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Abstract
Deep Learning is having a remarkable impact on the design of Reduced Order Models
(ROMs) for Partial Differential Equations (PDEs), where it is exploited as a pow-
erful tool for tackling complex problems for which classical methods might fail. In
this respect, deep autoencoders play a fundamental role, as they provide an extremely
flexible tool for reducing the dimensionality of a given problem by leveraging on the
nonlinear capabilities of neural networks. Indeed, starting from this paradigm, several
successful approaches have already been developed, which are here referred to as
Deep Learning-based ROMs (DL-ROMs). Nevertheless, when it comes to stochastic
problems parameterized by random fields, the current understanding of DL-ROMs is
mostly based on empirical evidence: in fact, their theoretical analysis is currently lim-
ited to the case of PDEs depending on a finite number of (deterministic) parameters.
The purpose of this work is to extend the existing literature by providing some theo-
retical insights about the use of DL-ROMs in the presence of stochasticity generated
by random fields. In particular, we derive explicit error bounds that can guide domain
practitioners when choosing the latent dimension of deep autoencoders. We evaluate
the practical usefulness of our theory by means of numerical experiments, showing
how our analysis can significantly impact the performance of DL-ROMs.
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1 Introduction

Aside from its striking impact on areas such as data science, language processing,
and computer vision, Deep Learning is now becoming ubiquitous in all branches of
science, with applications ranging from economics [1–3] to medicine [4–6], biol-
ogy [7–9], chemistry [10–12], physics [13–15], mathematics [16–18] and engineering
[19–21]. In most cases, researchers exploit Deep Learning to make up for our limited
understanding and limited computational resources, typically trying to find a suitable
compromise between domain knowledge and data-driven approaches. In this contri-
bution, we shall focus our attention on a specific research area, typical of engineering
applications, which concerns the development of Reduced Order Models (ROMs).

Simply put, ROMs are model surrogates that aim at replacing expensive numerical
simulationswith accurate approximations that are obtained at a reduced computational
cost. From a practical point of view, ROMs can be remarkably helpful whenever
dealing with real-time many-query applications, such as those characterizing digital
twins [22], optimal control [23] and uncertainty quantification [24, 25]. As of today,
the literature is filled with plenty of different ROM approaches, and whether to choose
one or another is typically problem dependent. Here, we shall focus on Deep-Learning
based ROMs (DL-ROMs), specifically addressing the framework proposed in [26,
27], which leverages the use of deep autoencoders and has already reported numerous
successful applications; see, e.g., [28–31].

The driving idea behind the DL-ROM approach is to exploit the nonlinear approx-
imation capabilities of deep autoencoders to perform a suitable dimensionality
reduction, allowing the representation of complex high-fidelity solutions as small vec-
tors in some latent space of dimension n. In general, the choice of this latent dimension
is problem specific and its value reflects the intrinsic properties of the so-called solu-
tion manifold. In the case of PDEs that depend on a finite number of deterministic
parameters, this fact has already been thoroughly studied in [27]. There, the authors
characterize the latent dimension of the DL-ROM by investigating the behavior of the
so-calledmanifold n-width [32]. Given a compact parameter space � ⊆ R

p, a Hilbert
state space (V , ‖ · ‖) and a parameter-to-solution operator � � μ �→ uμ ∈ V , the
latter can be written as

inf
� ′∈E(V ,Rn)
�∈D(Rn ,V )

sup
μ∈�

‖uμ − �(� ′(uμ))‖ (1)

where � ′ : V → R
n and � : R

n → V are the encoder and decoder networks, respec-
tively, each varying in a suitable class of admissible architectures correspondingly
named E(V , R

n) and D(Rn, V ).
The purpose of this work is to extend the analysis proposed in [27] to address the

case of stochastic PDEs, where the deterministic parameters are replaced by some
random field μ ∼ P. In general, this extension presents two major challenges. First
of all, the realizations of the input field μ might be arbitrarily large in norm, which
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removes any form of compactness and makes the arguments in [27] inapplicable. On
top of that, the stochasticity introduced by the random field makes the PDE formally
depend on an infinite number of parameters, i.e. p = +∞. Then, the bounds provided
in [27] become meaningless.

To address these difficulties, we shall first replace the optimization problem in (1)
with its probabilistic counterpart, that is

inf
� ′∈E(V ,Rn)
�∈D(Rn ,V )

Eμ∼P‖uμ − �(� ′(uμ))‖ (2)

whereE is the expectation operator. Then, (2) measures the extent to which an autoen-
coder with latent dimension n can approximate the high-fidelity solutions arising from
the PDE. Our purpose is to characterize the quantitative behavior of (2) and thus pro-
vide practical insights that can guide domain practitioners in the complex design of
DL-ROM architectures.

More precisely, we shall prove the following facts. If the PDE depends on a finite
number of stochastic parameters, p ∈ N, then the autoencoders can achieve arbitrary
accuracy in any latent dimension n ≥ p. In general, this result is much stronger than
the one obtained in the deterministic setting, since the optimal bound in that case is
n ≥ 2p + 1: see Theorem 3 in [27] for further details. On the contrary, if the PDE
depends on a general random field (informally, p = +∞), then we can characterize
the decay of the reconstruction error (2) in terms of the eigenvalues of the covariance
operator of the input random field, μ, and of the output field, uμ, respectively. In par-
ticular, our analysis shows how deep autoencoders can outperform the performance
of linear methods by benefiting from the intrinsic regularities available in both fields.

The paper is organized as follows. First, in Section 2, we formally introduce the
problem of reduced order modeling for stochastic PDEs, with a brief overview about
the DL-ROM approach, while, in Section 3, we present the mathematical tools that
are needed for our construction. Our main contribution can be found in Section 4,
where we derive several results about the latent dimension of deep autoencoders for
PDEs parameterized by random fields. Finally, we devote Section 5 to numerical
experiments.

2 Problem setup

Let � ⊂ R
d be a bounded domain. We are given a parametrized boundary value

problem with random coefficients, e.g.

{
Aμuμ = fμ in �

Bμuμ = gμ on ∂�,
(3)

with Aμ,Bμ, fμ, gμ parameter dependent operators and problem data, respectively.
Here, μ is a suitable random field that parameterizes the PDE and introduces a
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corresponding form of stochasticity. For simplicity, we assume that μ is defined over
�, although such a restriction is not necessary. Notice also that we limit our attention
to steady PDEs: for a deeper discussion about this aspect, we refer the reader to the
remark at the end of this Section.

We assume to have at our disposal a trusted high-fidelity numerical solver – possibly
expensive – that can approximate the solution of (3) for each fixed realization of
the random field μ. We further assume that all numerical simulations produced by
such solver live in a common high-fidelity state space Vh ⊂ L2(�) of dimension
dim(Vh) = Nh . Let {ξi }Nh

i=1 be the basis of Vh . Then, for each realization of μ, the
numerical solver provides a way to compute a set of basis coefficients

uhμ := [c(1)
μ , . . . , c(Nh)

μ ] such that uμ ≈
Nh∑
i=1

c(i)
μ ξi .

In this sense, the numerical solver, also known as the Full Order Model (FOM),
defines a solution operator

Gh : μ �→ uhμ ∈ R
Nh

in a very natural way. The efficient approximation of such an operator can be of
great interest in many-query and real-time applications, where multiple calls to the
FOM become computationally unbearable. Thus, the main interest becomes finding
a cheaper surrogate μ �→ �(μ), called the reduced order model (ROM), such that
�(μ) ≈ uhμ. More precisely, let P denote the probability law of μ, and let ‖ · ‖Vh
be the norm over R

Nh induced by the L2-norm over the state space Vh . Then, giving
some tollerance ε > 0, one seeks to construct a suitable ROM for which

Eμ∼P‖uhμ − �(μ)‖Vh < ε.

2.1 Reduced order modeling and the DL-ROM approach

The development and construction of accurate ROMs is an extremely active area of
research: as of today, the literature features a very broad spectrum of approaches to
model order reduction, such as theReducedBasismethod [33–36] and its non-intrusive
data-driven variations, e.g. [37, 38], adaptive ROMs [39–42], hybrid techniques based
on closure modeling [43, 44], deep learning-based ROMs [26, 27, 45–47], and many
others, each with their own benefits and guarantees.

Here, we shall focus primarily on the case of Deep Learning based ROMs (DL-
ROMs), following the framework introduced in [26, 27]. These can be of particular
interest whenever: i) intrusive approaches are not available, either because they would
entail expensive subroutines, such as hyperreduction, or because the FOM is not acces-
sible; ii) linear methods based on, e.g., Principal Orthogonal Decomposition (POD),
fail because of intrinsic complexities entailed by the solution operator (see, e.g., the
well-known phenomenon of slow-decay in the Kolmogorov n-width [27, 48, 49]).

