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Abstract: We introduce a broadband coherent anti-Stokes Raman scattering (CARS) microscope
based on a 2-MHz repetition rate ytterbium laser generating 1035-nm high-energy (≈µJ level)
femtosecond pulses. These features of the driving laser allow producing broadband red-shifted
Stokes pulses, covering the whole fingerprint region (400–1800 cm−1), employing supercontinuum
generation in a bulk crystal. Our system reaches state-of-the-art acquisition speed (<1 ms/pixel)
and unprecedented sensitivity of ≈14.1 mmol/L when detecting dimethyl sulfoxide in water. To
further improve the performance of the system and to enhance the signal-to-noise ratio of the
CARS spectra, we designed a convolutional neural network for spectral denoising, coupled with
a post-processing pipeline to distinguish different chemical species of biological tissues.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Every molecular component of a biological specimen features a unique vibrational spectrum
carrying a chemical information that can be exploited as a fingerprint for its identification.
Vibrational microscopy is a powerful technique to image cells and tissues [1,2] in a label-free
and non-invasive manner. Spontaneous Raman (SR) is one of the most widespread vibrational
microscopy techniques and it is particularly adequate for high spectral resolution imaging
of biological and water-containing samples [3,4]. In SR the specimen is illuminated with
quasi-monochromatic visible or near-infrared (NIR) laser light at the pump frequency ωp. The
vibrational information is encoded in the spontaneously emitted inelastically scattered Stokes and
anti-Stokes spectra, at frequencies ωs=ωp-Ω and ωaS=ωp+Ω, respectively, where the frequency
shift Ω is a vibrational mode of the sample. Because the probed molecules follow a Boltzmann
distribution, i.e., the molecules mostly remain in their lowest energy levels at thermal equilibrium,
the Stokes component is more intense than the anti-Stokes component. Therefore, conventional
Raman scattering systems detect Stokes scattering. SR provides the maximum amount of
vibrational information; however, it suffers from very low scattering cross-sections, requiring
long acquisition times of the order of ≈ 1 s per pixel, preventing high-speed imaging.

Coherent Raman scattering (CRS) [5,6] exploits a third-order non-linear interaction between
the sample and the impinging electric fields that coherently excite the molecular vibrations in
the focal volume, thus enhancing the signal by several orders of magnitudes with respect to
SR and inherently providing three-dimensional sectioning capability without the need of any
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confocal aperture. In its simplest configuration, CRS employs two narrowband picosecond pulses
at frequency ωp (the pump) and ωs (the Stokes), such that their difference Ω=ωp-ωs matches a
vibrational mode of the scrutinized sample. In this case, a single vibrational mode can be probed
at a time, limiting the amount of chemical information that can be acquired. Broadband CRS [7]
aims at combining the high acquisition speed of single-frequency CRS with the detailed chemical
information delivered by SR.

The two most-commonly employed CRS techniques are stimulated Raman scattering (SRS) [8]
and coherent anti-Stokes Raman scattering (CARS) [9,10]. SRS measures the intensity gain of the
Stokes beam (stimulated Raman gain) or the intensity loss of the pump beam (stimulated Raman
loss), while CARS detects the background-free signal at the anti-Stokes frequency ωas =ωp+
Ω. Because it is proportional to the absorptive imaginary part of the third-order susceptibility
χ(3), the SRS signal delivers spectral line shapes that are almost identical to the Lorentzian
peaks obtained with SR and scales linearly with the concentration of scatterers. However,
since SRS is a small signal sitting on top of the intense pump and Stokes beams, sophisticated
high-frequency modulation transfer techniques are necessary for its detection, making the SRS
approach technically complex, especially for broadband implementations [11,12]. Instead, in
the CARS technique, the signal is blue shifted with respect to the pump/Stokes pulses. Thus,
after filtering out the pump-Stokes radiation, a simple spectrometer can effectively detect the
anti-Stokes component, significantly reducing the technical complexity of the system. On the
downside, the CARS signal is proportional to the square of the concentration of scatterers and
suffers from the presence of a chemically unspecific contribution, which is known as non-resonant
background (NRB), due to a four-wave-mixing process mediated by the non-resonant χ(3) of
the sample. Although the NRB distorts and in some cases overwhelms the vibrational line
shapes, limiting the sensitivity of the CARS apparatus, it can also act as a phase-coherent local
oscillator, allowing heterodyne amplification of the weak resonant Raman response [13]. While
in a narrowband configuration such amplification is of little help, in broadband CARS (B-CARS)
the NRB can be exploited to increase the signal-to-noise ratio (SNR) [14] and the line shape
distortions can be removed exploiting numerical methods [15–17] or deep-learning approaches
[18–20].

