric is equal to the system matrix
(i.e., Θ = A(µ), or (2) least-squares Petrov–Galerkin (LSPG) projection is employed (i.e.,
Ψ(x̂;µ) = A(µ)Φ) and the chosen metric is equal to the associated normal-equations matrix
(i.e., Θ = A(µ)TA(µ)).

3.2. Low-dimensional representations of the state-error components. We aim to con-
struct statistical models for both the in-plane error δ‖ and out-of-plane error δ⊥; the former
can be considered a statistical closure model. However, the offline cost of constructing a model
for each of the N elements of these error vectors is computationally costly, and the online
complexity of evaluating these models is N -dependent. To mitigate this cost, we instead
aim to construct a statistical model for generalized coordinates representing these errors in
low-dimensional subspaces.

This is a straightforward task for the in-plane error, as δ‖(µ) ∈ V with dim(V) = n� N
by construction, and thus

(3.6) δ‖(µ) = Φδ̂
‖
(µ),

where δ̂
‖

: D → Rn denote the generalized coordinates of the in-plane error that—from the
definition of the in-plane projector (3.1), in-plane error (3.4), and associated decomposition
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(3.6)—satisfies

(3.7) δ̂
‖

: ν 7→ (ΦTΘΦ)−1ΦTΘδx(ν).

In contrast, the out-of-plane error satisfies δ⊥(µ) ∈ V⊥ with dim(V⊥) = N − n. Because
n � N , the subspace V⊥ is high-dimensional. To address this, we approximate the out-of-
plane error in an n⊥-dimensional (with n⊥ � N) linear subspace as

(3.8) δ⊥(µ) ≈ Φ⊥δ̂
⊥

(µ) ∈ V̂⊥ ⊂ V⊥

with

(3.9) δ̂
⊥

: ν 7→ P⊥δ⊥(ν),

where

(3.10) P⊥ := Φ⊥([Φ⊥]TΘΦ⊥)−1[Φ⊥]TΘ

is the orthogonal projection onto the linear subspace V̂⊥; Φ⊥ ∈ RN×n⊥? denotes the out-of-

plane error basis matrix such that V̂⊥ := Ran(Φ⊥); and δ̂
⊥

: D → Rn⊥ denotes the generalized
coordinates of the out-of-plane error that—from the definition of the out-of-plane error (3.5),
the associated approximation (3.8), generalized-coordinate definition (3.9), and out-of-plane
projector (3.10)—satisfies

(3.11) δ̂
⊥

(µ) = ([Φ⊥]TΘΦ⊥)−1[Φ⊥]TΘδx(µ),

where we have used ΦTΘΦ⊥ = 0.
Comparing Eqs. (3.7) and (3.11) and using ΦTΘΦ⊥ = 0 allows the definition of the

(in-plane and out-of-plane) error generalized coordinates

δ̂ : ν 7→
[
δ̂
‖
(ν)

δ̂
⊥

(ν)

]
= Pδx(µ)(3.12)

where

(3.13) P := (Φ̄TΘΦ̄)−1Φ̄TΘ ∈ Rn̄×N , Φ̄ :=
[
Φ Φ⊥

]
∈ RN×n̄?

and n̄ := n+ n⊥.

Remark 3.2 (Out-of-plane basis matrix construction). The out-of-plane basis matrix Φ⊥

can be constructed by a variety of means. For example, if Φ corresponds to a truncated
proper orthogonal decomposition (POD) basis, then Φ⊥ can be set to the (discarded) n + 1
to n̄ POD modes; this idea has also been employed in the context of ROM error estimation
[45]. Alternatively, the basis can be constructed by computing the projection error of FOM
solutions over a parameter set µ ∈ Dout-of-plane ⊂ D such that V̂⊥ ⊆ span{x(µ) − xref −
P‖x(µ)}µ∈Dout-of-plane

.
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3.3. Dual-weighted-residual error estimation. We now derive first-order approximations

for the in-plane-error generalized coordinates δ̂
‖

and out-of-plane-error general coordinates δ̂
⊥

.
Assuming the residual is twice continuously differentiable, we can approximate the residual
of the FOM solution to first order about the residual of the ROM solution as
(3.14)

0 = r(x(µ);µ) = r(xROM(µ);µ) +
∂r

∂w
(xROM(µ);µ)δx(µ) +O(‖δx(µ)‖2), as ‖δx(µ)‖ → 0.

Note that the high-order term is zero if the residual is linear in its first argument, i.e., if (2.2)
holds. Solving for the state error yields

(3.15) δx(µ) = −
[
∂r

∂w
(xROM(µ);µ)

]−1

r(xROM(µ);µ) +O(‖δx(µ)‖2), as ‖δx(µ)‖ → 0.

Substituting Eq. (3.15) in Eq. (3.12) yields

(3.16) δ̂(µ) = −P

[
∂r

∂w
(xROM(µ);µ)

]−1

r(xROM(µ);µ) +O(‖δx(µ)‖2), as ‖δx(µ)‖ → 0.

Defining the ith dual pi : D → RN , i = 1, . . . , n̄ as the solution to the N -dimensional
system of linear equations

(3.17)

[
∂r

∂w
(xROM(µ);µ)

]T
pi(µ) = −PTei, i = 1, . . . , n̄,

where ei ∈ {0, 1}N denotes the ith canonical unit vector, we can express the ith error gener-
alized coordinate as

(3.18) δ̂i(µ) = pi(µ)T r(xROM(µ);µ) +O(‖δx(µ)‖2), as ‖δx(µ)‖ → 0, i = 1, . . . , n̄.

3.4. Reduced-order model approximation to dual-weighted-residual error estimates.
Dual problems (3.17) are linear, even if the original problem (2.1) is nonlinear; however, their
dimension N remains the same as that of the full-order model. Thus, employing the associated
dual vectors for a posteriori error modeling as suggested by Eq. (3.18) is computationally
expensive.

To mitigate this cost, we propose to approximate these duals via model reduction in
analogue to the approach described in Section 2.2 for approximating the state. First, we
approximate the duals as pi ≈ p̃i, i = 1, . . . , n̄, where

p̃i(µ) = Φp,ip̂i(µ), i = 1, . . . , n̄(3.19)

where Φp,i ∈ RN×np,i
? denote the dual trial-basis matrices, p̂i : D → Rnp,i , and np,i � N

for i = 1, . . . , n̄. As in the case of the trial-basis matrix Φ, the trial-basis matrices Φp,i,
i = 1, . . . , n̄ can be constructed by a variety of means, e.g., the reduced-basis method, POD.
We then substitute pi ← p̃i in Eqs. (3.17) and enforce orthogonality of the residual to the

range of associated test basis matrices Ψp,i(µ) ∈ RN×np,i
? , i = 1, . . . , n̄ to obtain the ROM

systems of equations

[Ψp,i(µ)]T
[
∂r

∂w
(xROM(µ);µ)

]T
Φp,ip̂i(µ) = −[Ψp,i(µ)]TΘΦ(ΦTΘΦ)−1ei,(3.20)



10

for i = 1, . . . , n̄, whose solutions define the generalized coordinates p̂i, i = 1, . . . , n̄.
As before, a Galerkin projection corresponds to Ψp,i = Φp,i, i = 1, . . . , n̄, while an LSPG

projection corresponds to Ψp,i(µ) =
[
∂r
∂w (xROM(µ);µ)

]T
Φp,i i = 1, . . . , n̄. Again, if the resid-

ual operator is nonlinear in the state or nonaffine in functions of the parameter inputs, then
hyper-reduction is required to ensure the cost of assembling the linear systems in Eqs. (3.20)
does not scale with the dimension N .

Now, substituting pi ← p̃i Eqs. (3.18) and ignoring high-order terms yields cheaply com-
putable approximations to the in-plane and out-of-plane error generalized coordinates

δ̂i(µ) ≈ [p̃i(µ)]T r(xROM(µ);µ), i = 1, . . . , n̄.(3.21)

Note that the approximation is induced by the use of a model reduction to approximate the
duals, as well as truncation error in the case of nonlinear FOM equations (2.1). The next
section describes how this approximation to the error generalized coordinates can be used to
construct a statistical model of the state error.

Remark 3.3 (Unique v. shared dual bases). The strategy outlined above for applying model
reduction to the dual problems requires the construction of n̄ dual trial-basis matrices and
dual test-basis matrices Φp,i and Ψp,i, i = 1, . . . , n̄, respectively. If each of these basis matrices
is unique, then the cost of solving Eqs. (3.20) is approximately 2/3

∑n̄
i=1 n

3
p,i + 2

∑n̄
i=1 n

2
p,i;

this cost is small if each dual trial-basis matrix dimension np,i is small. However, each of the
basis matrices must be trained independently; in the event of limited training, these basis
matrices individually may be too low-dimensional to generate accurate dual approximations
p̃i, which can lead to large approximation errors.

Alternatively, one may employ a single ‘shared’ dual trial-basis matrix Φp ∈ RN×np
? and

test-basis matrix Ψp ∈ RN×np
? such that Φp,i = Φp and Ψp,i = Ψp, i = 1, . . . , n̄. In this

case—because each of the linear systems (3.20) is characterized by the same system matrix—
the cost of solving the resulting systems is approximately 2/3n3

p + 2n̄n2
p. In many cases, this

cost is significant, as the dimension np is typically large, due to the fact that the basis is
constructed from jointly training all duals; in the worst case, if np =

∑n̄
i=1 np,i, then the

cost is 2/3(
∑n̄

i=1 np,i)
3 + 2n̄(

∑n̄
i=1 np,i)

2. On the other hand, this approach often requires less
training to compute a trial-basis matrix with good approximation properties, as information
across all dual solutions informs the basis.

4. ROMES error models. We now leverage the framework presented in Section 3 to
describe the application of the ROMES method [13] to construct statistical models of the
in-plane and out-of-plane error generalized coordinates using indicators corresponding to the
approximated dual-weighted residuals. Section 4.1 describes the formulation for the statistical
model, Section 4.2 describes the error indicator (i.e., feature) we employ, Section 4.3 provides
an overview of Gaussian-process regression, which is the technique we employ to construct
the statistical model, Section 4.5 describes the application of ROMES error models to obtain
statistical models for the state and quantities-of-interest errors, and Section 4.6 describes the
offline/online computational strategy employed to realize the method in practice.