For simplicity, let us assume that the random field at input, μ, has been discretized
at the same level as PDE solutions, so that each realization μ ∈ L2(�) is formally
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replacedby someμh ∈ R
Nh . In their original formulation,DL-ROMsare characterized

by three deep neural network architectures, � ′, �, φ, which operate as

� ′ : R
Nh → R

n, � : R
n → R

Nh , φ : R
Nh → R

n,

where n ∈ N is the so-called latent dimension of the model. The idea is that the first
two networks are responsible for learning the fundamental features that characterize
PDE solutions; conversely, the third map, φ, is left to learn the way in which the input
μh affects the output uh

μh . This is achieved by constructing the three networks so that

�(� ′(uh
μh )) ≈ uh

μh and φ(μh) ≈ � ′(uh
μh ). (4)

Then, the parameter-to-solution operator is approximated as

�(μh) := �(φ(μh)) ≈ uh
μh . (5)

In this sense, the accuracy of the DL-ROM is ultimately determined by that of the
combined network � := � ◦ φ, while the role of � ′ is only auxiliary. However, such
a splitting can be beneficial (see, e.g., Figure 22 in [26]) as it makes the two blocks,
� and φ, tackle the different complexities that characterize model order reduction: on
the one hand, the spatial complexity of the solutions; on the other hand, the intricate
dependency of the solutions with respect to the input parameters. In this sense, the
presence of � ′ is fundamental, as it allows us to decouple the problem.

Following the conventions of the Deep Learning literature, we refer to the composi-
tion � ′ ◦� as an autoencoder architecture of latent dimension n, while the two maps,
� ′ and�, are referred to as encoder and decoder, respectively. The terminology comes
from the fact that the twomaps ultimately provide away to represent high-fidelity solu-
tions as small vectors in R

n , in fact, in �(� ′(uh
μh )) ≈ uh

μh and � ′(uh
μh ) ∈ R

n . Then it
is clear that choosing the appropriate value of n becomes of fundamental importance.
The purpose of this work is to provide additional information on this aspect, with
a particular focus on the case of PDEs parametrized by random fields. In the next
subsection, we shall further motivate this fact with a practical example.

For the sake of completeness, before coming to the main objective of this work, let
us conclude this overview with a few words about the training and implementation of
DL-ROMs. The first step consists of exploiting the FOM to generate a collection of
trusted samples

{μh
i ,u

h
i }Ntrain

i=1 ,

where uhi = Gh(μh), which serve as training data for the three networks in the DL-
ROM pipeline. More precisely, once the architectures have been designed, the three
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modules are trained by minimizing a suitable loss function such as the one below,

L(�,� ′, φ) = 1

Ntrain

Ntrain∑
i=1

(
α1‖uhi − �(φ(μh

i ))‖2Vh+ (6)

α2‖uhi − �(� ′(uhi ))‖2Vh+
α3‖� ′(uhi ) − φ(μh

i )‖2Rn

)
.

Here, α1, α2, α3 ≥ 0 are suitable weights that are used to define the loss function.
The idea is that by minimizing (6), one would automatically enforce both (4) and (5).
It should be noted that since the term multiplied by α1 contains information about the
actual accuracy of the ROM, the other two can be seen as regularizers. In this sense,
a good rule of thumb is to increase α2 if the solutions to the PDE are characterized
by a complex dependency with respect the space variable x ∈ �; conversely, one can
leverage α3 whenever the parameter dependency of the PDE becomes highly involved.

In general, training of the three networks can be achieved simultaneously or in
multiple steps. For example, in [26], the authors set α2 = 0 and proceed with a single
training; conversely, in [27], the authors propose a two-stage training phase: first with
α1 = α3 = 0 and then with α1 = α2 = 0. Here, we will keep all the weights active
α1, α2, α3 > 0, and opt for a one-shot training routine.

After the training phase, the DL-ROM can efficiently approximate high-fidelity
solutions in milliseconds. The quality of such an approximation is typically assessed
by relying on a suitable test set, that is, by comparing the outputs of the two models,
the DL-ROM and the FOM, for new independent realizations of the input field.

2.2 Choosing the latent dimension: a motivating example

To further motivate our analysis and anticipate the practical impact of our results, let
us look at a simple problem featuring a PDE with finitely many random parameters.
As in [27], we consider the following boundary value problem defined over the unit
square � = (0, 1)2

−∇ · (σμ∇u
) = fμ in � (7)

complemented with a constant Dirichlet boundary condition, u ≡ 0.1 on ∂�. Here,
the PDE depends on three random parameters, μ = [μ1, μ2, μ3], which affect the
permeability field σ = σμ and the right-hand-side f = fμ. Those are defined as

σμ(x) := 1

2
+ μ11�0(x), fμ(x) := 1

2πε2
exp

(
− 1

2ε2
|x − [μ2, μ3]T |2

)
,

where ε := 0.01 and �0 ⊂ � is as in Fig. 1a. The first parameter, μ1, can attain
any random value in [1, 4], and has the effect of modifying the permeability of the
subdomains; conversely,μ2 andμ3 are responsible for the random location of the con-
centrated source fμ, and they are allowed to range from 0.1 to 0.9. More precisely, we
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Fig. 1 Domain of definition (a) and randomly generated PDE solutions (b-d) for Problem (7)

endow the overall parameter space with a uniform probability distribution supported
over [1, 4] × [0.1, 0.9]2 ⊂ R

3.
To construct our trusted high-fidelity solver, we rely on a Finite Element discretiza-

tion of (7) using continuous piecewise linear elements defined over a structured
triangular grid of stepsize h ≈ 0.0236, which results in a FOM dimension of
Nh = 3721. We run the FOM multiple times to generate a total of 2000 random
solutions (1500 for training and 500 for testing): we refer to Fig. 1b-e for a few exam-
ples. Our purpose is to exploit these data to explore the behavior of two different
dimensionality reduction techniques. POD, which here stands as a representative of
linear ROMs, and deep autoencoders, which, instead, are at the core of DL-ROMs.

Precisely, we compute the reconstruction error (estimated via classicalMonte Carlo
over the test set)

Eμ∼P‖uhμ − �(� ′(uhμ))‖Vh ,
obtained by employing POD (i.e., by letting � ′ ≡ VT and � ≡ V be nothing but
the POD projectors) or deep autoencoders (in which case both � and � ′ are DNNs).
We repeat this computation for different choices of the latent dimension, namely
n = 1, 2, . . . , 40, to investigate the impact of the ROM dimension on the quality of
the reconstruction.Wemention thatwhile the PODmatrix is uniquely determined by n,
this is not the case for deep autoencoders, as users can play with several components of
the architecture (number of layers, intermediate neurons, layer type, etc.). To highlight
this fact, we train three different autoencoder architectures for each value of n. Results
are in Fig. 2.

In general, autoencoders quickly outperform POD: in fact, their performances at
n = 3 remain unmatched even when the POD considers as much as n = 40 latent
variables (left panel of Fig. 2). However, here we are not really interested in the actual
values of the error, but rather in how the error decays.

In the linear case, we can observe a very clear and stable trend, where the error
decays as some power of the latent dimension n, namely n−γ for some γ > 0.
However, things change quite a bit when moving to deep autoencoders. Here, in fact,
although the error always decreases as a function of n, the rate of such decay is not
constant. In fact, we can spot at least two different trends: first, we have a rapid decay
from n = 1 to n = 3, which is then followed by a much slower decay from n = 3
on. In this sense, the latent dimension n = 3 appears to be a turning point: after that,
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Fig. 2 Left panel: reconstruction error decay for Problem (7) as a function of the ROM dimension: lin-
ear reduction through POD vs nonlinear reduction through autoencoders. Right panel: model complexity,
measured in terms of free —i.e., trainable— parameters (cf. Remark 1)

it is not really worth increasing the ROM dimension; rather, the performances could
be improved by considering more complex architectures (see, e.g., the discussion in
[27], especially Section 4.1 and Figure 7).