Despite many improvements in the detection systems, leading to higher speed and broader
spectral coverage, many B-CARS systems are designed to collect Raman spectra only in the
CH-stretching region [21] (2800 - 3100 cm−1), a spectral range that features a high density
of oscillators. Spectral information in this region is rather unspecific, preventing accurate
identification within chemically heterogenous biological samples. On the contrary, the low-
wavenumber spectral region (400–1800cm−1), also known as “fingerprint”, presents sharp and
distinct peaks providing high biochemical specificity. However, the fingerprint region features
weaker Raman signals requiring either longer integration times or higher average power of
the pump and Stokes beams to obtain sufficiently high SNR. These requirements could lead
to damage of the imaged biological samples. Moreover, the Raman peaks in the fingerprint
region present narrow linewidths and are spectrally congested, demanding a combination of
high spectral resolution (down to 10 cm−1) and broad spectral coverage, which are technically
challenging to achieve.

Several B-CARS microscopy setups covering the fingerprint region have been reported in
the literature. Some of them exploit the rapid frequency tuning of one of the two narrowband
beams (the so-called hyperspectral CARS method [22]), while other approaches, known as
multiplex CARS [14,23–26], aim at measuring the complete spectrum in parallel, covering
both the fingerprint and the CH-stretching regions. Multiplex CARS employs either a single
ultra-broadband laser providing both pump and Stokes frequencies [27,28] or the combination of
a narrowband pump with a broadband Stokes obtained by supercontinuum generation in a tapered
fiber [29] or a photonic crystal fiber (PCF) [30,31]. Some approaches are based on a time-domain
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Fourier transform approach [32–34] or use frequency combs [35], while others detect the CARS
signal in the frequency domain. Hashimoto et al. [33] reported broadband (spectral coverage:
200–1500 cm−1) CARS spectroscopy at a record scan rate of 24,000 spectra/s using a time-domain
Fourier-transform approach, while Camp et al. [14] presented ultrabroadband (spectral coverage:
500–3500 cm−1) multiplex CARS microspectroscopy at 3.5-ms pixel exposure time. Yoneyama
et al. [26] developed a multiplex CARS microscope (spectral coverage: 600–3600 cm−1) with
exposure time down to 0.8 ms, using a high-peak-power supercontinuum generated in a PCF
pumped by a Q-switched microchip Nd: YVO4 laser oscillator generating sub-100-ps laser pulses
at 0.82-MHz repetition rate.

The low B-CARS signal levels in the fingerprint region have led to the use of post-processing
methods to enhance the SNR while preserving the chemical information contained in the collected
hyperspectral images. Several numerical methods have been used to denoise B-CARS images,
which are 3D data hypercubes characterized by two spatial and one spectral dimension, such as
principal component analysis or singular value decomposition [14] and spectral total variation
[36]. Recently, deep-learning methods [37] based on convolutional neural networks (CNN)
have been used for broadband CRS images affected by Gaussian noise. These are supervised
methods in which the neural model is trained with pairs consisting of a noisy input and an ideal
output, finding the best nonlinear transfer function that transforms the former into the latter. The
trained model is then tested on previously unseen experimental data. The first demonstration of
CRS image denoising through CNN architectures was performed by Manifold et al. [38], who
employed a U-net CNN [39] architecture for SRS signals. CNNs for denoising CARS endoscopic
images have been later applied by Yamato et al. [40]. Finally, Lin et al. [41] developed a
spatial-spectral residual net, based on the U-net architecture, to denoise hyperspectral SRS
images, training the model on images containing similar spatial features as those to be denoised.