4.1. Statistical model. Our objective is to construct a low-dimensional, statistical model
of the high-dimensional, deterministic, and generally unknown ROM error. The probability
distribution of the random variable representing the ROM error reflects the epistemic un-
certainty about its value. Define a probability space (Ω,F , P ). We aim to approximate the
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high-dimensional deterministic mappings

mi : ν 7→ δ̂i(ν), i = 1, . . . , n̄(4.1)

with mi : D → R and d possibly large, by univariate stochastic mappings

m̃i : ρi(ν) 7→ δ̃i(ν), i = 1, . . . , n̄(4.2)

respectively, where ρi : D → R, i = 1, . . . , n̄ denote error indicators and δ̃i(ν) : Ω → R,
i = 1, . . . , n̄ denote random variables for the error generalized coordinates. The stochastic
mapping should satisfy the following desiderata (see Refs. [13, 15]):

1. the error indicators are cheaply computable given any µ ∈ D;
2. the stochastic mappings exhibit low variance, i.e., E[(m̃i(ρi(µ)) − E[m̃i(ρi(µ))])2] is

‘small’ for all µ ∈ D (this ensures the ROM-induced epistemic uncertainty is small);
and

3. the stochatic mappings are validated, i.e., the (empirical) distribution of test data is
‘close’ to the (reference) distribution prescribed by the stochastic mappings (using,
e.g., prediction intervals, the Komolgorov–Smirnov test).

We now describe choices of error indicators and stochastic-mapping methods that lead to
statistical models satisfying the above conditions.

4.2. Error indicators. The error indicator should be selected so that it is both cheaply
computable (Condition 1 above) and can lead to a low-variance stochastic mapping (Condition
2 above); the latter condition implies that the error indicator should be informative of the
error such that the mean of the stochastic mapping can explain most of the variance in the
observed error.

Inspired by the analysis of Section 3, and Eq. (3.21) in particular, we propose employing
the approximated dual-weighted residual as an error indicator, i.e.,

(4.3) ρi(µ) = [p̃i(µ)]T r(xROM(µ);µ), i = 1, . . . , n̄.

From Eq. (3.21), we can see that δ̂i(µ) ≈ ρi(µ), where the approximation arises both to the
use of model reduction to approximate the duals and truncation error when the residual is
nonlinear in the state.

4.3. Gaussian-process regression. As in Ref. [13], we propose to construct the stochastic
mappings m̃i, i = 1, . . . , n̄ using Gaussian process (GP) kernel regression [38], which is a
supervised machine learning method. We first provide a brief review of this technique. A GP
is a collection of random variables such that any finite number of them has a joint Gaussian
distribution. GP kernel regression computes this GP by Bayesian inference using a kernel
function and training data T = {(xi, yi)}ntrain

i=1 , where xi ∈ Rnx and yi ∈ R denote the ith
instance of the features and response, respectively. We consider a single prediction point
characterized by features x? ∈ Rnx , as we treat all predictions as arising from independent
samples of the GP. First, the approach sets the prior distribution to

(4.4) ỹprior(x) ∼ N
(
Hβ,K(x,x) + σ2I

)
.

Here, x := [x1 · · · xntrain+1]T ∈ R(ntrain+1)×nx with xi = xi, i = 1, . . . , ntrain and xntrain+1 =

x?; element (i, j) of the matrix H ∈ R(ntrain+1)×nh is [H]ij := hj(xi) with hj : Rnx → R,
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j = 1, . . . , nh denoting the considered basis functions (e.g., polynomials); β ∈ Rnh denotes the
basis-expansion coefficients; and σ2 denotes the additive noise arising from the non-uniqueness
of the mapping from the features to the response. Element (i, j) of the kernel matrix K(w, z)
with w := [w1 · · · wnw ] and z := [z1 · · · znz ] is

(4.5) [K(w, z)]ij := κ(wi, zj), i = 1, . . . , nw, j = 1, . . . , nz

and many choices of the kernel function κ exist. The kernel function is typically characterized
by its own hyperparameters θκ, e.g., the length scale in the case of the squared exponential
kernel. Given the training data T and fixed values of the coefficients β, noise variance σ2, and
kernel hyperparameters θκ, the prediction corresponds to a random variable with posterior
distribution

(4.6) ỹ(x?;θ) ∼ N
(
ν(x?), σ̄2(x?)

)
with

ν(x?) := K(x?,x)(K(x,x) + σ2I)−1y + [h1(x?) · · · hnh
(x?)]β(4.7)

σ̄2(x?) := K(x?,x?)−K(x?,x)(K(x,x) + σ2I)−1K(x,x?) + σ2,(4.8)

where y := [y1 · · · yntrain ]T and x := [x1 · · · xntrain ]. Indeed, computing the posterior
using the training data is a simple operation derived from conditioning a joint Gaussian
distribution†. The parameters β, σ2, and hyperparameters characterizing the kernel θκ can
be set in a variety of ways, e.g., via maximum likelihood estimation (as in Ref. [13]), cross-
validation.

4.4. Gaussian-process ingredients and cross-validation for ROMES. In this work, we
specify the GP ingredients as follows. Following the ROMES method [13] and the presentation
of Section 4.1, we propose to apply GP regression to (independently) construct each of the
mappings m̃i, i = 1, . . . , n̄, wherein the feature corresponds to the prescribed error indicator
(i.e., x = ρi with nx = 1), and the response corresponds to the error generalized coordinate
(i.e., y = δ̂i). Eqs. (3.21) and (4.3) illustrate that the relationship between the features and
the response is approximately linear in this case; it is exactly linear if the approximated dual
is exact (i.e., pi = p̃i) and the when the residual operator r is linear in its first argument (i.e.,
Eq. (2.2) holds). Thus, we select the basis functions in the mean of the prior distribution
(4.4) to enable linear responses, i.e., h1 : ρi 7→ 1, h2 : ρi 7→ ρi with nh = 2.

For training the ROMES models, we employ training data comprising indicator–error pairs
computed at ROMES-training parameter instances DROMES ⊂ D with |DROMES| = ntrain, i.e.,
the training data for model m̃i corresponds to

Ti := {(ρi(µ), δ̂i(µ))}µ∈DROMES
, i = 1, . . . , n̄.(4.9)

†In this respect, consider the fundamental result(
v
w

)
∼ N

((
νv

νw

)
,

(
Σvv Σvw

ΣT
vw Σww

))
⇒ v|w ∼ N (νv|w,Σv|w),

where νv|w = νv + ΣvwΣ−1
ww(w − νw) and Σv|w = Σvv −ΣvwΣ−1

wwΣT
vw.
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Recall that the error generalized coordinates δ̂(µ) can be computed from Eq. (3.12); this
expression requires computing the state error δx(µ), which in turn requires computing both
the FOM state x(µ) and ROM state xROM(µ).

Given training data Ti, we train model m̃i as follows: we determine the hyperparmeters
θi ≡ (σ2

i ,θκ,i) using K-fold cross validation with specialized loss functions that target different
interpretations of statistical validation (condition 3 in Section 4.1), and we determine the
coefficients βi using maximum likelihood estimation. In particular, we first separate the
ROMES training data Ti into K non-overlapping subsets Ti,j , j = 1, . . . ,K such that Ti =
∪Kj=1Ti,j and Ti,j ∩ Ti,k = ∅, j 6= k. We then define a set of candidate hyperparameter values

Θ. For each candidate value of the hyperparameters θ ≡ (σ2,θκ) ∈ Θ, we compute the values
of basis-expansion coefficients using maximum likelihood estimation as

(4.10) βi,j(θ) =
(
[1 ρi,j ]

T (K(ρi,j ,ρi,j) + σ2I)−1[1 ρi,j ]
)−1

[1 ρi,j ]
T (K(ρi,j ,ρi,j)+σ

2I)−1δ̂i,j ,

where ρi,j ∈ R|Ti\Ti,j | and δ̂i,j ∈ R|Ti\Ti,j | denote the vectorized features and responses associ-
ated with training set Ti \ Ti,j , and 1 denotes a vector of ones. Note that we have suppressed
the dependence of the kernel matrix K on the hyperparameters θκ for notational simplicity.
The values θ and βi,j(θ) define a candidate ROMES model m̃i,j characterized by

(4.11) m̃i,j(ρi(µ);θ) = δ̃i,j(µ;θ) ∼ N
(
νi,j(ρi(µ);θ), σ̄2

i,j(ρi(µ);θ)
)
, i = 1, . . . , n̄

with

νi,j(ρ;θ) := K(ρ,ρi,j)(K(ρi,j ,ρi,j) + σ2I)−1δ̂i,j + [1 ρ]βi,j(θ)(4.12)

σ̄2
i,j(ρ;θ) := K(ρ, ρ)−K(ρ,ρi,j)(K(ρi,j ,ρi,j) + σ2I)−1K(ρi,j , ρ) + σ2.(4.13)

Subsequently, each candidate value of the hyperparameters θ ∈ Θ is assigned a loss Li(θ)
with

(4.14) Li(θ) ≡ 1

K

K∑
j=1

Li,j(θ),

where Li,j(θ) denotes the loss for the ith ROMES model on the jth validation set correspond-
ing to hyperparameters θ. We then set the hyperparameters for the ith ROMES model to be
the minimizer of the associated loss over the validation set, i.e.,

(4.15) θi = arg min
θ∈Θ

Li(θ).