Since for the case at hand thePDEdepends on p = 3 randomparameters, it is natural
to ask whether this is a simple coincidence. As we shall prove in Theorem 3, this is not
the case. It is shown here that when n = p, there is an ideal balance between reduction
and precision. However, wemust mention that several authors had already conjectured
this fact and applied it as a rule of thumb; see, e.g., [26, 50]; furthermore, in the case
of finitely supported probability measures, some first insights were already provided
in [27]. Here, we extend the analysis proposed in [27], showing that this optimality
is preserved even if the parameter space is endowed with a probability measure with
unbounded support. Furthermore, we shall generalize the idea to the case of random
fields, where the PDE formally depends on the parameters p = +∞. From a practical
point of view, this will allow domain practitioners to choose the latent dimension of
deep autoencoders beforehand, thus avoiding the tedious procedures based on trial and
error. For example, when faced with a problem such as (7), one can safely let n = 3
without having to repeat the analysis in Fig. 2.

Remark 1 Our focus for this work is to study the role of the latent dimension of deep
autoencoders. Seeing this as a first step towards a more comprehensive investigation,
our work does not immediately address other relevant matters, such as sample size
requirements, optimization strategies, and model complexity. For example, it is rea-
sonable to ask whether, in Problem (7), the improved performance of autoencoders
comes at the cost of increased model complexity. Mathematically speaking, the latter
can be defined as the number of trainable parameters in the model (also referred to
as ”free parameters”). For deep autoencoders, this corresponds to the total number
of active —that is, nonzero— entries in the weight matrices and the bias vectors; for
POD, instead, the latter is simply given by the number of entries in the POD matrix,
i.e. Nh ×n. In other words, we may quantify the complexity of the two approaches by

123



On the latent dimension of deep autoencoders... Page 9 of 59    96 

measuring a quantity that is proportional to the amount of physical memory required
to store the corresponding model. As shown in the right panel of Fig. 2, in this case
autoencoders are indeed more complex compared to POD. For example, when n = 1,
the autoencoder module requires 100 times more memory compared to POD. How-
ever, with increasing n, this difference becomes smaller and smaller. This is because,
while the number of POD entries grows linearly at a rate proportional to the FOM
dimension, Nh , autoencoders only increase in size near the bottleneck (in fact, only
the hidden layers are involved in this process). Furthermore, it is worth mentioning
that other architectures can be significantly more memory efficient. For example, as
discussed in [27], the use of convolutional layers can result in autoencoders that are
in fact cheaper than POD, with memory reduction close to 90%.

3 Preliminaries

In the current Section, the reader can find all the key properties and the mathematical
concepts that are required for properly following the theoretical analysis proposed in
Section 4. Precisely: in Section 3.1, we shall introduce the main ingredient of our
recipe, i.e., DNN architectures; then, in Section 3.2, we familiarize ourselves with
the notion of local variation, a mathematical concept that we later use to characterize
locally Lipschitz operators; finally, in Section 3.3, we summarize several properties
about Gaussian processes that are relevant to our analysis in Section 4.

In order to keep the paper self-contained, most of the proofs related to this Section
have been postponed to the Appendix, Section A.

3.1 Expressivity of deep neural networks

DNNs are computational units based on the composition of affine transformations
and nonlinear activations, with the latter being applied component-wise on all vector
entries. In the context of Deep Learning, in fact, it is very common to encounter the
following notation

ρ(x) := [ρ(x1), . . . , ρ(xn)], (8)

where x ∈ R
n and ρ : R → R. Here, with little abuse of notation, we agree to adopt

the same convention.
In particular, DNNs are obtained via the composition of several maps, called layers,

of the form x → ρ(Wx + b). Each layer is characterized by its own weight matrix
W, and its bias vector b, two learnable parameters that are generally optimized during
the training phase. All layers except the terminal layer (which usually comes without
an activation function) are called hidden layers, and their total number defines the
depth of the architecture. In mathematical terms, we may synthesize these notions as
follows.
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Definition 1 Let ρ : R → R and m, n ∈ N. We define the family of layers from R
m

to R
n with activation function ρ as

Lρ(Rm, R
n) = { f : R

m → R
n s.t. f (x) = ρ(Wx+b), W ∈ R

m×n, b ∈ R
n}.
(9)

Similarly, we define the family of Deep Neural Networks (DNNs) from R
m → R

n

with the activation function ρ as

Nρ(Rm, R
n) = { fl+1 ◦ · · · ◦ f1, with fl+1 ∈ Lid(R

nl , R
n), l ≥ 1,

fi ∈ Lρ(Rni−1R
ni ), i = 1, . . . , l,

ni ∈ N, and n0 = m},
(10)

where id : R → R is the identity map, id(x) = x .

When embedded in classical functional spaces, DNNs can provide remarkable
expressivity. In fact, with very few hypotheses on their activation function, DNNs
become able to approximate continuous maps over compact sets, as well as inte-
grable maps over finite measure spaces. These kinds of result are known as Universal
Approximation Theorems. Here, since we are dealing with stochastic quantities and
probability measures, we are interested in the Universal Approximation Theorem
proved by Hornik in 1991 [51]. In particular, we report below a slightly different
result, which is a direct consequence of Hornik’s Theorem.

Lemma 1 Let P be a probability distribution on R
p. Let ρ : R → R be a continuous

map. Assume that either one of the following holds:

i) ρ is bounded and nonconstant;
ii) ρ is bounded from below and ρ(x) → +∞ as x → +∞;
iii) there exists some a, b ∈ R such that x → aρ(x) + bρ(−x) satisfies (ii).

Then, for every ε > 0 and everymeasurable map f : R
p → R

n withEx∼P| f (x)| <

+∞, there exists � ∈ Nρ(Rp, R
n) such that

Ex∼P| f (x) − �(x)| < ε.

Proof See Appendix A. ��
Remark 2 The result in Lemma 1 applies to most activation functions used in deep
learning applications. For instance, the statement holds for maps such as the sigmoid
or the tanh activation, as they satisfy (i), but it also holds for other popular maps, such
as the ReLU, the SELU and the swish activation, which are lower-bounded. Finally,
the Lemma can also be applied to maps such as the α-leaky ReLU activation,

ρ(x) =
{
x x ≥ 0

αx x < 0
, (11)

where |α| < 1. In fact, the latter satisfies (iii) with a = 1 and b = −α.
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3.2 Local variation of (nonlinear) operators

As we mentioned in the Introduction, under deterministic conditions, it is very natural
to study reconstruction errors using worst-case approaches; for instance, the manifold
n-width, Eq. (1), constitutes amajor representative of this paradigm.Due to their global
perspective, worst-case metrics can provide uniform bounds that characterize the reg-
ularity of the solution manifold as a whole. However, when considering stochastic
scenarios, worst-case approaches may be overly restrictive. This is because different
events are now associated with different probabilities. As a result, it becomes more
natural to shift towards metrics that describe the average scenario, thus promoting
a higher accuracy for situations that are most likely to occur, while allowing more
leeway for errors in rare occurrences.

Notably, this change of perspective also allows us to consider a broader class of
parameter-to-solution operators: in fact, average metrics are -in general- more permis-
sive compared to worst-case ones. For instance, previous works has shown that the
continuity of the operator is not enough to guarantee a reasonable behavior of the man-
ifold n-width, while the stronger assumption of Lipschitz continuity, combined with
the boundness of the parameter space, suffices (see Theorem 3 and the corresponding
remark in [27]). Here, we shall see that these assumptions can be weakened as soon
as we move to average-metrics and stochastic scenarios. In particular, the requirement
of global Lipschitz continuity can be replaced with that of local Lipschitz continuity,
that is, a condition in which the Lipschitz constant of the operator G is allowed to
change from point to point.

Notice that, despite sounding like a minor change, this adaptation is of fundamen-
tal importance. In fact, stochastic scenarios typically involve unbounded parameter
spaces, where Lipschitz continuity rapidly becomes an excessively stringent prop-
erty: for instance, even in the finite rank case, an extremely regular operator such as
G(μ) = |μ|2 would not meet the assumptions. Considering that it is fairly common
to have either supp(μ) = Lq(�) when μ is a random field, or supp(μ) = R

p when μ

is a random vector, it is evident that relaxing these assumptions is fundamental.
All these considerations bring us to the following definition, which we use to study

the local behavior of nonlinear operators.

Definition 2 (Local variation) Let G : (W , ‖ · ‖W ) → (V , ‖ · ‖V ) be an operator
between normed spaces. We define its local variation as the map ‖∂G‖V : W →
[0,+∞] given by

‖∂G‖V (w) := lim sup
h→0

‖G(w + h) − G(w)‖V
‖h‖W =

= lim
r→0+

sup
0<‖h‖W≤r

‖G(w + h) − G(w)‖V
‖h‖W . (12)

Ultimately, the local variation provides a way to bound the Lipschitz constant near
every point of the input space, and it can be computed for any (nonlinear) operator.
In fact, our definition can be traced back to the notion of absolute condition number,
which is a concept commonly encountered in error and numerical analysis; see, e.g.,
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[52]. Here, however, we insist on using a different notation to better reflect our context
and avoid any sort of ambiguity.