Here we demonstrate a novel approach to B-CARS based on an amplified femtosecond
ytterbium laser system working at 2-MHz repetition rate, that delivers pulses at 1035 nm with
much higher (≈J level) energy than standard systems typically running at 40 or 80 MHz. This
unlocks two key advantages. The first is the possibility to generate broadband red-shifted Stokes
pulses, covering the whole fingerprint region (400–1800cm−1), employing white-light continuum
(WLC) generation [42] in a bulk crystal rather than in PCFs, as previously reported in literature.
WLC in bulk media is a more compact, robust, simple and alignment-insensitive technique.
It exhibits high mutual correlations between the intensities of its spectral components, low
pulse-to-pulse fluctuations, and excellent long-term stability, which is comparable to that of
the pump laser source itself [43]. The second advantage relates to the reduced repetition rate.
On the one hand, a repetition rate of 2 MHz allows a temporal delay of 0.5 µs between two
consecutive pulses, leaving more time to the system for thermal energy dissipation, thus reducing
photothermal damage [44]. On the other hand, for a given average power at the focus, limited
by sample degradation, higher pulse energy results in higher peak intensity, which generates a
stronger B-CARS signal thanks to the non-linear nature of the optical effect. This entails higher
SNR and/or acquisition speed, without compromising sample integrity.

Our B-CARS microscope delivers high-quality images at state-of-the-art acquisition speed,
with <1 ms pixel dwell time for polymer beads, limited by the spectrometer refresh rate. It also
features enhanced chemical specificity and sensitivity to low concentrations. The performance of
our microscope is boosted by two further crucial characteristics. On the one hand, our setup,
working in a red-shifted spectral region (1035 nm for the pump and 1050 - 1300 nm for the
Stokes beam) with respect to standard CARS setups (800 nm for the pump, 830 - 1000 nm for
the Stokes), enables us to employ higher laser intensities on the sample before the onset of
photo-damage [45], thanks to a reduced multi-photon absorption from cell/tissue pigments and
especially DNA, which absorbs around 260 nm. On the other hand, we employ an innovative
data processing pipeline that extracts the maximum amount of information from the recorded
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B-CARS hypercubes. Our data-processing pipeline includes: (i) a spectral denoiser based on
a CNN architecture that increases the SNR of the acquired B-CARS spectra; (ii) a numerical
method to remove NRB from the spectra, based on the Kramers-Kronig relations [17]; and (iii) a
multivariate curve resolution-alternating least squares (MCR-ALS) algorithm [46] and a K-means
cluster analysis (KMCA) algorithm [47] to discern the different chemical constituents. In this
paper we demonstrate very fast vibrational hyperspectral imaging with high SNR on solvents
and polymer beads, and we validate the potential of our approach for biomedical imaging by
mapping murine spine longitudinal sections.

2. Methods

The architecture of the B-CARS microscope is shown in Fig. 1 and described in detail in the
supplemental document. A commercial fiber-based ytterbium laser system provides ≈270 fs
pulses at 1035 nm wavelength with variable repetition rate and average power, which we fixed at
2 MHz and ≈5W, respectively. A polarizing beam splitter divides the laser output into two beams,
whose average powers are controlled by a half-wave plate mounted on a manual rotational stage.
The first fraction of the beam, with ≈2-W average power, generates narrowband pump pulses
with energy fluctuations <1% RMS by spectral filtering through a high-finesse Fabry–Perot
etalon, which allows reaching a spectral resolution of ≈10 cm−1 (≈1.1 nm FWHM bandwidth),
matching the linewidths of vibrational Lorentzian peaks [48]. The second replica, with ≈3-W
average power, provides sufficient pulse energies (≈1.5 µJ) to generate a broadband near-infrared
WLC by focusing it in a 10-mm-thick YAG crystal, which we employed as Stokes pulses. The
broadband source shows very good stability with energy fluctuations <1% RMS comparable to
those of the driving laser.