One benefit of this cross-validation approach is that it admits flexibility in selecting the loss
function Li,j(θ), which determines hyperparameter selection. Because one of our objectives
is to achieve statistical validation (condition 3 in Section 4.1), we can define this loss function
to align with different notions of statistical validation; this is particularly important when
the errors do not exhibit a Gaussian distribution, as this case precludes the ability to achieve
statistical validation in every possible metric. We thus propose the following loss functions:

1. the negative log-likelihood
(4.16)

Llikelihood,i,j(θ) :=
|Ti,j |

2
ln(2π) +

1

2

∑
ρ∈Ti,j

ln(σ̄i,j(ρ;θ)2) +
1

2

∑
(ρ,δ̂)∈Ti,j

(δ̂ − νi,j(ρ;θ))2

σ̄i,j(ρ;θ)2
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2. the matching of a ω-prediction interval with ω ∈ (0, 1), i.e.,

(4.17) Lω,i,j(θ) = (ω − ωi,j(ω;θ))2;

where the validation frequency is

(4.18) ωi,j(ω;θ) :=
|{(ρ, δ̂) ∈ Ti,j | δ̂ ∈ Ci,j(ρ, ω;θ)}|

|Ti,j |
,

with prediction interval

Ci,j(ρ, ω;θ) := [νi,j(ρ;θ)−
√

2σ̄i,j(ρ;θ)erf−1(ω), νi,j(ρ;θ) +
√

2σ̄i,j(ρ;θ)erf−1(ω)].

(4.19)

3. the Komolgorov–Smirnov statistic, i.e., LKS,i,j(θ), which measures the maximum
discrepancy between the cumulative distribution function (CDF) of the standard
Gaussian distribution N (0, 1) and the empirical CDF of the standardized data {δ̂ −
νi,j(ρ;θ))/σ̄i,j(ρ;θ)}(ρ,δ̂)∈Ti,j .

We also consider a linear combination of these proposals to be employed as the loss function
Li,j , e.g., a linear combination of the losses Lω,i,j for different values of ω.

After the hyperparameters θi have been computed according to Eq. (4.15) the associ-
ated basis-expansion coefficients are computed via maximum likelihood estimation on the full
training set Ti as

(4.20) βi =
(
[1 ρi]

T (K(ρi,ρi) + σ2
i I)−1[1 ρi]

)−1
[1 ρi]

T (K(ρi,ρi) + σ2
i I)−1δ̂i,

where ρi ∈ R|Ti| and δ̂i ∈ R|Ti| denote the vectorized features and responses associated with
training set Ti.

Given the hyperparameters θi and basis-expansion coefficients βi, the statistical models
for the error generalized coordinates at arbitrary prediction parameter instances µ ∈ Donline

are

(4.21) δ̃i(µ) = m̃i(ρi(µ)) ∼ N
(
νi(ρi(µ)), σ̄2

i (ρi(µ))
)
, i = 1, . . . , n̄,

where νi and σ̄2
i denote the mean and variance associated with the GP model for ith error

generalized coordinate, defined as

νi(ρi(µ)) := K(ρi(µ),ρi)(K(ρi,ρi) + σ2
i I)−1δ̂i + [1 ρi(µ)]βi(4.22)

σ̄2
i (ρi(µ)) := K(ρi(µ), ρi(µ))−K(ρi(µ),ρi)(K(ρi,ρi) + σ2

i I)−1K(ρi, ρi(µ)) + σ2
i .(4.23)

4.5. State and quantity-of-interest statistical models. Recall from Eqs. (3.3), (3.6), and
(3.8) that we can approximate the state error as

δx(µ) ≈ Φδ̂
‖
(µ) + Φ⊥δ̂

⊥
(µ),(4.24)

where the approximation arises from the low-dimensional approximation of the out-of-plane
error from expression (3.8). Replacing the error generalized coordinates with their statistical
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models such that δ̂
‖ ← δ̃

‖
and δ̂

⊥ ← δ̃
⊥

with δ̃
‖
i := δ̃i, i = 1, . . . , n and δ̃⊥i := δ̃i+n,

i = 1, . . . , n⊥ in expression (4.24) yields a statistical model for the state of the form

δ̃x : ν 7→ Φδ̃
‖
(ν) + Φ⊥δ̃

⊥
(ν),(4.25)

where δ̃x(ν) : Ω → RN is an N -vector of Gaussian random variables whose ith entry has a
probability distribution

(4.26) δ̃x,i(ν) ∼ N

 n̄∑
j=1

φ̄ijνj(ρj(ν)),
n̄∑
j=1

φ̄ij σ̄
2
j (ρj(ν))

 .

Substituting δx ← δ̃x in the definition of the state error (2.5) yields a statistical model for
the state, which comprises deterministic and stochastic components, i.e.,

x̃ : ν 7→ xROM(ν)︸ ︷︷ ︸
deterministic

+ δ̃x(ν)︸ ︷︷ ︸
stochastic

(4.27)

such that x̃(ν) : Ω → RN is also an N -vector of Gaussian random variables whose ith entry
is distributed as

(4.28) x̃i(ν) ∼ N

xROM,i(ν) +
n̄∑
j=1

φ̄ijνj(ρj(ν)),
n̄∑
j=1

φ̄ij σ̄
2
j (ρj(ν))

 .

Substituting this state model into the quantity-of-interest functional yields the corresponding
statistical model for the quantity of interest

q̃ : ν 7→ s(x̃(ν);ν)(4.29)

and associated quantity-of-interest error model

δ̃q : ν 7→ q̃(ν)︸︷︷︸
stochastic

− qROM(ν)︸ ︷︷ ︸
deterministic

,(4.30)

where q̃(ν), δ̃q(ν) : Ω → Rs are s-vectors of random variables, which are Gaussian if the
quantity-of-interest functional s is linear in its first argument.

4.6. Offline/online decomposition. Algorithms 4.1 and 4.2 describe the steps required
for the offline and the online stages of the proposed method, respectively. If hyper-reduction
is applied to the ROM governing equations (2.4) or ROM dual system (3.20), then hyper-
reduction steps can be integrated in the standard way, i.e., through additional data collection
during the offline stage. We now highlight several attributes of the proposed method.

Remark 4.1 (Offline stage: training cost). The primary cost of Steps 3–5 of Algorithm
4.1 during the offline stage is incurred by the need to solve the FOM equations (2.1) for
µ ∈ DROMES, the ROM equations (2.4) for µ ∈ Ddual ∪ DROMES, and the dual ROMs (3.20)
for µ ∈ Ddual. If POD is employed in step 1 of Algorithm 4.1 to compute the trial reduced
basis matrix, then the FOM equations (2.1) must be also solved for µ ∈ DPOD. To reduce
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Algorithm 4.1 Offline stage

Input: Training parameter sets Ddual,DROMES ⊂ D
Output: Reduced basis matrices Φ; Ψ; Φp,i, i = 1, . . . , n̄; Ψp,i, i = 1, . . . , n̄; and ROMES

models m̃i, i = 1, . . . , n̄
1: Construct trial reduced basis matrix Φ and test reduced basis matrix Ψ. For example,

the trial reduced basis matrix Φ can be constructed via POD using states computed by
solving the FOM equations (2.1) at training points µ ∈ DPOD and the test reduced basis
matrix Ψ can be subsequently defined by employing Galerkin or LSPG projection.

2: Construct the out-of-plane error basis matrix Φ⊥, e.g., from the discarded POD modes or
by computing the projection error of the FOM solutions for a parameter set (see Remark
3.2).

3: Construct the dual trial-basis matrices Φp,i, i = 1, . . . , n̄ via POD using dual vectors
computed from solving the ROM equations (2.4) for i = 1, . . . , n̄ and subsequently the
dual equations (3.17) for µ ∈ Ddual. Subsequently, set the dual test-basis matrices Ψp,i,
i = 1, . . . , n̄ via Galerkin or LSPG projection.

4: Compute ROMES training data Ti, i = 1, . . . , n̄ by computing ρi(µ), δ̂i(µ), µ ∈ DROMES.
Computing the state error generalized coordinates δ̂i requires solving FOM equations (2.1)
and ROM equations (2.4) for µ ∈ DROMES, and subsequently projecting the state error
via Eq. (3.12). Computing the error indicators ρi requires additionally solving the dual
ROMs (3.20) and computing the indicators via Eq. (4.3).

5: Construct ROMES models m̃i, i = 1, . . . , n̄ by Gaussian-process regression (Section 4.4).

Algorithm 4.2 Online stage

Input: Online parameter instance µ? ∈ Donline ⊂ D; reduced basis matrices Φ; Ψ; Φp,i,
i = 1, . . . , n̄; Ψp,i, i = 1, . . . , n̄; and ROMES models m̃i, i = 1, . . . , n̄

Output: Statistical models for the state x̃(µ?), state error δ̃x(µ?), quantity of interest q̃(µ?),
and quantity-of-interest error δ̃q(µ?)

1: Compute ROM state xROM(µ?) by solving ROM equations (2.4) for µ = µ?.
2: Compute approximate dual solutions p̃i(µ

?), i = 1, . . . , n̄ by solving Eqs. (3.20) and
evaluating Eqs. (3.19).

3: Compute dual-weighted-residual error indicators ρi(µ
?), i = 1, . . . , n̄ via Eqs. (4.3).

4: Evaluate ROMES models for the error generalized coordinates δ̃i(µ
?) = m̃i(µ

?), i =
1, . . . , n̄ via Eqs. (4.21).

5: Compute statistical models for the state x̃(µ?) (Eq. (4.27)), state error δ̃x(µ?)
(Eq. (4.25)), quantity of interest q̃(µ?) (Eq. (4.29)), and quantity-of-interest error δ̃q(µ?)
(Eq. (4.30))

the training burden, these sets can overlap, although this risks sacrificing generalizability of
the statistical models. For example, if POD is used to compute Φ in Step 1 of Algorithm
4.1 and one employs DROMES ⊆ DPOD, then no additional FOM solves are required; however,
the ROMES training data Ti, i = 1, . . . , n̄ will likely include only small-magnitude errors
(i.e., ‖δ̂i(µ)‖ small for µ ∈ DROMES), as the ROM is typically accurate over the training set
DPOD. Thus, the ROMES models may be not generalize to parameter instances corresponding
to large-magnitude ROM errors. Similarly, one could employ DROMES ⊆ Ddual to avoid
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additional ROM solves; however, this would lead to a training set with extremely accurate
error indicators (i.e., ρi(µ) accurately represents of the error δ̂i(µ) for µ ∈ DROMES), as the
dual ROM is typically accurate over the associated training set Ddual. Thus, the ROMES
models may not generalize to parameter instances corresponding to large-magnitude dual-
ROM errors.