The concept of local variation can be further understood by considering its rela-
tionship to other well-established mathematical concepts such as Lipschitz continuity
and Frechét differentiability. These facts are briefly summarized by the Proposition
below.

Proposition 1 Let G : (W , ‖ · ‖W ) → (V , ‖ · ‖V ) be an operator between two normed
spaces. Then, the following properties hold:

i) ‖∂G‖V (w) < +∞ for all w ∈ K ⊂ W ⇐⇒ G is locally Lipschitz over K ;
ii) if K ⊂ W is compact and ‖∂G‖V (w) < +∞ for all w ∈ K, then G is Lipschitz

over K ;
iii) if C ⊆ W is convex, then

LC := sup
w∈C

‖∂G‖V (w) < +∞

if and only if G is LC-Lipschitz over C.
iv) ifG is Fréchet differentiable atw ∈ W, then ‖∂G‖V (w) coincideswith the operator

norm of the Fréchet derivative of G at w.
v) given any F : (V , ‖ · ‖)V → (Y , ‖ · ‖Y ), one has the chain-rule inequality

‖∂(F ◦ G)‖Y (w) ≤ ‖∂F‖Y (G(w)) · ‖∂G‖V (w),

for all w ∈ W .

Proof See Appendix A. ��
As a straightforward consequence of Proposition 1, we also have the following

Corollary, which can be thought of as a form of Taylor-Lagrange inequality.

Corollary 1 Let G : (W , ‖ · ‖W ) → (V , ‖ · ‖V ) be any operator between two normed
spaces. Then, for all w,w′ ∈ W we have

‖G(w) − G(w′)‖V ≤
(

sup
0≤t≤1

‖∂G‖V (tw + (1− t)w′)
)
‖w − w′‖W . (13)

Proof Given w,w′ ∈ W , let K be the segment between the two points and define
L := supv∈K ‖∂G‖V . If L = +∞, then (13) is obvious; conversely, if L < +∞, then
the conclusion follows by (iii) in Proposition 1. ��

Equation (13) provides a way to control the discrepancy between two different
outputs of the operator, but it may also be applied to derive growth conditions. For
example, it can be shown that if the local variation grows at most exponentially, then
so does the operator. We formalize this consideration below.
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Corollary 2 Let G : (W , ‖ · ‖W ) → (V , ‖ · ‖V ) be an operator between two normed
spaces. The following holds true,

∃M, β > 0 s.t. ‖∂G‖V (w) ≤ Meβ‖w‖W ∀w ∈ W ,

�⇒ ∃M̃, γ > 0 s.t. ‖G(w)‖V ≤ M̃eγ ‖w‖W ∀w ∈ W .

Proof Let c := G(0) and fix any w ∈ W . By Corollary 1, we have

‖G(w)‖V ≤ c + ‖G(w) − G(0)‖V ≤ c +
(

sup
0≤t≤1

‖∂G‖V (tw)

)
‖w‖W ≤

≤ c +
(

sup
0≤t≤1

Meβ‖tw‖W
)
‖w‖W = c + Meβ‖w‖W ‖w‖W .

Since a < ea for all a ∈ R, and c ≤ ceb for all b ≥ 0, we have

‖G(w)‖V ≤ · · · ≤ (c + M)e(β+1)‖w‖W .

��
To conclude, we present a practical example of an operator whose local variation

grows at most exponentially. Despite its simplicity, we believe this example to be of
high interest, as it describes the case of a stochastic Darcy flow, which, in particular,
has direct implications in the study of porous media.

Proposition 2 Let � ⊂ R
d be a bounded domain with Lipschitz boundary, and let

f ∈ H−1(�) be given. For any σ ∈ L∞(�), let u = uσ be the solution to the
following boundary value problem,

{
−∇ · (eσ∇u) = f in �

u = 0 on ∂�.
(14)

Let G : L∞(�) → L2(�) be the operator that maps σ �→ u. Then, for all
σ, σ ′ ∈ L∞(�)

‖G(σ ) − G(σ ′)‖L2(�) ≤ C‖ f ‖H−1(�)e
3‖σ‖L∞(�)+3‖σ ′‖L∞(�)‖σ − σ ′‖L∞(�) (15)

and, in particular,

‖∂G(σ )‖L2(�) ≤ C‖ f ‖H−1(�)e
6‖σ‖L∞(�) ,

where C = C(�) is some positive constant.

Proof See Appendix A. ��
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3.3 Regularity and energy estimates for Gaussian processes

We now take the opportunity to recall some fundamental facts about stochastic pro-
cesses and randomfields.More specifically, herewe shall limit our analysis toGaussian
processes: for further comments about this choice, we refer the reader to the discussion
at the end of Section 4.3, see Remark 4.We start with a result that links the regularity of
the covariance kernel of a Gaussian process with that of the trajectories of the random
field. In doing so, we also include some estimates on the norms of the process, which
we shall exploit later on.

For the sake of simplicity, here, expected values will be directly denoted as E[ · ],
without any explicit declaration of the integration variable and its underlying proba-
bility distribution – given the context, there should be no ambiguity.

Lemma 2 Let � ⊂ R
d be pre-compact, and let Z be a mean zero Gaussian random

field defined over �. Assume that, for some 0 < α ≤ 1, the covariance kernel of the
process, Cov : � × � → R, defined as

Cov(x, y) := E
[
Z(x)Z(y)

]
,

is α-Hölder continuous, with Hölder constant L > 0. Then, Z is sample-continuous,
that is P(Z ∈ C(�)) = 1. Furthermore, for σ 2 := maxx∈� Cov(x, x), one has

E
1/2‖Z‖2L∞(�) ≤ c1σ

(
1+

√
log+(1/σ)

)
and E

[
eβ‖Z‖L∞(�)

]
= c2 < +∞,

(16)
for all β > 0, where c1 = c1(d, L, α,�) and c2 = c2(d, L, α, σ, β,�) are constants
that depend continuously on their parameters (domain excluded). Here,

log+(a) := max{log a, 0}.

Proof See Appendix A. ��

Another fundamental result that we need for our construction is a Corollary of
Mercer’s Theorem, known as the KKL series expansion. We report it below, together
with some considerations about the covariance kernel and its truncations.

Lemma 3 Let � ⊂ R
d be a compact subset and let Z be a mean zero Gaussian

random field defined over�. Assume that the covariance kernel of Z,Cov, is Lipschitz
continuous. Then, there exists a nonincreasing summable sequenceλ1 ≥ λ2 ≥ · · · ≥ 0
and a sequence of Lipschitz continuous maps, {ϕi }+∞

i=1 , forming an orthonormal basis
of L2(�), such that

Cov(x, y) =
+∞∑
i=1

λiϕi (x)ϕi (y) (17)
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for all x, y ∈ �. Furthermore, there exists a sequence of independent standard normal
random variables, {ηi }+∞

i=1 , such that

Z =
+∞∑
i=1

√
λiηiϕi (18)

almost surely. Finally, the truncated kernels,

Covp,q(x, y) :=
q∑

i=p

λiϕi (x)ϕi (y),

defined for varying 1 ≤ p ≤ q ≤ +∞,

i) converge uniformly as p, q → +∞;
ii) are all 1/2-Hölder continuous, with a common Hölder constant.

Proof See Appendix A. ��
Both the result in Lemma 2 and that in Lemma 3 require some form of uniform

continuity of the covariance kernel, however, they have the advantage of yielding
useful estimates to treat the L∞-case. At the same time, these properties may be far
too restrictive if one moves to the simpler scenario in which the trajectories of the
random field are only assumed to be square-integrable. In light of this, we report
below a different result specifically tailored for the L2-case, which can be seen as an
adaptation of the previous Lemmas.

Lemma 4 Let� ⊂ R
d be a compact subset and let Z be amean zeroGaussian random

field defined over�. Assume that the covariance kernel of Z,Cov, is square-integrable
over�×�. Then, there exist a non-increasing summable sequence λ1 ≥ λ2 ≥ · · · ≥ 0
and an orthonormal basis of L2(�), {ϕi }+∞

i=1 , such that

Cov(x, y) =
+∞∑
i=1

λiϕi (x)ϕi (y)

for almost every (x, y) ∈ �×�. Furthermore, there exists a sequence of independent
standard normal random variables, {ηi }+∞

i=1 , such that

Z =
+∞∑
i=1

√
λiηiϕi

almost surely. Finally, the L2-norm of the process is exponentially integrable, i.e.