Fig. 1. Scheme of the B-CARS experimental setup. HWP: half-wave plate; PBS: polarizing
beam splitter; LP: long-pass filter; SP: short-pass filter. Pump (red) and Stokes (rainbow)
spectra. Schematic of the data processing pipeline: (i) Neural Network, (ii) NRB removal
and (iii) Classification Methods to obtain false colors image.
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A long-wave-pass filter selects the red-shifted lobe of the WLC (1050–1300 nm). The spectral
energy density of the Stokes beam is high enough to generate CARS in the entire fingerprint
region even at very short pixel-dwell times. An SF-11 prism pair compresses the Stokes
pulse, compensating the dispersion introduced by the optical elements of the system. Before
the microscope, the pump and Stokes pulses are collinearly superimposed through a dichroic
mirror and temporally synchronized by a mechanical delay line. The beams are then sent to a
homebuilt transmission microscope in up-right configuration equipped with two identical 100x
air objectives with NA= 0.85. After the sample, a short-pass filter rejects the pump and Stokes
beams, transmitting the generated B-CARS signal, whose spectrum is then measured with a
standard grating-based dispersive spectrometer. The sample is raster-scanned in three dimensions
using a motorized XYZ translation stage synchronized with the CCD camera of the spectrometer.
Average powers of ≈40 mW for the pump and ≈10 mW for the Stokes beam have been used for
all the experiments.

3. Results and discussion

3.1. B-CARS spectroscopy of solvents

To assess the performance of the system, we measured the spectral profiles of six solvents:
acetone, ethanol, methanol, isopropanol, dimethyl sulfoxide (DMSO), and toluene (see Fig. 2(a)).
For these experiments, using solvents droplets deposited between two 170-µm glass coverslips
(see Fig. 2(b)), we set the CCD exposure time to 0.8 ms, i.e., the minimum allowed by the
detector electronics, and collected single-point B-CARS spectra, spanning the whole fingerprint
region from 500 to 2000cm−1. The raw spectra (blue curves in Fig. 2(a)) show the characteristic
distortions of the line shapes due to the interference of the resonant CARS signal with the NRB.

The single-point spectra retrieved applying the Kramers-Kronig algorithm [17] to remove the
NRB contribution (red curves in Fig. 2(a)) show a very good agreement with the SR spectra
(grey areas in Fig. 2(a)) both in the relative positions of the peaks and their amplitude ratios. We
also examined the detection limit of our system measuring B-CARS spectra of a set of binary
solutions of DMSO and pure water with variable DMSO concentration, ranging from 100% to
0%. We set the exposure time to 10-ms, averaging over a hundred spectra for a total of 1-second
measurement time, and used the same sample configuration employed for solvents, i.e. the binary
solution of DMSO and water at different dilutions between two glass coverslips. We did not
apply any denoising method to the spectra, but we just retrieved the pure vibrational response of
the solvents using the Kramers-Kronig algorithm to remove the NRB. As reference spectrum
for the Kramers-Kronig algorithm, we used the CARS spectrum collected on the sample with
pure water (0% DMSO – 100% water). The response of the retrieved Im{χR

(3)} is linear with
respect to DMSO concentration (Fig. 2(c)) and we found that the detection limit of the system
is ≈14.1 mmol/L. This limit corresponds to the value of the solvent concentration at which the
main peak of DMSO in the fingerprint region at ≈667 cm−1 is equal to the background signal
due to noise. The determined sensitivity limit corresponds to a two-fold increase with respect to
previously reported multiplex CARS in the fingerprint region [14].