Remark 4.2 (Offline stage: specifying quantities of interest not required). Unlike the origi-
nal ROMES method [13], the proposed approach does not require prescribing the quantities of
interest in the offline stage. This is apparent from Algorithm 4.1: no steps require specification
of these quantities, and Step 5 of Algorithm 4.1 constructs ROMES models for the general-
ized coordinates only. Instead, the quantities of interest must be prescribed only in the online
stage. This facilitates exploratory scenarios wherein the analyst may not know a priori which
quantities are of interest; further, it enables the statistical models of high-dimensional quan-
tities of interest characterized by s ‘large’ (e.g., field quantities) to be efficiently computed, as
the quantity-of-interest models q̃ and δ̃q can be obtained by substituting the low-dimensional
state-error model δ̃x in the quantity-of-interest functional s in Step 5 of Algorithm 4.2.

Remark 4.3 (Online stage: comparison with a ‘ROM-only’ approach). Note that typical
‘ROM-only’ approaches execute only Step 1 of Algorithm 4.2 and directly employ xROM(µ?)
as an approximation to x(µ?) and qROM(µ?) as an approximation to q(µ?); some approaches
additionally compute bounds for the approximation errors ‖x(µ?)−xROM(µ?)‖ and ‖q(µ?)−
qROM(µ?)‖.

In contrast, the proposed approach computes statistical models for the FOM state x̃(µ?)
and quantity of interest q̃(µ?) via Steps 2–5 of Algorithm 4.2, which can be directly employed
as statistical models for those quantities that model their epistemic uncertainty. However, this
benefit incurs an additional computational cost through the execution of Steps 2–5. Thus,
even if the proposed approach is able to generate more accurate predictions of the state and
quantity of interest for a fixed ROM dimension n, it does so at an increased cost. It is unclear
a priori whether this approach is more computationally efficient than a ‘ROM-only’ approach,
as a larger ROM dimension n could be employed in the ROM-only approach to match the
computational cost of the proposed method while also increasing its accuracy.

However, we note that the additional cost of the proposed method is dominated by the
dual ROM solves performed in Step 2. These dual ROM equations (3.20) are always linear in
their first argument, even when the ROM equations (2.4) are nonlinear in their first argument.
Thus, we expect the proposed method to perform favorably relative to a ROM-only approach
when the governing equations are nonlinear.

5. Numerical Results. This section assesses the ability of the proposed method to con-
struct accurate error models on two model problems. Experiments in Section 5.1 consider the
Sobolev H1(Ω~x) inner product, whereas those in Section 5.2 consider the Euclidean inner-
product such that Θ = I in the definition of the projectors P‖ and P⊥. All timings are
obtained by performing calculations on an Intel(R) Core i7-8700K CPU with 64 Gb DDR4
2666 MHz RAM using Matlab(R). The Matlab(R) code used to generate these results has
been released and is freely available at https://stefanopagani.github.io/ChROME/.

https://stefanopagani.github.io/ChROME/
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5.1. Test case 1: linear diffusion. We first assess the method on a problem characterized
by a residual that is linear in its first argument. We consider the following diffusion problem:

(5.1)


∇ · (κd(~x,µ)∇u) = 0, ~x ∈ Ω~x = [0, 1]2

κd(~x,µ)∇u · n = 0, ~x ∈ Γw

κd(~x,µ)∇u · n = 1, ~x ∈ Γb

u = 0, ~x ∈ Γt,

where ∂Ω~x = Γw ∪Γb ∪Γt (see Fig. 2, left). Here, κd(~x,µ) denotes the parametrized diffusion
coefficient, set to

κd(~x,µ) = 0.011Ω~x,0
(~x) +

9∑
i=1

µi1Ω~x,i
(~x),

where 1A(~x) is the indicator function of the set A; we set the parameter domain to D =
[0.01, 1]9 with dimension d = 9. We discretize the spatial domain using the finite-element
method on a computational mesh given by 5270 triangular elements and quadratic finite
elements. This yields FOM governing equations of the form (2.1) with N = 2726 degrees of
freedom, where r linear in its first argument such that Eq. (2.2) holds with A symmetric and
positive definite.

We execute the offline stage using Algorithm 4.1 as follows. The training parameter
sets—which comprise the algorithm inputs—are constructed by drawing uniform random
samples from the parameter domain D. We set |Ddual| = 800, while |DROMES| depends on the
particular experiment. In Step 1, we apply POD to FOM solutions computed at parameter
instances DPOD with |DPOD| = 500 drawn uniformly at random from the parameter domain
D. We employ Galerkin projection such that Ψ = Φ; the reduced-subspace dimension n
depends on the particular experiment. Step 2 constructs the basis matrix Φ⊥ from the
discarded POD modes; the out-of-plane subspace dimension n⊥ also depends on the particular
experiment. In Step 3, we construct a single shared trial dual basis matrix Φp (i.e., Φp,i = Φp,
i = 1, . . . , n̄) by combining snapshots from from all n̄ dual solves executed at parameter
instances µ ∈ Ddual (see Remark 3.3). We also employ Galerkin projection for the dual
problem such that Ψp,i = Ψp = Φp, i = 1, . . . , n̄; the dual-basis dimension np also depends
on the particular experiment. For constructing the ROMES models via Gaussian-process
regression in Step 5, we apply the procedure described in Section 4.4. We adopt the squared-
exponential kernel function, which is defined as

(5.2) κ : (w, z) 7→ γ exp

(‖w − z‖22
2`

)
and is characterized by hyperparameters θκ = (γ, `) ∈ R2. We also consider several loss
functions Li,j for hyperparameter selection as described in Section 4.4.

For the online stage, we execute Algorithm 4.2 for all parameter instances in Donline, which
comprises |Donline| = 1500 values drawn uniformly at random from D. The remaining inputs
to Algorithm 4.2 result from the outputs of Algorithm 4.1.

5.1.1. ROMES model validation. We first consider statistical validation of the ROMES
models, i.e., Condition 3 in Section 4.1. We set the reduced subspace dimension to n = 2, the
out-of-plane subspace dimension to n⊥ = 0, and the (shared) dual-basis dimension to np = 10.
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Figure 2. Test case 1. Schematic representation of the computational domain and finite-element solutions
for different values of the system parameters µ.

When constructing the ROMES models in Step 5 according to the description in Section 4.4,
we define the set of candidate hyperparameter values Θ via uniform full-factorial sampling
in each hyperparameter dimension characterized by 12 equispaced values within the limits
σ2 ∈ [0.01σt, 0.25σt], γ ∈ [0.1σt, σt], and ` ∈ [0.001σt, 0.1σt], with σt denoting the standard
deviation of the data set {δ̂i(µ))}µ∈DROMES

.
We first employ the negative log-likelihood loss function Li,j(θ) = Llikelihood,i,j(θ) defined

in Eq. (4.16) for hyperparameter selection. Figure 3 reports the resulting ROMES models
constructed for the first error generalized coordinate using a training set with |DROMES| =
1000 with two values for the dual-subspace dimension np. We note that for np = 4, the data
appear to be somewhat skewed and the resulting Gaussian process exhibits moderate variance.
By increasing the dual-subspace dimension to np = 8, which incurs a larger computational cost
due to the increase dimension of the dual ROM equations (3.20), the feature becomes higher
quality and thus leads to a lower-variance Gaussian process. Indeed, the ROMES model with
np = 8 appears to qualitatively capture the relationship between the error indicator and error
generalized coordinate well; we now investigate this further.

We assess the effect of the number of training-parameter instances |DROMES| on prediction
accuracy, as measured by (1) the fraction of variance unexplained (FVU)

(5.3) FVUi :=

∑
µ∈Donline

(δ̂i(µ)− νi(ρi(µ)))2∑
µ∈Donline

(δ̂i(µ)− ¯̂
δi)2

where
¯̂
δi denotes the mean value of the error δ̂i(µ) for µ ∈ Donline; (2) the validation frequency

(5.4) ωi(ω) :=
|{µ ∈ Donline | δ̂i(µ) ∈ Ci(ω,µ)}|

|Donline|
,

where Ci(ω,µ) denotes the ω-prediction interval associated with ROMES model δ̃i, i.e.,

(5.5) Ci(ω,µ) := [νi(ρi(µ))−
√

2σ̄i(ρi(µ))erf−1(ω), νi(ρi(µ)) +
√

2σ̄i(ρi(µ))erf−1(ω)],

where νi and σ̄2
i denote the mean and variance associated with the ith ROMES model (see

Eq. (4.21)); and (3) the Komolgorov–Smirnov (KS) statistic, which quantifies the maximum
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Figure 3. Test case 1. ROMES models constructed for the first two error generalized coordinates. The
solid line represents the GP mean; the dashed lines represent the limits of the 99% prediction interval; the grey
diamonds represent data related to online points µ ∈ Donline, while the blue crosses represent training data
related to training points µ ∈ DROMES. We have employed n = 2, n⊥ = 0, np = 10 and we have selected
hyperparameters according to Eq. (4.15) with Li,j(θ) = Llikelihood,i,j(θ), and a training set with |DROMES| =
1000.

discrepancy between the cumulative distribution function (CDF) of the standard Gaussian
distribution N (0, 1) and the empirical CDF of the standardized samples of the error gener-
alized coordinates {δ̂i(µ)− νi(ρi(µ)))/σ̄i(ρi(µ))}µ∈Donline

.
While the FVU quantifies the ability of the ROMES model δ̃i to accurately model the

error generalized coordinate δ̂i in expectation, the validation frequency and KS statistic assess
the statistical properties of the model, i.e., its ability to accurately reflect the underlying data
distribution. Table 1 reports these results, which show that employing |DROMES| = 1000 is
sufficient for the FVU to have reasonably stabilized; thus, subsequent experiments in this
section set |DROMES| = 1000. However, the converged prediction levels are not all correct;
for example, ω1(0.8) = 0.93 even though this value should be 0.8. We observe that one
likely source of this lack of statistical validation arises from the fact that the true error does
not exhibit Gaussian behavior as reported in Figure 4; indeed, these data do not pass the
Shapiro–Wilk (SW) normality test, as they yield a SW statistic of 0.62 for the first error
generalized coordinate and of 0.55 for the second. This implies that it will not be possible to
achieve statistical validation in every possible metric if we employ Gaussian-process regression;
rather, we may only be able to satisfy a subset of statistical-validation criteria. This motivates
the need for tailored loss functions for hyperparameter selection as described in Section 4.4,
as such loss functions enable the method to target specific statistical-validation criteria.