E

[
eβ‖Z‖L2(�)

]
< +∞ ∀β > 0. (19)

123



   96 Page 16 of 59 N. R. Franco et al.

Proof See Appendix A. ��
Themain difference between Lemmas 3 and 4 lies in the regularity that one requires

to the covariancekernel.Clearly, stronger assumptions about the latter result in stronger
estimates about the random field and its norms.

In conclusion, we also report an abstract version of the KKL expansion for generic
Hilbert-valued random variables. In this case, it is convenient to considered an uncen-
tered KKL expansion, as the latter retains useful optimality properties: in fact, it is
the abstract equivalent of the POD algorithm.

Lemma 5 Let (V , ‖ ·‖) be a separable Hilbert space and let u be a squared integrable
V -valued random variable, E‖u‖2 < +∞. Then, there exists an orthonormal basis
{vi }+∞

i=1 ⊂ V , a sequence of (scalar) random variables {ωi }+∞
i=1 , with E[ωiω j ] = δi, j ,

and a nonincreasing summable sequence λ1 ≥ λ2 ≥ · · · ≥ 0 such that

u =
+∞∑
i=1

√
λiωivi ,

almost-surely.

Proof Up to adaptations, this is a standard result; see, e.g. Theorem 3.14 in [53].
However, the interested reader can find a detailed proof in Appendix A. ��

4 Autoencoder-based nonlinear reduction for PDEs parametrized by
random fields

We are now ready to put things into action and present the main results of this
work. We shall start with a preliminary consideration about the expressivity of deep
autoencoders and introduce a suitable notion of admissibility that will help us avoid
unrealistic/pathological situations. Then, we shall derive error bounds for the recon-
struction error of deep autoencoders in the case of: i) PDEs depending on a finite
number of random coefficients (Section 4.2); ii) PDEs parameterized by Gaussian
random fields (Section 4.3).

For better readability, in what follows, we shall drop the dependency of expected
values with respect to their underlying probability distribution. In particular, since all
randomness will be encoded in the input variable, which is μ ∼ P or μ ∼ P, we shall
simply write E in place of Eμ∼P.

4.1 Admissible autoencoders and density results

As already mentioned, our main interest is to investigate how the choice of the latent
dimension affects the optimization of the reconstruction error, and thus to provide
guidelines for the design of deep autoencoders. To this end, we must note that DNN
spaces lack many of the properties usually holding for classical functional spaces;
furthermore, their topology can easily become rather involved, see, e.g., the discussion
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in [54]. For this reason, it can be convenient to recast the optimization problem over
a broader class of functions, e.g. by relying on suitable density results. For example,
in [27], the authors consider a more general framework in which the encoder and
decoder are allowed to be any pair continuous maps. Here, we relax these hypotheses
even further. In fact, as a direct consequence of Lemma 1, it is easy to see that the
only property that is actually needed is measurability. More precisely, we have the
following result.

Theorem 1 Letμ be a random vector inR
p. LetG : R

p → V ∼= R
Nh be ameasurable

operator and define uμ := G(μ). Let n ∈ N. If E‖uμ‖ < +∞, then

inf
� ′∈M(V , Rn)
�∈M(Rn , V )

E‖uμ − �(� ′(uμ))‖ = inf
�̂ ′∈Nρ(V , Rn)

�̂∈Nρ(Rn , V )

E‖uμ − �̂(�̂ ′(uμ))‖, (20)

for all Lipschitz continuous activations ρ satisfying the hypothesis of Lemma 1.

Proof We assume the left-hand side to be finite, as the statement would be trivially
true otherwise. Let � ′ ∈ M(V , R

n) and � ∈ M(Rn, V ) be such that

E‖uμ − �(� ′(uμ))‖ < +∞, (21)

and fix any ε > 0. Let ρ = tanh be the hyperbolic tangent activation. Clearly, � and
� ′ have the same reconstruction error as�ρ := � ◦ρ−1 and� ′

ρ := ρ ◦� ′. Therefore,
up to replacing � with �ρ and � ′ with � ′

ρ , we may assume that � ′ is bounded.
Now, let us define the random vector vμ := � ′(uμ). Since E‖uμ‖ < +∞ and

(21) hold, it follows by linearity that E‖�(vμ)‖ < +∞. In particular, we may apply
Lemma 1 in order to find some �̂ ∈ Nρ(Rn, V ) such that

E‖�(vμ) − �̂(vμ)‖ < ε/2,

Of note, �̂ inherits the Lipschitz continuity of ρ. Thus, for any �̂ ′ ∈ Nρ(V , R
n),

∣∣∣E‖uμ − �(� ′(uμ))‖ − E‖uμ − �̂(�̂ ′(uμ))‖
∣∣∣ ≤ E‖�(� ′(uμ)) − �̂(�̂ ′(uμ))‖ ≤

≤ E‖�(� ′(uμ)) − �̂(� ′(uμ))‖ + E‖�̂(� ′(uμ)) − �̂(�̂ ′(uμ))‖ ≤
≤ 1

2
ε + LE‖� ′(uμ) − �̂ ′(uμ)‖,

where L > 0 is the Lipschitz constant of �̂. Then, by Lemma 1, we may choose �̂ ′
so that E‖� ′(uμ) − �̂(uμ)‖ < ε/2L, and thus

∣∣∣E‖uμ − �(� ′(uμ))‖ − E‖uμ − �̂(�̂ ′(uμ))‖
∣∣∣ ≤ ε. (22)

Note that, this time, we were able to apply Lemma 1 due to the boundness of � ′
(which in turn ensures its integrability with respect to any probability measure). As
ε > 0 is arbitrary, the inequality in (22) suffices to prove the identity in (20). ��
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The result in Theorem 1 is a double-edged sword. On the one hand, it allows us
to reframe the optimization problem on a less restrictive class of functions, giving us
the possibility, e.g., to study the behavior of the reconstruction error without having
to worry about the discretization of the state space: in fact, the spacesM(V , R

n) and
M(Rn, V ) are well defined even if V is infinite-dimensional. On the other hand, the
autoencoders in Eq. (20) can become extremely irregular and thus more difficult to
capture. In fact, one can show that in most cases

inf
� ′∈M(V , Rn)
�∈M(Rn , V )

E‖uμ − �(� ′(uμ))‖ = 0,

for all n ≥ 1, as there always exists a suitable space-filling curve that provides a
lossless embedding. However, such a representation would be completely useless, as
it would correspond to an architecture that is either impossible to reproduce or train:
see, e.g., the discussion at the end of [55] by Cohen et al.

One way to overcome all these issues is to impose certain additional assumptions
on the regularity of the autoencoder architecture. Here, we proceed as follows. We
define the (enlarged) class of admissible encoders V → R

n as

EB,M (V , R
n) :=

{
� ′ ∈ M(V , R

n) s.t. E|� ′(uμ)| < +∞ and sup
v∈B

|� ′(v)| ≤ M

}
,

(23)
where B ⊂ V is a control set and M > 0 is a suitable upper bound. Both B and
M are to be considered as hyperparameters: their role is to ensure that, at least in the
control set B, the encoder networks are uniformly well behaved. On the contrary, we
define the (enlarged) family of admissible decoders as

DM,L(Rn, V ) :=
{

� ∈ M(Rn, V ) s.t. sup
c∈[−M,M]n

‖∂�‖(c) ≤ L

}
, (24)

where L > 0 is a suitable hyperparameter that controls the regularity of the decoder.
In fact, the condition in (24) forces� to be L-Lipschitz continuous over the hypercube
[−M, M]n : cf. (iii) in Proposition 1.

This setup allows us to avoid the phenomenon of space-filling curves and, at the
same time, to regain interest in the optimization of the reconstruction error. Further-
more, this formulation comes with a natural adaptation of Theorem 1, which we report
below.

Theorem 2 Letμ be a random vector inR
p. LetG : R

p → V ∼= R
Nh be ameasurable

map and defineuμ := G(μ). Letρ be theα-leaky ReLUactivation, |α| < 1. Let B ⊂ V
be a bounded set, M, L > 0 and n ∈ N. Assume that the probability law of uμ is
absolutely continuous. If E‖uμ‖ < +∞, then

inf
� ′∈EB,M (V , Rn)

�∈DM,L (Rn , V )

E‖uμ − �(� ′(uμ))‖ = inf
�̂ ′∈N e

ρ (V , Rn)

�̂∈N d
ρ (Rn , V )

E‖uμ − �̂(�̂ ′(uμ))‖, (25)
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where N e
ρ (V , R

n) := Nρ(V , R
n) ∩ EB,M (V , R

n) and N d
ρ (Rn, V ) :=

Nρ(Rn, V ) ∩ DM,L(Rn, V ) are all admissible encoder and decoder networks,
respectively.