We then moved to imaging applications, collecting spectral hypercubes consisting of a B-CARS
spectrum for each pixel of the image. B-CARS imaging is performed by raster scanning the
sample in the x-y directions, keeping it fixed in the z axis, and simultaneously acquiring a CARS
spectrum with the CCD. To extract the maximum amount of information from the high-speed
measured B-CARS spectra, we designed a data post-processing pipeline, which is schematically
shown in the right-hand part of Fig. 1. It consists of three steps: a CNN to remove the noise;
the Kramers-Kronig algorithm [17] to extract the imaginary part of the resonant vibrational
susceptibility, Im[χ

(3)
R (ω)], followed by signal unmixing/clustering to distinguish the various

sample components.
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Fig. 2. (a) B-CARS raw single-point spectra (blue solid lines) measured at 0.8-ms exposure
time on six solvents (as indicated), sandwiched between two 170-µm glass coverslips. Red
solid lines are the corresponding imaginary parts of the nonlinear susceptibility, retrieved
after applying denoising via deep learning and Kramers-Kronig algorithm. SR spectra (grey
areas) are also plotted for comparison. (b) Scheme of the sample configuration employed
for the experiments. (c) Dilution test experiment on a binary solution of DMSO and pure
water. We considered the retrieved imaginary part of the third order resonant susceptibility
of the main peak of DMSO at 667 cm−1. The inset shows a zoom on the low concentration
binary solutions. Estimated sensitivity: 14.1 mmol/L of DMSO in pure water. Error bars: 1
standard deviation.

The CNN used for spectral denoising (see Fig. 1) was inspired by the LeNet architecture [49]
and is characterized by six convolutional layers, two average pooling layers and six fully connected
layers. We chose a mean absolute percentage error loss function, a batch size of 128 training
examples and a validation split of 20%, which proved to be best in terms of accuracy. The training
dataset consists of high-SNR B-CARS spectra of six different spectroscopic grade solvents
acquired with our system with long (100-ms) exposure time. The noisy inputs are obtained adding
random noise with uniform distribution, while the outputs are obtained computing a moving
average (3 points out of 1024) of the acquired spectra, which is enough to remove the random
Gaussian noise but not the dispersive features. Then, we applied data augmentation [50] to the
original dataset, reaching higher performances of the network during the training procedure.

We compared our denoiser with conventional algorithms (see Fig. 3(a)), namely the moving
mean, the Fourier-transform filtering or the Savitzky-Golay filter. For the comparison, we used
a B-CARS spectrum of toluene acquired at 100-ms exposure time and adding random noise
uniformly distributed, that we first denoised on our trained CNN that had not previously seen
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that specific spectrum. The moving mean returns a spectrum where each pixel is the local
mean of k-point values, where each mean is calculated over a sliding window of length k across
neighboring elements. The Fourier-transform approach operates a filter in the Fourier domain of
the original spectrum, zeroing all the coefficients above a certain frequency, typically associated
to noise, and then applies the inverse Fourier transform to obtain the denoised version of the
spectrum. Finally, the Savitzky-Golay filter smooths the noisy spectrum fitting subsequent
sub-sets of adjacent data points with a low-degree polynomial function using the method of
linear least squares. These approaches show a lower prediction accuracy when compared to our
denoising method via deep learning.

Fig. 3. Comparison of four different denoising methods on a CARS spectrum of toluene:
Neural network, moving mean algorithm, Fourier-transform approach and Savitzky-Golay
filter. (a) Denoising methods on a noisy input toluene CARS spectrum (blue curve) obtained
considering experimental data and adding random noise. (b) Im[χ

(3)
R (ω)] spectra retrieved

through Kramers-Kronig algorithm starting from the spectra in panel (a). A SR spectrum
(black curve) of toluene acquired with 5 s exposure time is reported for comparison.