To this end, we now adopt several different strategies for defining the loss function Li,j(θ)
employed for hyperparameter selection (see Section 4.4). In particular, we select the hyper-
parameters θi ≡ (σ2

i , γi, `i) characterizing the ith ROMES model by employing five different
loss functions Li,j(θ): (1) the negative log-likelihood loss Llikelihood,i,j (Eq. (4.16)), (2) the
loss based on matching the 0.80-prediction interval L0.80,i,j (Eq. (4.17) with ω = 0.80), (3)
the loss based on matching the 0.95-prediction interval L0.95,i,j (Eq. (4.17) with ω = 0.95),
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error index i 1 2
|DROMES| 100 400 700 1000 100 400 700 1000

FVU 0.0128 0.0133 0.0131 0.0124 0.0113 0.0115 0.0112 0.0104
ωi(0.8) 0.8941 0.8961 0.9127 0.9300 0.8075 0.8901 0.9167 0.9307
ωi(0.9) 0.9267 0.9314 0.9400 0.9534 0.8601 0.9234 0.9394 0.9500
ωi(0.95) 0.9414 0.9494 0.9587 0.9634 0.8894 0.9407 0.9527 0.9614
ωi(0.99) 0.9560 0.9680 0.9727 0.9753 0.9234 0.9614 0.9720 0.9747

KS statistic 0.2169 0.2185 0.2324 0.2504 0.0985 0.1942 0.2189 0.2348

Table 1
Test case 1. Convergence of error measures associated with the ROMES models constructed for the first

two error generalized coordinates as the number of training-parameter instances |DROMES| increases. We have
employed n = 2, n⊥ = 0, np = 10 and |Donline| = 1500, and have selected hyperparameters according to
Eq. (4.15) with Li,j(θ) = Llikelihood,i,j(θ).

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

SW stat=0.62

First error generalized coordinate

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

SW stat=0.55
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Figure 4. Test case 1. Histogram of the standardized data {δ̂i(µ)−νi(ρi(µ)))/σ̄i(ρi(µ))}µ∈Donline , i = 1, 2
(blue bar plot) as compared to the PDF of the standard Gaussian distribution N (0, 1) (red curve). We have
employed n = 2, n⊥ = 0, np = 10, and have selected hyperparameters according to Eq. (4.15) with Li,j(θ) =
Llikelihood,i,j(θ). The number of training-parameter instances is |DROMES| = 1000.

(4) the loss based on a linear combination of ω-prediction interval losses

(5.6) LC,i,j :=
∑

ω∈{0.80,0.90,0.95,0.99}
Lω,i,j ,

and (5) the loss based on the KS statistic LKS,i,j . Table 2 reports these results for |DROMES| =
1000. We note that the loss function Li,j employed for hyperparameter selection has a sig-
nificant effect on the performance of the resulting ROMES models according to different
statistical-validation criteria. In particular, the loss function can be selected to optimize im-
prove performance with respect to particular criteria. For example, ω1(0.8) = 0.7941 when
L0.80,i,j is adopted, while ω1(0.8) = 0.9300 when Llikelihood,i,j is adopted. This is an important
practical result implying that the user should select the loss function to coincide with desired
statistical validation criterion.
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Due to its favorable performance over a range of statistical-valation criteria, we employ a
loss function of Li,j = LC,i,j in the remaining experiments within Section 5.1.

error generalized coordinate index i 1
loss function Li,j(θ) Llikelihood,i,j LC,i,j L0.80,i,j L0.95,i,j LKS,i,j

FVU 0.0124 0.0126 0.0123 0.0124 0.0136
ωi(0.8) 0.9300 0.8361 0.7941 0.9320 0.8368
ωi(0.9) 0.9534 0.8854 0.8381 0.9547 0.8881
ωi(0.95) 0.9634 0.9194 0.8761 0.9640 0.9194
ωi(0.99) 0.9753 0.9507 0.9294 0.9747 0.9487

Komolgorov–Smirnov statistic 0.2504 0.2294 0.2350 0.2489 0.2288

error generalized coordinate index i 2
loss function Li,j(θ) Llikelihood,i,j LC,i,j L0.80,i,j L0.95,i,j LKS,i,j

FVU 0.0104 0.0101 0.0114 0.0111 0.0098
ωi(0.8) 0.9307 0.8661 0.8008 0.9427 0.7209
ωi(0.9) 0.9500 0.8967 0.8534 0.9594 0.7648
ωi(0.95) 0.9614 0.9154 0.8754 0.9700 0.7995
ωi(0.99) 0.9747 0.9407 0.9107 0.9767 0.8454

Komolgorov–Smirnov statistic 0.2348 0.1731 0.1196 0.2554 0.0821

Table 2
Test case 1. Statistical-validation criteria evaluated on Donline (with |Donline| = 1500) for ROMES models

when different loss functions Li,j are employed for hyperparameter selection according to Eqs. (4.14) and (4.15)
in Section 4.4. We have employed n = 2, n⊥ = 0, np = 10 and have selected hyperparameters according to
Eq. (4.15) with the specified loss function Li,j(θ), 10 K-fold subdivisions and a search grid made by 123 values.
The number of training-parameter instances is |DROMES| = 1000.

5.1.2. In-plane and out-of-plane error approximation. We now assess the ability of the
ROMES method to accurately approximate the in-plane error δ‖ and the out-of-plane error
δ⊥. To assess the ability of the method to approximate the former, we compare the mean
relative ROM error

(5.7) ex :=
1

|Donline|
∑

µ∈Donline

(‖δx(µ)‖2
‖x(µ)‖2

)
,

with the mean relative ROM error after applying the in-plane ROMES correction

(5.8) ẽ
‖
x :=

1

|Donline|
∑

µ∈Donline

(
‖δx(µ)−ΦE[δ̃

‖
(µ)]‖2

‖x(µ)‖2

)
,

and the mean relative projection error

(5.9) e
‖
x :=

1

|Donline|
∑

µ∈Donline

(
‖δx(µ)− δ‖(µ)‖2

‖x(µ)‖2

)
.
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We note that the latter represents the minimum value achievable by the ROM error with the
in-plane ROMES correction.

We set n⊥ = 0, Li,j(θ) = LC,i,j(θ), and |DROMES| = 1000 training-parameter instances,
and we vary the reduced-subspace dimension n and dual-basis dimension np. Figure 5 reports

the results obtained for error measures ex, ẽ
‖
x, and e

‖
x over a range of values for n and np = n+i

for i = 8, 14, 20. These figures illustrate that the ROMES models for the in-plane ROMES

correction δ̃
‖

enable the mean state error to be significantly reduced with respect to the ROM

error, as ẽ
‖
x is smaller than ex in all cases; moreover, the mean relative ROM error after

applying the in-plane ROMES correction state error ẽ
‖
x approaches the optimal value defined

by the mean relative projection error e
‖
x as the dual-basis dimension np increases. Indeed,

because equality in (3.21) holds when the ROM approximation of the duals is exact (i.e.,
pi ≈ p̃i) and the residual is linear in its first argument (i.e., Eq. (2.2) holds)—the latter of
which is true for this problem—we expect the ROMES models to be extremely accurate for
this problem as the dimension of the dual reduced basis np becomes large. Thus, we conclude
that the proposed approach is indeed able to accurately approximate the in-plane error. That
is, the proposed method constructs an accurate statistical closure model.
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Figure 5. Test case 1. Mean relative ROM error ex (red), mean relative ROM error after applying the

in-plane ROMES correction ẽ
‖
x (yellow), and mean relative projection error e

‖
x (blue) for a varying reduced-

subspace dimension n and dual-subspace dimension np. Here, we set n⊥ = 0, Li,j(θ) = LC,i,j(θ), |DROMES| =
1000 and |Donline| = 1500.

We perform a similar analysis for the out-of-plane error by comparing the mean relative
ROM error ex with the mean relative ROM error after applying both the in-plane and out-
of-plane ROMES corrections

(5.10) ẽ
‖+⊥
x :=

1

|Donline|
∑

µ∈Donline

(
‖δx(µ)−ΦE[δ̃

‖
(µ)]−Φ⊥E[δ̃

⊥
(µ)]‖2

‖x(µ)‖2

)

and the mean relative projection error

(5.11) e
‖+⊥
x :=

1

|Donline|
∑

µ∈Donline

(
‖δx(µ)− δ‖(µ)− δ⊥(µ)‖2

‖x(µ)‖2

)
,
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which represents the minimum value achievable by the ROM error with both in-plane and out-

of-plane ROMES correction. Figure 6 reports the results obtained for error measures ex, ẽ
‖+⊥
x ,

and e
‖+⊥
x for various values of the reduced-subspace dimension n, the dual-basis dimension np,

and the out-of-plane subspace dimension n⊥. We again observe that the ROMES corrections
enable significant error reduction, and performance improves as the dual-basis dimension np
increases. Thus, we conclude that the proposed approach is able to accurately approximate
both the in-plane and out-of-plane errors.
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Figure 6. Test case 1. Mean relative ROM error ex (red), mean relative ROM error after applying the

in-plane and out-of-plane ROMES corrections ẽ
‖+⊥
x (yellow), and mean relative projection error e

‖+⊥
x (blue)

for a varying reduced-subspace dimension n, dual-subspace dimension np, and out-of-plane subspace dimension
n⊥. Here, we set Li,j(θ) = LC,i,j(θ), |DROMES| = 1000, and |Donline| = 1500.