Proof The proof is roughly the same as the one of Theorem 1, up to replacing the use
of Lemma 1 with stronger results that can ensure the preservation of the constraints in
Equations (23) and (24). For further details, we refer to Lemmas B2, Lemma B3 and
Corollary B1 in Appendix B. ��

The identity in Theorem 2 has two major implications. First, it shows how general
autoencoders can be, thus further motivating their usage for nonlinear reduction. Sec-
ond, it allows us to reframe the optimization problem in an abstract way. This can be
very useful, as it allows us to adopt a more general perspective where V can be either
discrete, V ∼= R

Nh or continuous, e.g. V = L2(�). In fact, the families EB,M (V , R
n)

and DM,L(Rn, V ) can be defined without the need to discretize the state space.
In light of this, for the next few pages, we shall drop our assumption on V being

finite-dimensional. This means that from now on, all the results reported will hold true
both in the discrete and in the continuous setting. For better readability, elements of
the state space will be indicated as u ∈ V , to emphasize the fact that such elements
can be vectors (for which the notation u would be more fitting) or functions.

Remark 3 Although the two definitions in (23) and (24) may sound quite technical,
they actually mirror some of the practical strategies that researchers and data scientists
commonly use. For example, when training a DNN model, it is very common to use
Tychonoff regularizations to avoid excessive growth of the DNN weights. However,
this procedure is equivalent to imposing admissibility constraints via a Lagrange mul-
tiplier. To see this, let � be some DNN. For simplicity, assume that � only has one
hidden layer, so that �(x) = W2ρ(W1x + b1) + b2, where ρ is some �-Lipschitz
activation function.With little abuse of notation, let us denote by |·| both the Euclidean
norm and the Frobenius norm. We have

|�(x) − �(y)| ≤ �|W2| · |W1| · |x − y|.

In particular, � is Lipschitz continuous and the logarithm of its Lipschitz constant
is bounded by log �+ log |W2| + log |W1|. It is then clear that penalizing the mass of
weights matrices has a direct impact on the Lipschitz constant of the whole network,
thus mimicking our condition on the decoder, Eq. (24). Furthermore, the same argu-
ment applies to the constraint for the encoder, Eq. (23). In fact, in our construction,
the control set B is always assumed to be bounded. In particular,

|�(x)| ≤ |�(0)| + |�(x)−�(0)| ≤ |W2| · |ρ(0)| + �|W2| · |ρ(b1)| + |b2| + R�|W2| · |W1|,

where R > 0 is any radius for which one has |x| ≤ R for all v ∈ B. Thus, the same
reasoning can be applied up to including an additional penalty for the biases bi .
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4.2 Bounds on the latent dimension: finite rank case

We start by addressing the finite-rank case, in which the source of randomness is given
by some random vectorμ. We report our main result in the following, which, in a way,
can be seen as a generalization of Theorem 3 in [27] to the (unbounded) probabilistic
setting.

Theorem 3 Let G : R
p → V be a locally Lipschitz operator, where (V , ‖·‖) is a given

Banach space. Let μ be a random vector in R
p and let uμ := G(μ) be the V -valued

random variable obtained by mapping μ through G. Assume that the latter is Bochner
integrable, that is, E‖uμ‖ < +∞. Denote by B := G({|c| ≤ 1}) the image of the unit
ball. Then, there exists L0 > 0 such that for all M ≥ 1 and all L ≥ L0 one has

inf
� ′∈EB,M (V ,Rn)

�∈DM,L (Rn ,V )

E‖uμ − �(� ′(uμ))‖ = 0, (26)

for all n ≥ p.

Proof It is sufficient to prove the case n = p. Let M ≥ 1. Since G is continuous, the
latter admits a measurable right-inverse g′ : V → R

n , that is, a map for which

G(g′(G(μ))) = G(μ).

Furthermore, the latter can be constructed such that g′(B) ⊆ {|c| ≤ 1}: for a detailed
proof we refer the reader to the Appendix, particularly to Corollary C2. Let now
ρ : R → R be the following activation function

ρ(x) =
{
x |x | ≤ M

M tanh(x)/ tanh(M) |x | > M,

and define � ′ := ρ ◦ g′, where the action of ρ is aimed at components. Then,

E|� ′(uμ)| ≤ M/ tanh(M) < +∞ and � ′(B) = g′(B) ⊆ {|c| ≤ 1} ⊂ [−M, M]n,
(27)

in fact, g′(B) ⊂ [−M, M]n and ρ act as the identity over [−M, M]n . In particular, it
follows from (27) that� ′ ∈ EB,M (V , R

n).Now, noting thatρ is invertible, we let� :=
G ◦ ρ−1, with the convention that ρ−1 ≡ +∞ outside of ρ(R). It is straightforward
to see that the pair (� ′, �) produces a lossless compression: thus, it is sufficient to
prove that � ∈ DM,L(Rn, V ) for a suitable choice of L . To this end, we note that �

is locally Lipschitz over [−M, M]n . Then, since the latter is compact, we may simply
set

L0 := sup
c∈[−M,M]n

‖∂�‖(c) < +∞,

see, e.g., (ii) in Proposition 1. ��
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The takeaway from Theorem 3 is that if the PDE depends on p (scalar) random
variables, then an autoencoder with latent dimension n = p can compress and recon-
struct solutionswith arbitrary (average) accuracy. Clearly, since Equation (26) features
an infimum, for this to work, the autoencoder must be sufficiently expressive in the
remaining parts of the architecture, especially in the decoder. In this respect, domain
practitioners can find a valuable help in recent works that address the approximation
capabilities of DNNs in high-dimensional spaces; see, for instance [56, 57].

4.3 Bounds on the latent dimension: infinite dimensional case

We are now set to discuss the infinite-dimensional case in which the input variable
is given by a random field. In particular, we shall deal with random fields μ having
trajectories in Lq(�) and operators of the form G : Lq(�) → V , for V a Hilbert
state space, 1 ≤ q ≤ +∞, and � a bounded domain. We shall focus on two different
scenarios: one in which q = 2 and one in which q = +∞. To this end, we recall that
for any q ≤ q̃ one has continuous embedding

Lq̃(�) ↪→ Lq(�),

where each space is considered with its canonical norm. In particular, it follows that
C(L2(�), V ) ⊂ C(L∞(�), V ), meaning that case q = +∞ allows for a broader
class of operators and is consequently much harder to handle. However, it is worth
addressing both situations, as the two can lead to very different analyses and error
bounds. We start with the simpler L2-case. For the sake of readability, both proofs
have been postponed to Section 4.4.

Theorem 4 (L2-version) Let � be a bounded domain and let (V , ‖ · ‖) be a Hilbert
space. Let μ be a Gaussian random field defined over �, with a square integrable
mean m : � → R and a square integrable covariance kernel Cov : � × � → R.

Finally, let G : L2(�) → V be an operator satisfying the growth condition below,

‖∂G‖(ν) ≤ Aeβ‖ν‖L2(�) for all ν ∈ L2(�),

for some constants A, β > 0. According to the Lemmas 3 and 5, let

μ = E[μ] +
+∞∑
i=1

√
λ

μ
i ηiϕi and u =

+∞∑
i=1

√
λui ωivi , (28)

be the KKL expansions of μ and u, respectively. Consider the control set

B := G
({

m +
+∞∑
i=1

√
λ

μ
i νiϕi s.t.

+∞∑
i=1

|νi |2 ≤ 1

})
,
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and let P be the probability law of μ. Then, there exist positive constants C =
C(d,G, P) and L0 = L0(n,G), such that for all M ≥ 1 and L ≥ L0 one has

inf
� ′∈EB,M (V ,Rn)

�∈DM,L (Rn ,V )

E‖uμ − �(� ′(uμ))‖ ≤ C min

⎧⎨
⎩
√∑

i>n

λ
μ
i ,

√∑
i>n

λui

⎫⎬
⎭ , (29)

for all latent dimensions n ≥ 1.

We now report on the L∞-counterpart of Theorem 4. As we mentioned, this is a
much more difficult case that requires additional care.