The reason why classical mathematical methods are not suitable for this denoising task can be
easily seen from the results in Fig. 3(a). Indeed, when considering CARS spectra, it is important
to preserve the typical dispersive line shape given by the interference term between the resonant
vibrational response of the sample and the NRB, which results in a slow rise, a steep decay, and
another slow recovery of the signal with frequency. While our neural network can recognize and
maintain original spectral features (see yellow curve), moving mean, Savitzky-Golay and Fourier-
transform filtering approaches introduce artefacts and/or alter peak shapes. The moving mean
with high k-values and Savitzky-Golay smooth the sharp edge of typical CARS peaks, whereas
the Fourier transform cancels them by filtering out their typical high-frequency components.
Eventually, we also applied the Kramers-Kronig algorithm to the different spectra (in Fig. 3(a))
to retrieve the imaginary part of the resonant third order susceptibility, χ(3) (Fig. 3(b)). These
results clearly demonstrate that our neural network outperforms conventional spectral denoising
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methods. Further details on the model architecture, noise study of the model and the employed
data augmentation methods are reported in the Supplementary Information.

3.2. B-CARS microscopy of a heterogeneous sample

Figure 4 shows images of a sample made by mixing 10-µm polystyrene (PS) and 8-µm poly-
methyl-methacrylate (PMMA) beads, immersed in DMSO. We collected single-pixel B-CARS
spectra of PS, PMMA and DMSO at 1-ms integration time (panel 4(a)). In the spectral profiles,
we highlighted, with black triangles, the three main peaks relative to the three chemical species
(650 cm−1 for DMSO, 780 cm−1 for PMMA, 970 cm−1 for PS). Note that the positions of these
peaks are shifted with respect to the corresponding ones in the SR spectra (grey areas in panel
4(c)) due to the distortions of the linewidths introduced by NRB. Panel 4(b) shows the portions of
the hypercube we collected at these three specific vibrational frequencies. After our CNN-based
spectral denoising and NRB removal, classification analysis was performed by applying the
MCR-ALS algorithm [46], designed to retrieve the spectra and concentration maps of pure
components from heterogeneous samples.

The hypercube D, obtained after denoising and NRB removal, can be written as the product of
the concentration matrix C and of the spectra S, such that D=CST+E, where the superscript T
stands for transpose, while E is a residual error that must be minimized by the algorithm. The
number of components (i.e., the chemical species) in the algorithm can be arbitrarily selected. In
our case, we fixed it to three. Panels 4(c)–(d) display the spectral profiles and the concentration
maps obtained with the algorithm, without using any initial guess or prior knowledge on the
spectra. The spectra are in very good agreement with the SR spectra (grey areas in panel 4(c)) and
all the peaks, even the less intense ones, can be recognized. Note that in the retrieved spectrum
of the 8-µm PMMA beads there is a residual peak of DMSO. This is caused by the fact that
the sample thickness between the two coverslips is 10 µm, as set by the size of the PS beads, so
that the DMSO solvent engulfs the smaller PMMA beads. This result confirms the capability
of our B-CARS microscope of localizing and discriminating different chemical constituents in
heterogeneous samples, working at high speed, and covering the entire fingerprint vibrational
region.

3.3. Biological tissue imaging

Eventually, we used our B-CARS microscope for mapping biological specimens, imaging
longitudinal sections of non-decalcified methyl methacrylate (MMA)-embedded murine spine
(vertebrae). The 6-µm-thick sections include both the compact cortical part and the cancellous
trabecular part of bone tissue, the latter being interspersed with bone marrow. Bone is constituted
by a flexible matrix, mainly made up of type-I collagen, and by an inorganic mineral counterpart,
mostly composed of calcium phosphate (hydroxyapatite), which gives rigidity to bones. The
interplay of these two constituents provides tensile and compressive strength for load bearing.
Conversely, bone marrow is rich in cells taking part in hematopoiesis, thus playing a crucial role
for blood cell production. Consecutive tissue sections were deposited either on slides for routine
histological procedures or on a poly-lysine treated quartz coverslip. After removing the resin, a
second 170-µm quartz coverslip was applied to obtain a sandwich configuration. Further details
on the sample preparation can be found in the supplemental document.