5.1.3. Quantity-of-interest error approximation. We now consider the ability of the pro-
posed ROMES models to construct statistical models of quantities of interest q̃ as proposed
in Section 4.5. To this end, we consider s = 2 quantities of interest

(5.12) q : ν 7→ s(x(ν);ν) =

[
γTx(ν)

x(ν)TMx(ν)

]
,
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where q1 and q2 represent the mean value (i.e.,
∫

Ω~x,5
ud~x = γTx) and the mean squared value

(i.e.,
∫

Ω~x,5
u2d~x = xTMx) of the state variable over Ω~x,5, respectively. We emphasize that

these quantities of interest were not specified during the offline stage (see Remark 4.2).
We set the loss function to Li,j(θ) = LC,i,j(θ) and number of training-parameter instances

to |DROMES| = 1000. Figures 7 and 8 plot the FOM-computed quantity of interest qi(µ)
versus both the ROM-computed quantity of interest qROM,i(µ) and the expected value of the
ROMES-corrected quantity of interest E[q̃i(µ)], i = 1, 2 for several values of the reduced-
subspace dimensions n and n⊥ and for µ ∈ Donline.
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Figure 7. Test case 1. Scatter plot of the FOM-computed (linear) quantity of interest q1(µ) versus both the
ROM-computed quantity of interest qROM,1(µ) (blue circles) and the expected value of the ROMES-corrected
quantity of interest E[q̃1(µ)] (red crosses) for several values of the reduced-subspace dimension n and for µ ∈
Donline. They grey crosses are computed by taking the maximum and the minimum value of the q̃1(µ) over 100
realizations of the ROMES statistical model. Here, we set Li,j(θ) = LC,i,j(θ), |DROMES| = 1000, and np = 10.

Figure 9 reports the associated FVU values, with the FVU defined as

(5.13) FVUqi(q) :=

∑
µ∈Donline

(qi(µ)− q(µ))2∑
µ∈Donline

(qi(µ)− q̄i)2
,

where q̄i denotes the mean value of the quantity of interest qi(µ) for µ ∈ Donline. These plots
demonstrate that the proposed method significantly reduces the quantity-of-interest error
without the need for prescribing the quantities of interest in the offline stage (see Remark
4.2), and performance is improved as the dual-basis dimension np increases.
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Figure 8. Test case 1. Scatter plot of the FOM-computed (nonlinear) quantity of interest q2(µ) versus
both the ROM-computed quantity of interest qROM,2(µ) (blue circles) and the expected value of the ROMES-
corrected quantity of interest E[q̃2(µ)] (red crosses) for several values of the reduced-subspace dimension n and
for µ ∈ Donline. They grey crosses are computed by taking the maximum and the minimum value of the q̃2(µ)
over 100 realizations of the ROMES statistical model. Here, we set Li,j(θ) = LC,i,j(θ), |DROMES| = 1000, and
np = 10.

5.1.4. Computational efficiency. The previous results in this section illustrate the ability
of the proposed method to reduce errors with respect to a ‘ROM-only’ approach (i.e., a method
that executes only Step 1 in Algorithm 4.2). However, the method achieves this at an increased
online cost, as it additionally executes Steps 2–5 in Algorithm 4.2; the dominant additional
cost arises from the need to compute the approximate dual solutoins in Step 2 (see Remark
4.3). However, we note that regardless of computational cost, the proposed method yields
a statistical model of the full-order model state and quantity of interest, while a ROM-only
approach does not. Thus, even with increased cost, the proposed method is more amenable
to integration within uncertainty-quantification applications. Nonetheless, we now perform
an assessment of the computational efficiency of a ‘ROM-only’ approach and the proposed
method.

To perform this assessment, we subject the ‘ROM-only’ method, the proposed method
with a ROMES in-plane correction only, and the proposed method with both an in-plane
and out-of-plane correction to a wide range of parameter values. In particular, we consider
all combinations of n ∈ {1, . . . , 20}, np ∈ {n, . . . , n + 15} (not relevant to the ‘ROM-only’
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Figure 9. Test case 1. FVU values associated with the ROM-computed quantities of interest qROM,1 and
qROM,2 and the expected value of the ROMES-corrected quantity of interest E[q̃1] and E[q̃2] for several values of
the reduced-subspace dimension n and n⊥. Here, we set Li,j(θ) = LC,i,j(θ), |DROMES| = 1000, and np = 32.

method), and n⊥ ∈ {1, . . . , 15} (not relevant to the ‘ROM-only’ method or the proposed
method with in-plane correction only). Figure 10 reports these results. For each value of these
parameters, we compute both the relative error and the wall time for the simulations relative
to that incurred by the full-order model (as averaged over all online points µ ∈ Donline). The
relative errors for the ROM-only approach, the proposed method with a ROMES in-plane
correction only, and the proposed method with both an in-plane and out-of-plane correction

correspond to ex (Eq. (5.7)), ẽ
‖
x (Eq. (5.8)), and ẽ

‖+⊥
x (Eq. (5.10)), respectively. The figure

reports a Pareto front for each method, which is characterized by the method parameters that
minimize the competing objectives of relative error and relative wall time.

These results show that the ‘ROM-only’ approach is Pareto dominant, which is likely due
to the fact that the residual is linear in its first argument for this problem (i.e., Eq. (2.2) holds).
Because of this, the cost of the dual ROM solves in Step 2 of Algorithm 4.2 is similar to that
of the (primal) ROM solve executed in Step 1 of Algorithm 4.2. Thus, in this case, it is always
computationally more efficient to employ a larger ROM dimension n than to approximate the
errors according to the proposed technique if we are only interested in minimizing the FVU.
As described in Section 4.5, we expect the proposed method to be most effective when the
ROM equations are nonlinear, as the dual problems remain linear in this case, thus allowing
Steps 2–5 to be computationally inexpensive relative to Step 1. The next set of experiments
will highlight this fact.

Nonetheless, we again emphasize that the ‘ROM-only’ approach does not generate a sta-
tistical model of the FOM state or the FOM quantity of interest, while the proposed approach
does provide this. Thus, even in the linear case, the proposed method may still be considered
more amenable to integration with uncertainty quantification than the ‘ROM-only’ approach,
as the proposed method provides a mechanism to quantify the ROM-induced uncertainty.

5.2. Test case 2: nonlinear mechanical response. We now assess the proposed method
on a problem characterized by a residual that is nonlinear in its first argument. In particular,
we consider a static, nonlinear mechanical-response problem in three spatial dimensions. We
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Figure 10. Test case 1. Computational efficiency of the ‘ROM-only’ approach (ROM ex), the proposed

method with a ROMES in-plane correction only (ROMES ẽ
‖
x), and the proposed method with both an in-plane

and out-of-plane correction (ROMES ẽ
‖+⊥
x ) over a range of method parameters, and associated Pareto fronts.

Here, the relative wall time is reported relateve to that incurred by the full-order model. Note that the ROM-only
approach is Pareto dominant due to the fact that the residual is linear in its first argument for this problem
(i.e., Eq. (2.2) holds).

consider a Saint Venant–Kirchhoff material, whose strain-energy function is given by

W (E) =
λ1

2
tr(E)2 + λ2tr(E2),

where E ∈ R3×3 denotes the Lagrangian Green strain tensor and λ1 and λ2 denote Lamé
constants

λ1 =
νE

(1 + ν)(1− 2ν)
and λ2 =

E

2(1 + ν)
.

Defining the deformation gradient tensor as F = I + ∇u ∈ R3×3, where u = u(~x;µ) ∈ R3

denotes the deformation, we obtain the Piola tensor

P = λ1tr(E)F + 2λ2FE.

The shear test on the domain Ω~x,0 = [0, 1]3 reads as follows: find u satisfying

(5.14)


div(P(u;µ)) = 0 ~x ∈ Ω~x,0

P(u;µ)n(~x) = µ3nz ~x ∈ ΓN

P(u;µ)n(~x) = 0 ~x ∈ ΓN,free

u = 0 ~x ∈ ΓD,

where n(~x) ≡ [nx(~x), ny(~x), nz(~x)] denotes the outward unit normal. We consider d = 3
parameters comprising the Young’s modulus µ1 = E ∈ [6×104, 8×104], the Poisson coefficient
µ2 = ν ∈ [0.3, 0.45], and the external-load magnitude µ3 ∈ [1× 103, 2.5× 103].

We discretize the spatial domain using the finite-element method on a conformal computa-
tional mesh given by 41154 tetrahedra and linear finite elements. This yields FOM governing
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Figure 11. Test case 2. Geometry and boundary faces (left) and reduced meshes for DEIM approximation
of residual vectors (center) and MDEIM approximation of Jacobian matrices.

µ = [7.16 · 104, 0.44, 1.96 · 103]
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Figure 12. Test case 2. Finite element approximation of problem (5.14) for three different values of the
parameter vector µ.

equations of the form (2.1) with N = 8000 degrees of freedom with the residual r nonlinear
in its first argument.

We execute the offline stage using Algorithm 4.1 as follows. We construct the training-
parameter sets by drawing uniform random samples from the parameter domain D. We set
|Ddual| = 10, while |DROMES| varies across experiments. In Step 1, we apply POD to FOM
solutions computed at parameter instances DPOD with |DPOD| = 10. We employ Galerkin
projection such that Ψ = Φ; the reduced-subspace dimension n varies across experiments.
Because the residual is nonlinear in its first argument, we require a hyper-reduction method to
ensure that solving the ROM equations incurs an N -independent computational complexity.
For this purpose, we apply the DEIM method [4, 12] to approximate the nonlinear component
of the residual, which comprises the sum of a nonlinear component and a linear component
(the boundary conditions). For each value of the reduced dimension n, we collect snapshots
of this nonlinear component evaluated at the ROM solution (without hyper-reduction) at 30
parameter instances (which includes DPOD), and we truncate the POD basis such that it
preserves 1 − 1 × 10−8 of the relative statistical energy. Step 2 constructs the basis matrix
Φ⊥ from the discarded POD modes; the out-of-plane subspace dimension n⊥ also depends
on the particular experiment. In Step 3, we construct a single shared trial dual basis ma-
trix Φp (i.e., Φp,i = Φp, i = 1, . . . , n̄) by combining snapshots from from all n̄ dual solves
executed at parameter instances µ ∈ Ddual (see Remark 3.3 in Section 3.4). We also em-
ploy Galerkin projection for the dual problem such that Ψp,i = Ψp = Φp, i = 1, . . . , n̄; the
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dual-basis dimension np also varies across experiments. Because the system matrix in the
dual ROM equations (3.20) exhibits non-affine parameter dependence (but the right-hand
side is linear and parameter-independent), we apply MDEIM [32] to approximate the system
matrix; because the right-hand side is linear and parameter-independent, it does not require
hyper-reduction. For MDEIM, we collect snapshots of the system matrix in an identical way
to the DEIM snapshot-collection procedure described above, and we use the same truncation
criterion.