Theorem 5 (L∞-version) Let � be a bounded domain and let (V , ‖ · ‖) be a Hilbert
space. Let μ be a Gaussian random field defined over �, with a bounded mean m :
� → R and a Lipschitz continuous covariance kernel Cov : �×� → R. Finally, let
G : L∞(�) → V be an operator satisfying the growth condition below,

‖∂G‖(ν) ≤ Aeγ ‖ν‖L∞(�) for all ν ∈ L∞(�), (30)

for some constants A, γ > 0. According to the Lemmas 3 and 5, let

μ = E[μ] +
+∞∑
i=1

√
λ

μ
i ηiϕi and u =

+∞∑
i=1

√
λui ωivi , (31)

be the KKL expansions of μ and u, respectively. Consider the control set

B := G
({

m +
+∞∑
i=1

√
λ

μ
i νiϕi s.t.

+∞∑
i=1

|νi |2 ≤ 1

})
,

and let P be the probability law of μ. Fix any small 0 < ε < 1/2. Then, there exist
two positive constants, C = C(d,G, P) and L0 = L0(n,G), such that for all M ≥ 1
and L ≥ L0 one has

inf
� ′∈EB,M (V ,Rn)

�∈DM,L (Rn ,V )

E‖uμ − �(� ′(uμ))‖ ≤ C
√
log(1/ε)min

⎧⎪⎨
⎪⎩
∥∥∥∥∥∥
∑
i>n

λ
μ
i ϕ2

i

∥∥∥∥∥∥
1/2

L∞(�)

,

√∑
i>n

λui

⎫⎪⎬
⎪⎭ ,

(32)
for all latent dimensions n ≥ 1 satisfying either

∑
i>n λ

μ
i ≥ ε or

∑
i>n λ

μ
i = 0.

The strength of the twoTheorems lies in that they show how nonlinear autoencoders
can simultaneously benefit from the regularity of both the input and the output fields,
something that is clearly not possible with linear methods alone: see, e.g., the discus-
sion by Lanthaler et al. in [53], Section 3.4.1. Furthermore, the results in Theorems 4
and 5 are fairly general, since they are both framed in a purely abstract fashion with
mild assumptions on the regularity of the forward operator. For example, following
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our previous discussion in Section 3.2, we note that the result in Theorem 5 can be
easily applied to the case of Darcy flows in porous media.

Remark 4 All the results reportedwithin this Section are limited to the case ofGaussian
processes. While this is an extremely broad class of stochastic processes, one may
wonder whether similar results can be obtained for other probability distributions. In
general, the L2 case, namely Theorem 4, can be readily applied to any random field
μ that satisfies

E

[
eβ‖μ‖L2(�)

]
< +∞ for all β > 0. (33)

In fact, with such an exponential integrability, it is straightforward to see that these
processes admit a KKL expansion and that the proof of Theorem 4 can be easily
adapted. For the L∞-case, instead, stronger assumptions are required. In particular,
these should be sufficiently demanding to ensure that the properties analogous to those
of Lemmas 2 and 3 hold.

Clearly, one may also go the other way around, i.e. by restricting the analysis to
more regular operators, with the advantage of allowing for a larger class of probability
distributions. For example, Theorems 4 and 5 impose an exponential bound on the
local variation, ‖∂G‖. This condition is trivially satisfied by all Lipschitz continuous
operators, as Lipschitz continuity is a far more stringent property (cf. Lemma 1). In
particular, if one restricts the attention to such operators, the proof of Theorem 5 can
be re-adapted with weaker assumptions on the random field. That is, one needs to have
E‖μ‖L∞(�) < +∞ and

E‖μ − μn‖L∞(�) = O
(‖Covμ−μn‖L∞(�)

)
,

where Covμ−μn is the covariance kernel of μ−μn . Conversely, the case L2 becomes
trivial, as one can replace the condition in (33) with E‖μ‖L2(�) < +∞.

Remark 5 Theorems 4 and 5 provide different bounds for the reconstruction error.
However, the two become very similar if the eigenfunctions of the input field, ϕi , are
uniformly bounded. In fact, if supi ‖ϕi‖L∞(�) ≤ D for some D > 0, then

∥∥∥∥∥
∑
i>n

λ
μ
i ϕ2

i

∥∥∥∥∥
1/2

L∞(�)

≤
√∑

i>n

λ
μ
i ‖ϕ2

i ‖L∞(�) ≤
√∑

i>n

λ
μ
i D

2 = D

√∑
i>n

λ
μ
i .

In particular, up to fixing the value of ε in Theorem 5, and adjusting the value of the
multiplicative constant C > 0, one can replace the bounding expression in Theorem 5
with that in Theorem 4. However, whether such a uniform boundness holds or not
depends on the problem itself. In fact, although erroneously stated by some authors,
this property is not directly implied by the regularity of the covariance kernel: see,
e.g., [58] for an instructive counterexample.
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4.4 Proofs of Theorems 4 and 5

The interested reader can find below the proofs of the two Theorems, which we have
postponed here due to their lengths and technicalities. We start with the proof of
Theorem 5, as that is arguably the most difficult and most interesting one; the L2 case
will then follow quite easily.

Proof of Theorem 5

To begin, we note that the case
∑

i>n λ
μ
i = 0 is already covered by Theorem 3, as

it falls into the finite-rank context. Thus, from now on we shall focus on proving the
error bound for the remaining case, that is, when

∑
i>n λ

μ
i ≥ ε.

Without loss of generality, we assume thatE[μ] ≡ 0. Before startingwith the proof,
we note that the existence of a KKL expansion for u is guaranteed by the exponential
growth condition for G. In fact, by (30) and Corollary 2, it follows that

E‖uμ‖2 ≤ E

[(
A′eγ ′‖μ‖L∞(�)

)2] = (A′)2E
[
e2γ

′‖μ‖L∞(�)

]
< +∞,

for some A′, γ ′ > 0, where the last inequality is a direct consequence of Lemma 2.
In particular, uμ is a squared-integrable V -valued random variable, and thus admits a
KKL expansion (cf. Lemma 5).

Let now n ∈ N, with n ≥ 1, and let

δn,M,L := inf
� ′∈EB,M (V ,Rn)

�∈DM,L (Rn ,V )

E‖uμ − �(� ′(uμ))‖.

We shall split the proof into several steps. More precisely, we shall prove the
following.

Claim 1 The definition of the control set, B, is well-posed.

Claim 2 ∃�0 = �0(n,G, P) such that δn,M,L ≤ √∑
i>n λui for all M ≥ 1 and L ≥ �0.

Claim 3 ∃�′0 = �′0(n,G, P) such that δn,M,L ≤ E‖u−uμn‖ for all M ≥ 1 and L ≥ �′0.
Here, uμn is the operator image where the input field μ has been replaced by its n th
KKL truncation, μn .

Claim 4 E‖u − uμn‖ ≤ cE1/2‖μ − μn‖2L∞(�) for some c = c(d,G, P).

Claim 5 E
1/2‖μ − μn‖2L∞(�) ≤ c′

√
log(1/ε)

∥∥∑
i>n λ

μ
i ϕ2

i

∥∥1/2
L∞(�)

for some c′ =
c′(d, P).

Clearly, once all of the above have been proven, setting C = max{cc′, 1} and
L0 := max{�0, �′0} quickly yields the conclusion. Thus, we now proceed to prove the
five claims one by one.
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Proof of Claim 1 Let B1 := {∑+∞
i=1

√
λ

μ
i νiϕi | ∑i |νi |2 ≤ 1}. Then, for every element

of B1 and every x ∈ �, we have

∣∣∣∣∣
+∞∑
i=1

√
λ

μ
i νiϕi (x)

∣∣∣∣∣ ≤
√√√√+∞∑

i=1

|νi |2
√√√√+∞∑

i=1

λ
μ
i ϕi (x)2 ≤

√
Cov(x, x).

Since Cov is bounded, this shows that B1 is a bounded subset of L∞(�). In par-
ticular, since B = G(B1), the definition of the control set is well-posed. Furthermore,
the latter is ‖ · ‖ bounded, as G maps bounded sets onto bounded sets (cf. Corollary 2).

��
Proof of Claim 2 Let P : R

n → V and P† : V → R
n be the linear operators below

P : [c1, . . . , cn] �→
n∑

i=1

√
λui civi , P† : v �→

[
1√
λu1

〈v, v1〉, . . . , 1√
λun

〈v, vn〉
]

.

Since P† is both linear and continuous, and B is bounded, the image P†(B) is also
bounded. Thus, let M0 := supc∈P†(B) |c| < +∞. Similarly, in light of the linearity
and continuity of P , let Lip(P) be the Lipschitz constant of P . Define the maps

P̃† := M−1
0 P, P̃ := M0P.