Figure 5(a) shows a bright-field image of a tissue slice stained with Hematoxylin and Eosin
(H&E), typically used to visualize the sample morphology. From this image, we selected a
reference 400× 800-µm2 field of view (dashed area) characterized by the presence of the cells
of the bone marrow, the trabecular and cortical bone and the muscular tissue surrounding the
vertebrae. We then imaged the unstained adjacent tissue slice by B-CARS in the same region.
As a result, we acquired a hypercube and selected three frames (Fig. 5(b-d)) at three selected
Raman shifts (i.e., 790 cm−1 for DNA, 960 cm−1 for hydroxyapatite and 1410 cm−1 for CH2 of
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proteins and lipids) corresponding to prominent peaks in CARS spectra (Fig. 5(e)). For the
data processing, we adopted our CNN-based model for data denoising and the Kramers-Kronig
algorithm for NRB removal. Then, we used KMCA to identify the main chemical constituents of
the sample [47,51]. KMCA is preferred to MCR-ALS in this specific case, as we observed that it
performs more effectively with a large sized dataset. Fixing the number of clusters to four, we
obtained the concentration map and the spectra shown in Fig. 5(f-g). A cluster can be associated
to the region of the vertebra related to cortical and trabecular bone, another one to the region
associated to the bone marrow and the last one to the muscle (see Fig. 5(g)). The fourth cluster
accounts for empty regions of the sample.

The centroid of the first cluster (in red) shows an intense band between 940 and 970 cm−1,
typically associated to phosphate bonds in hydroxyapatite (960 cm−1). The spectrum also shows
a small band around 1060-1080 cm−1, representing carbonate in hydroxyapatite, and bands at
1220-1230 cm−1 (amide III, proteins), ≈1440 cm−1 (CH2, proteins and lipids, also called organic
matrix) and ≈1650 cm−1 (amide I, proteins) [52]. These spectral features clearly correspond to
bone, mostly characterized by mineral crystals embedded in an organic protein-rich matrix. The
centroids of the second and third clusters (in green and blue respectively) are mainly characterized

Fig. 4. Broadband CARS image of 10-µm PS and 8-µm PMMA beads soaked in DMSO
and sandwiched between two 170-µm glass coverslips. (a) Single-pixel CARS spectra in the
fingerprint region measured in correspondence with a PS bead (green curve), DMSO (blue
curve) and a PMMA bead (red curve). (b) Frames of the measured B-CARS hypercube
at three selected Raman shifts (black triangles in panel (a)) corresponding to three main
characteristic peaks (650 cm−1 for DMSO, 780 cm−1 for PMMA, 970 cm−1 for PS) of the
species in the fingerprint region. (c) MCR-ALS retrieved spectra of the three chemical
species after the post-processing data pipeline and correspondent SR spectra (grey areas)
(d) False-color image overlaying the three concentration maps retrieved with MCR-ALS
analysis, with the same color code as (c). Imaging settings: 90×90 pixels, 1-µm pixel size,
1024 spectral points, 1-ms pixel dwell time, Scale bars: 20 µm, total image acquisition time:
8.1 s.
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Fig. 5. Microscopy of 6-µm-thick murine spine sandwiched between two 170-µm quartz
coverslips. (a) Bright-field image of a tissue slice stained with H&E. (b-d) Frames of the
measured B-CARS hypercube at three different Raman shifts (black triangles in panel (e)) on
the unstained adjacent slice. (e) B-CARS spectra from the bone marrow region (green curve,
+), from the muscle region (blue curve, *) and from the bone tissue (red curve, x). (f-g)
Concentration map and vibrational spectra of the three clusters associated with bone marrow,
muscle, and bone, retrieved after denoising the data with the CNN model, NRB removal
through the Kramers-Kronig algorithm and applying the KMCA algorithm. Imaging settings
for the B-CARS dataset: 200-µm scale bar, 400× 800 pixels, 1-µm pixel size, 1024 spectral
points, 10-ms pixel dwell time, total image acquisition time: 55 minutes.
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by vibrations around 790 cm−1, typically assigned to DNA, and by strong signals in the spectral
region between 1400 and 1700cm−1, mainly associated to protein and lipids. These clusters can
be assigned to bone marrow and to muscular tissue, characterized by a high cellular fraction and
protein-rich muscle fibers, respectively.