For the online stage, we execute Algorithm 4.2 for all parameter instances in Donline, which
comprises |Donline| = 1000 values drawn uniformly at random from D. The remaining inputs
to Algorithm 4.2 result from the outputs of Algorithm 4.1. Note that we use DEIM when
dealing with the ROM equations (2.4) in Step 1 and MDEIM when assembling the dual ROM
equations (3.20) in Step 2.

5.2.1. ROMES model validation. As in Section 5.1.1, we first consider statistical vali-
dation of the ROMES models, i.e., condition 3 in Section 4.1. When constructing the Gaus-
sian processes in Step 5 according to the description in Section 4.4, we define the set of
candidate hyperparameter values Θ as uniform full-factorial sampling in each hyperparam-
eter dimension characterized by 10 equispaced values within the limits σ2 ∈ [0.01σt, 0.25σt],
γ ∈ [0.1σt, σt], and ` ∈ [0.001σt, 0.1σt], with σt denoting the standard deviation of the data
{δ̂i(µ))}µ∈DROMES

.
We first consider using the negative log-likelihood loss function Li,j(θ) = Llikelihood,i,j(θ)

defined in Eq. (4.16) for hyperparameter selection. Figure 13 reports the resulting ROMES
models constructed for the first error generalized coordinate using a training set |DROMES| =
400 with two values for the dual-subspace dimension np. We note that for np = 4, the data
appear to be skewed and the resulting Gaussian process exhibits large variance. By increasing
the dual-subspace dimension to np = 12, the feature becomes higher quality and thus leads
to a lower-variance Gaussian process that qualitatively captures the relationship between the
error indicator and error generalized coordinate well. We now investigate this further.

We assess the effect of the number of training-parameter instances |DROMES| on predic-
tion accuracy, as measured by the fraction of variance unexplained (FVU) FVUi defined in
Eq. (5.3), the validation frequency ωi(ω) defined in Eq. (5.4), and the Komolgorov–Smirnov
(KS) statistic, which quantifies the maximum discrepancy between the CDR of N (0, 1) and
the empirical CDF of the standardized samples {δ̂i(µ)− νi(ρi(µ)))/σ̄i(ρi(µ))}µ∈Donline

.
Table 3 reports these results, which show that employing |DROMES| = 400 is sufficient for

the test FVU to have reasonably stabilized; thus, subsequent experiments in this section set
|DROMES| = 400. As observed in Section 5.1.1, the converged values of FVU are quite small,
but the converged prediction levels are not all correct. For example, ω1(0.8) = 0.9200 even
though this value should be 0.8. This again occurs because the data are not Gaussian; Figure
14 shows this. In fact, the data do not pass Shapiro–Wilk normality test, as they yield values
of f 0.41 for the first error generalized coordinate and of 0.46 for the second, which again
implies that it will not be possible to achieve statistical validation in every possible metric if
we employ Gaussian-process regression. This motivates the need for tailored loss functions as
described in Section 4.4.

As in Section 5.1.1, we consider five different loss functions Li,j(θ) for hyperparameter
selection (see Section 4.4): (1) the negative log-likelihood loss Llikelihood,i,j (Eq. (4.16)), (2)
the loss based on matching the 0.80-prediction interval L0.80,i,j (Eq. (4.17) with ω = 0.80),
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Figure 13. Test case 2. ROMES models constructed for the first error generalized coordinate with different
dual-subspace dimensions np. The solid line represents the GP mean; the dashed lines represent the limits
of the 99% prediction interval; the grey crosses represent data related to prediction points µ ∈ Donline, while
the blue crosses represent training data related to prediction points µ ∈ DROMES. We have employed n = 3,
n⊥ = 0, and we have selected hyperparameters according to Eq. (4.15) with Li,j(θ) = Llikelihood,i,j(θ), and a
training set with |DROMES| = 400.

error index i 1 2
|DROMES| 100 200 300 400 100 200 300 400

FVU 0.0035 0.0036 0.0031 0.0028 0.0025 0.0032 0.0011 0.0008
ωi(0.8) 0.8983 0.9167 0.9233 0.9200 0.9217 0.8917 0.9183 0.9117
ωi(0.9) 0.9150 0.9200 0.9317 0.9283 0.9300 0.9033 0.9350 0.9233
ωi(0.95) 0.9250 0.9300 0.9383 0.9417 0.9333 0.9117 0.9467 0.9317
ωi(0.99) 0.9467 0.9450 0.9450 0.9500 0.9567 0.9367 0.9567 0.9483

KS statistic 0.2030 0.2822 0.2804 0.2388 0.2781 0.3123 0.3439 0.3438

Table 3
Test case 2. Convergence of error measures associated with the ROMES models constructed for the first

two error generalized coordinates as the number of training-parameter instances |Donline| increases. We have
employed n = 2, n⊥ = 0, np = 12, |Donline| = 600 and , and have selected hyperparameters according to
Eq. (4.15) with Li,j(θ) = Llikelihood,i,j(θ).

(3) the loss based on matching the 0.95-prediction interval L0.95,i,j (Eq. (4.17) with ω = 0.95),
(4) the loss based on a linear combination of ω-prediction interval losses LC,i,j (Eq. (5.6)),
and (5) the loss based on the KS statistic LKS,i,j .

Table 4 reports these results for |DROMES| = 1000. As in Section 5.1.1, we observe that the
loss function Li,j has a significant effect on the performance of the resulting ROMES models
according to different statistical-validation criteria, and can be chosen to target performence
with respect to particular criteria: ω1(0.8) = 0.81 instead of ω1(0.8) = 0.92 and ω1(0.8) =
0.8250 instead of ω1(0.8) = 0.9117 when L0.80,i,j is adopted.

We again employ a loss function of Li,j = LC,i,j in the remaining experiments within this
section due to its favorable performance over a range of statistical-valation criteria.
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Figure 14. Test case 2. Histogram of the standardized data {δ̂i(µ)−νi(ρi(µ)))/σ̄i(ρi(µ))}µ∈Donline , i = 1, 2
(blue bar plot) as compared to the PDF of the standard Gaussian distribution N (0, 1) (red curve). We have
employed n = 3, n⊥ = 0, np = 10, and have selected hyperparameters according to Eq. (4.15) with Li,j(θ) =
Llikelihood,i,j(θ). The number of training-parameter instances is |DROMES| = 400.

error generalized coordinate index i 1
loss function Li,j(θ) Llikelihood,i,j LC,i,j L0.80,i,j L0.95,i,j LKS,i,j

FVU 0.0028 0.0029 0.0015 0.0017 0.0015
ωi(0.8) 0.9200 0.8750 0.8100 0.9183 0.8133
ωi(0.9) 0.9283 0.9117 0.8567 0.9400 0.8567
ωi(0.95) 0.9417 0.9217 0.8733 0.9483 0.8767
ωi(0.99) 0.9500 0.9317 0.8950 0.9567 0.8900

Komolgorov–Smirnov statistic 0.2388 0.1816 0.1179 0.3280 0.0908

error generalized coordinate index i 2
loss function Li,j(θ) Llikelihood,i,j LC,i,j L0.80,i,j L0.95,i,j LKS,i,j

FVU 0.00082 0.00081 0.00075 0.00076 0.00076
ωi(0.8) 0.9117 0.8617 0.8250 0.9167 0.8133
ωi(0.9) 0.9233 0.8817 0.8533 0.9383 0.8383
ωi(0.95) 0.9317 0.8983 0.8667 0.9500 0.8633
ωi(0.99) 0.9483 0.9100 0.8950 0.9667 0.8867

Komolgorov–Smirnov statistic 0.3438 0.2467 0.1329 0.3120 0.1135

Table 4
Test case 2. Statistical-validation criteria for ROMES models when different loss functions Li,j are em-

ployed for hyperparameter selection according to Eqs. (4.14) and (4.15) in Section 4.4. We have employed
n = 2, n⊥ = 0, np = 10, and have selected hyperparameters according to Eq. (4.15) with the specified loss
function Li,j(θ). The number of training-parameter instances is |DROMES| = 400, while |Donline| = 600.

5.2.2. In-plane and out-of-plane error approximation. As in Section 5.1.2, we now assess
the ability of the proposed method to accurately approximate the in-plane error δ‖ and the
out-of-plane error δ⊥. In particular, we compare the mean relative ROM error ex (Eq. (5.7))

with the mean relative ROM error after applying the in-plane ROMES correction ẽ
‖
x (Eq. (5.8))
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and the mean relative projection error e
‖
x (Eq. (5.9)).

Figure 15 reports the results obtained for n⊥ = 0, Li,j(θ) = LC,i,j(θ), and |DROMES| = 400
training-parameter instances, and a range of values for n and np. We first note that the
mean relative ROM error ex is relatively close to the (optimal) mean relative projection error

e
‖
x, implying that the in-plane error is quite small for this particular problem; however the

proposed method is indeed able to bridge this gap, as the in-plane ROMES correction δ̃
‖

enables ẽ
‖
x to be nearly equal to the optimal value e

‖
x.

2 4 6 8 10 12

10−4

10−3

10−2

ROM-subspace dimension n

er
ro
r

np = 4

Proj. e
‖
x

ROM ex

ROMES ẽ
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Figure 15. Test case 2. Mean relative ROM error ex (red), mean relative ROM error after applying the

in-plane ROMES correction ẽ
‖
x (yellow), and mean relative projection error e

‖
x (blue) for a varying reduced-

subspace dimension n and dual-subspace dimension np. Here, we set n⊥ = 0, Li,j(θ) = LC,i,j(θ), |Donline| =
600 and |DROMES| = 400.

We again perform a similar analysis for the out-of-plane error by comparing the mean
relative ROM error ex with the mean relative ROM error after applying both the in-plane

and out-of-plane ROMES corrections ẽ
‖+⊥
x (Eq. (5.10)) and the mean relative projection error

e
‖+⊥
x (Eq. (5.11)). Figure 16 reports these results for various values of the reduced-subspace

dimension n, the dual-basis dimension np, and the out-of-plane subspace dimension n⊥. We
again note that the ROMES correction nearly eliminates both the in- and out-of-plane errors,

as ẽ
‖+⊥
x nearly achieves the optimal value of e

‖+⊥
x for all considered parameters.

5.2.3. Quantity-of-interest error approximation. As in Section 5.1.3, we now consider
the ability of the proposed method to construct statistical models of quantities of interest q̃
as proposed in Section 4.5. For this purpose, we consider s = N quantities of interest defined
by the von Mises stress at all N (unconstrained) grid points in the mesh, i.e.,

q : ν 7→ s(x(ν);ν) =
√

(σ11(~x1)−σ22(~x1))2+(σ22(~x1)−σ33(~x1))2+(σ33(~x1)−σ11(~x1))2+6(σ12(~x1)2+σ23(~x1)2+σ31(~x1)2)
2

...√
(σ11(~xN )−σ22(~xN ))2+(σ22(~xN )−σ33(~xN ))2+(σ33(~xN )−σ11(~xN ))2+6(σ12(~xN )2+σ23(~xN )2+σ31(~xN )2)

2

 ,
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Figure 16. Test case 2. Mean relative ROM error ex (red), mean relative ROM error after applying the

in-plane and out-of-plane ROMES corrections ẽ
‖+⊥
x (yellow), and mean relative projection error e

‖+⊥
x (blue)

for a varying reduced-subspace dimension n, dual-subspace dimension np, and out-of-plane subspace dimension
n⊥. Here, we set Li,j(θ) = LC,i,j(θ), |DROMES| = 400, |Donline| = 600

where σij = (P(x)(I + ∇x)T )ij , i, j = 1, 2, 3 and ~xi denotes the ith (unconstrained) grid
point in the computational mesh. This is an example of high-dimensional quantity of interest
whose error cannot be modeled tractably using the original ROMES method [13], as this
would require constructing N separate Gaussian-process models. We emphasize that these
quantities of interest were not specified during the offline stage (see Remark 4.2).

We set the loss function to Li,j(θ) = LC,i,j(θ), the number of training-parameter instances
to |DROMES| = 400, the dual-basis dimension to np = 32. Figure 17 plots the maximum
value of the FOM-computed quantity of interest maxi(qi(µ)) versus both the the maximum
value of the ROM-computed quantity of interest maxi(qROM,i(µ)) and the maximum value
of the expected value of the ROMES-corrected quantity of interest maxi(E[q̃i(µ)]) for several
values of the reduced-subspace dimension n and out-of-plane subspace dimension n⊥ and for
µ ∈ Donline. Figure 18 reports the associated FVU values, with the FVU defined as

(5.15) FVUq,max(q) :=

∑
µ∈Donline

(maxi(qi(µ))−maxi(qi(µ)))2∑
µ∈Donline

(maxi(qi(µ))− q̄max)2
,

where q̄max denotes the mean value of the quantity of interest maxi(qi(µ)) for µ ∈ Donline.
These results show the ability of the proposed method to significantly reduce the quantity-
of-interest error without the need for prescribing the quantities of interest in the offline stage
(see Remark 4.2). These results also show that performance is improved as the dual-basis
dimension np increases, albeit at increased computational cost.

Finally, Figure 19 reports the values of the the mean relative ROM error eqi

(5.16) eqi :=
1

|Donline|
∑

µ∈Donline

( |δqi(µ)|
|qi(µ)|

)
,
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Figure 17. Test case 2. Scatter plot of the the maximum value of the FOM-computed quantity of interest
maxi(qi(µ)) versus both the the maximum value of the ROM-computed quantity of interest maxi(qROM,i(µ))
(blue circles) and the maximum value of the expected value of the ROMES-corrected quantity of interest
maxi(E[q̃i(µ)]) (red crosses) for several values of the reduced-subspace dimension n and for µ ∈ Donline. We
have employed np = 32, and have selected hyperparameters according to Eq. (4.15) with the specified loss
function Li,j(θ). The number of training-parameter instances is |DROMES| = 400, while |DROMES| = 600.

and the mean relative ROM error with in- and out-of-plane ROMES correction ẽ
‖+⊥
qi

(5.17) ẽ‖+⊥qi
:=

1

|Donline|
∑

µ∈Donline

(
|qi(µ)− si(xROM(µ) + ΦE[δ̃

‖
(µ)] + Φ⊥E[δ̃

⊥
(µ)];µ)|

|qi(µ)|

)
,

for i = 1, . . . , N as distributed over the physical domain. We observe that applying both the
in-plane and out-of-plane ROMES correction yields a very small mean relative error, thereby
illustrating the ability of the method to accurately model the error in field quantities.

5.2.4. Computational efficiency. As in Section 5.1.4, we now analyze the computational
efficiency of the proposed method with respect to a ‘ROM-only’ approach. As discussed in
Remark 4.3, we expect the proposed method to yield favorable performance relative to the
linear problem considered in Section 5.1, as the dual ROM equations (3.20) are always linear in
their first argument, even when the ROM equations (2.4) are nonlinear in their first argument;
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Figure 18. Test case 2. FVU values associated with the ROM-computed quantity of interest
maxi(qROM,i(µ)) and the expected value of the ROMES-corrected quantity of interest maxi(E[q̃i(µ)]) for several
values of the reduced-subspace dimension n and n⊥. Here, we set Li,j(θ) = LC,i,j(θ), |DROMES| = 1000 and
np = 32.

Figure 19. Test case 2. The values of the mean relative ROM error eqi (left column) and the mean relative

ROM error with in- and out-of-plane ROMES correction ẽ
‖+⊥
qi for i = 1, . . . , N (center and right columnes) as

distributed over the physical domain. Here, we set Li,j(θ) = LC,i,j(θ), |DROMES| = 400, |Donline| = 600 and
np = 12.

thus, relative to the (primal) ROM solve, the dual solves are computationally inexpensive.
We repeat the study executed in Section 5.1.4, and subject the ‘ROM-only’ method, the

proposed method with a ROMES in-plane correction only, and the proposed method with both
an in-plane and out-of-plane correction to a wide range of parameter values. In particular,
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we consider all combinations of n ∈ {2, . . . , 10}, np ∈ {12, 22, 32} (not relevant to the ‘ROM-
only’ method), and n⊥ ∈ {2, . . . , 10} (not relevant to the ‘ROM-only’ method or the proposed
method with in-plane correction only). Figure 20 reports these results and associated Pareto
fronts.

These results show that the proposed method with both in-plane and out-of-plane ROMES
corrections are Pareto dominant. Specifically, for a fixed wall time, the method yields ap-
proximately one order of magnitude in error reduction; for a fixed error, the method yields
approximately a 30% reduction in wall time. Furthermore, this approach provides a statistical
model of the FOM state and quantities of interest, which is not provided by the ‘ROM-only’
approach. Thus, the proposed method has demonstrated superior performance not only in its
computational efficiency, but also in its ability to quantify the ROM-induced epistemic uncer-
tainty, which is essential for rigorous integration into uncertainty-quantification applications.
We note that the proposed method with an in-plane ROMES correction only yields similar
performance to the ‘ROM-only’ approach. This occurs because the ROM in-plane errors are
already quite small; this was previously discussed in Section 5.2.2 and observed in Figure 15.
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Figure 20. Test case 2. Computational efficiency of the ‘ROM-only’ approach (ROM ex), the proposed

method with a ROMES in-plane correction only (ROMES ẽ
‖
x), and the proposed method with both an in-plane

and out-of-plane correction (ROMES ẽ
‖+⊥
x ) three approaches over a range of method parameters, and associated

Pareto fronts. Here, the relative error corresponds to ẽ
‖+⊥
x (Eq. (5.10)), and the wall time for the simulations

relative to that incurred by the full-order model. Note that the proposed method with both in-plane and out-of-
plane ROMES correction is Pareto dominant.

6. Conclusions. This work has proposed a technique for constructing a statistical closure
model for reduced-order models (ROMs) applied to stationary systems. The proposed method
applies the ROMES method to construct a statistical model for the state error through con-
structing statistical models for the generalized coordinates characterizing both the in-plane
error (i.e., the closure model) and a low-dimensional approximation of the out-of-plane error.
Key ingredients of the method include (1) cheaply computable error indicators associated with
a ROM-approximated dual-weighted residual (Section 4.2), (2) a Gaussian-process model to
map these error indicators to a random variable for the error generalized coordinates (Sec-
tion 4.3, (3) a cross-validation procedure for targeting specific statistical-validation criteria
(Section 4.4), and (4) a way to statistically quantify the error in any quantity of interest a
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posteriori by propagating the state-error model through the associated functional.
Numerical experiments demonstrated the ability of the method to accurately model both

the in-plane and out-of-plane errors (Figures 5, 6, 15, 16), quantity-of-interest errors (Figures
7, 8, 9, 17, 18, 19), and realize a more computationally efficient methodolgy than a ‘ROM-only
approach in the case of nonlinear stationary systems (Figure 20).

In both numerical experiments, it was not possible to rigorously validate the Gaussian
assumption underlying the proposed statistical model (Figures 4 and 14). As such, we pro-
posed the use of specific loss functions (e.g., matching ω-prediction intervals, minimizing
the Komolgorov–Smirnov statistic) for hyperparameter selection that enabled the statistical
model to satisfy a subset of targeted statistical-validation criteria (Tables 2 and 4).

Future work includes developing stochastic-process models associated with different dis-
tributions; this will enable a wider range of statistical-validation criteria to be met by the
constructed model. In addition, we aim to extend the proposed methodology to dynamical
systems.
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