3.4. Outlooks

We can envision significant improvements for our system. Preliminary measurements have shown
that in a 10-mm YAG crystal it is possible to generate broader WLC (1050-1600 nm), allowing to
also cover the CH-stretching region and detect the whole Raman spectrum of chemical analytes
at 0.8-ms pixel dwell time. Figure S5 in the supplementary information reports an example of
spectrum covering both fingerprint and CH-stretching region. However, the spectral distribution
of this very broad WLC is not optimal, as most of the Stokes photons are in correspondence with
the silent region of the vibrational spectrum and only their spectral tails are effectively employed
for the fingerprint region on the one side and the C-H stretching region on the other. Therefore,
it will be necessary to equalize the spectral distribution or even suppress the part of the Stokes
spectrum associated to the silent region where no peaks are present, thus maximizing the SNR
and reducing the unneeded optical power impinging on the sample. Moreover, owing to the
high peak and average power of the driving laser, further developments of our B-CARS can be
envisaged to shorten the pixel dwell time even more. These may include a line or wide-field
illumination of the sample, thus retrieving the signal from an entire line or a two-dimensional
field of view. For these applications, a higher average power both for the pump and Stokes beam
can be used to illuminate the sample, without compromising its integrity. Indeed, light will be
distributed on a larger area rather than on a single pixel, thus resulting in a comparable power
density per pixel.

4. Conclusions

In this work we presented a novel configuration for high-speed label-free vibrational imaging,
based on B-CARS spectroscopy. The two key novel elements introduced are: (1) the use of a
low-repetition-rate (2 MHz) pulsed laser in the infrared and (2) the advanced data-processing
pipeline, including an artificial intelligence algorithm for spectral denoising, phase retrieval and
clusterization. The former innovation opens the possibility to: (i) Simplify the experimental
setup, as the broadband Stokes light is not derived from tapered fibers or PCFs but rather by
supercontinuum generation in bulk media, which is much more robust, compact, and insensitive
to misalignments. (ii) Increase the nonlinear CARS signal, thanks to the higher pulse energy
and peak power, for a given average power limited by sample damage, thus increasing the SNR
and/or the imaging speed. (iii) Shift the wavelength of the pump/Stokes pulses beyond 1 µm, thus
limiting the multi-photon sample damage when imaging biological samples. The second novelty,
regarding the new post-processing algorithm, based on the combination of deep learning-based
and conventional algorithms, was crucial to extract the relevant information from the measured
hypercubes with a very large number of voxels, thus retrieving the same chemical information of
conventional vibrational techniques, such as SR, but at the speed of CRS approaches.

Thanks to these innovations, we could demonstrate extremely fast (down to 0.8 ms pixel dwell
time, limited by the CCD read-out time) B-CARS microscopy in the weak vibrational fingerprint
region, with record-breaking sensitivity (down to 14.1 mmol/L) and high (≈10 cm−1) spectral
resolution, without compromising sample integrity. We showed that the system could recognize
the main chemical constituents in biological tissues such as longitudinal sections of murine
vertebra in a label-free manner.

Our B-CARS approach will enable us to identify a wealth of biomolecules in heterogeneous
media in a label-free manner, avoiding not only a cumbersome procedure for sample preparation
but also the introduction of structural and chemical alterations to the sample that may lead to
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artifacts during imaging and data processing. We envisage important applications in biomedical
sciences, such as live cell imaging and histopathology.
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