It is straightforward to see that P̃† ∈ EB,M (V , R
n) and P̃† ∈ DM,L(Rn, V ), for

all M ≥ 1 and all L ≥ �0 := M0Lip(P), where �0 ultimately depends on n, G and P.
Since

E‖u − P̃ P̃†u‖ ≤ √
E‖u − PP†u‖2 = E

1/2

∥∥∥∥∥
∑
i>n

√
λui ωivi

∥∥∥∥∥
2

=
√∑

i>n

λui ,

this proves Claim 2. ��
Proof of Claim 3 As before, it is useful to define the mappings Q† : R

n → L∞(�)

and Q† : L∞(�) → R
n as

Q : [c1, . . . , cn] �→
n∑

i=1

√
λ

μ
i ciϕi , Q† : ν →

⎡
⎣ 1√

λ
μ
1

〈ν, ϕ1〉, . . . , 1√
λ

μ
n

〈ν, ϕn〉
⎤
⎦ ,

which are both linear and continuous. Following our previous notation, for any R > 0,
let BR = {‖ν‖L∞(�) ≤ r} ⊆ L∞(�) be the closed ball of radius R. We define the
map � ′

R : V → R
n as any measurable selection of the optimization problem below,

� ′
R : v �→ argminν∈Q†(BR) ‖v − G(Qν)‖,
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The existence of such a map is a straightforward consequence of standard results
in set-valued analysis. In fact:

i) the set of minimizers, Q†(BR) ⊂ R
n , is compact. This is because BR is both

closed and bounded, while the map Q† is linear, continuous, and has finite rank;
ii) the map objective functional, (v, ν) → ‖v − G(Qν)‖, is continuous.
Then, these two properties are enough to guarantee the existence of a measurable

map acting as ”minimal selection”: for the interested reader, we refer to the Appendix,
Lemma C3. Let now

R0 := ‖Cov‖1/2L∞(�×�).

In light of our calculations at the beginning of the proof, we note that the control
set B is a subset of G(BR) for all R ≥ R0. Thus, assuming R ≥ R0, we set

�̃ ′
R(v) := 1B(v)� ′

R0
(v) + 1G(BR)\B(v)� ′

R(v).

Since both sets B and G(BR) are measurable (cf. Lemma C1 in the Appendix),
and �̃ ′

R(V ) ⊆ Q†(BR), the above is both measurable and bounded (thus integrable).
Furthermore, the above construction ensures that �̃ ′

R ≡ 0 outside of G(BR), and, most
importantly

|�̃ ′
R(v)| ≤ n|�|1/2R0√

λ
μ
n

for all v ∈ B. In fact, for any ν with ‖ν‖L∞(�) ≤ R0 one has∣∣∣∣∣∣
1√
λ

μ
i

〈ν, ϕi 〉
∣∣∣∣∣∣ ≤

|�|1/2√
λ

μ
i

R0,

by the Cauchy-Schwarz inequality. In particular, �̃ ′
R is bounded on B, with a constant

that is independent of R. Furthermore, by very definition,

‖G(ν) − G(Q�̃ ′
R(ν))‖ ≤ ‖G(ν) − G(QQ†ν)‖ (34)

for all ν ∈ BR . Now, exploiting the compactness of [−1, 1]n , let Lip(G ◦ Q) be
the Lipschitz constant of G ◦ Q over [−1, 1]n (recall that the latter has a finite due
composition; see, e.g., (v) and (ii) in Proposition 1). Define the maps

�̂ ′
R : v �→

√
λ

μ
n

n|�|1/2R0
�̃ ′

R, � : c → G
(
n|�|1/2R0√

λ
μ
n

Qc

)
.

Then the couple (�̂ ′
R, �) forms an admissible encoding-decoding pair for all

M ≥ 1 and L ≥ �′0, where

�′0 := Lip(G ◦ Q)n|�|1/2R0/

√
λ

μ
n
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depends only on n, G and P. Consequently, for all M ≥ 1 and L ≥ �′0, one has

δn,M,L ≤ E‖uμ − Gn(�̃ ′
R(uμ))‖ ≤

≤ E

[
1BR (μ)‖uμ − Gn(�̃ ′

R(uμ))‖
]
+ E

[
1Bc

R
(μ)‖uμ − Gn(�̃ ′

R(uμ))‖
]
. (35)

For better readability, we now write uμn := G(QQ†μ), so that uμn is the image of
the operator that is obtained by replacing the input field μ with its n-truncation. Then,
by the very definition of �̃ ′

R and thanks to (34), we can continue (35) as

δn,M,L ≤ · · · ≤ E‖uμ − uμn‖ + E

[
1Bc

R
(μ)‖uμ − u0‖

]
.

Since the above holds for every R ≥ R0, we can let R → +∞. In doing so, we note

that ‖uμ − u0‖ is an integrable random variable. Thus, E

[
1Bc

R
(μ)‖uμ − u0‖

]
→ 0

by dominated convergence. Claim 3 follows. ��
Proof of Claim 4 As a direct consequence of Corollary 1 and Eq. (30), we have

‖uμ − uμn‖ ≤
(

sup
0≤t≤1

Aeγ ‖tμ+(1−t)μn‖L∞(�)

)
‖μ − μn‖L∞(�)

≤ Aeγ ‖μ‖L∞(�)+γ ‖μn‖L∞(�)‖μ − μn‖L∞(�).

Then, by the Cauchy-Schwarz inequality, we have

E‖uμ − uμn‖ ≤ ≤ AE
1/4

[
e4γ ‖μ‖L∞(�)

]
E
1/4

[
e4γ ‖μn‖L∞(�)

]
E
1/2‖μ − μn‖2L∞(�).

For better readability, let now

kq(x, y) =
q∑

i=1

λ
μ
i ϕi (x)ϕi (y),

so that k∞ = Cov and kn is the covariance kernel of μn . Of note, as a straightforward
consequence of the Cauchy-Schwarz inequality, one has

‖kq‖L∞(�2) = max
x∈�

kq(x, x). (36)

Now, since both kernels are Lipschitz continuous, by Lemmas 2 and 3, we have

E
1/4

[
e4γ ‖μ‖L∞(�)

]
= c2(d, H(k∞), 1/2, ‖k∞‖L∞(�2), 4γ,�)

and
E
1/4

[
e4γ ‖μn‖L∞(�)

]
= c2(d, H(kn), 1/2, ‖kn‖L∞(�2), 4γ,�),
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where H(k∞) and H(kn) are the Hölder constants of the two kernels. We now recall
that, as shown in Lemma 3, kn → k∞ uniformly and supq L(kq) < +∞. In particular,
supq ‖kq‖L∞(�2) < +∞, and, since c2 depends continuously on its parameters, we
have

E
1/4

[
e4γ ‖μ‖L∞(�)

]
· E1/4

[
e4γ ‖μn‖L∞(�)

]
≤ c̃,

for some c̃ = c̃(d, γ, P) = c̃(d,G, P). In particular, up to letting c := Ac̃, we may
rewrite our previous bound as,

E‖uμ − uμn‖ ≤ C̃E
1/2‖μ − μn‖2L∞(�).

��
Proof of Claim 5 Following the same notation as above, we note that k∞ − kn is the
covariance kernel of the random field μ − μn . Thus, by Lemma 2,

E
1/2‖μ − μn‖2L∞(�) ≤ c̃′‖k∞ − kn‖1/2L∞(�2)

(
1+

√
log+(1/‖k∞ − kn‖L∞(�2))

)
(37)

where, by applying the same arguments as before, c̃′ can be chosen to depend only on
d and P. We now note that

‖k∞ − kn‖L∞(�2) ≥ ‖k∞ − kn‖L2(�2)|�| =
√∑

i>n

λi |�| ≥ ε1/2|�|.

The latter can be then combined with (37) to prove that, up to replacing c̃′ with a
suitable c′0, independent of ε, one has

E
1/2‖μ − μn‖2L∞(�) ≤ c′0‖k∞ − kn‖1/2L∞(�2)

(
1+

√
log+(1/ε)

)
,

as the map a �→ log+(1/a) is monotone nonincreasing. Furthermore,

ε < 1/2 �⇒ log+(1/ε) = log(1/ε) ≥ log(2) > 0.

Thus, up to further replacing c′0 with a proper c′ = c′(d, P), we may write

E
1/2‖μ − μn‖2L∞(�) ≤ c′

√
log(1/ε)‖k∞ − kn‖1/2L∞(�2)

= c′
√
log(1/ε)

∥∥∥∥∥∥
∑
i>n

λ
μ
i ϕ2

i

∥∥∥∥∥∥
1/2

L∞(�)

,

where the last equality follows from (36). ��
Finally, putting together the five Claims yields the inequality in (32), and thus

proves the statement in the Theorem.
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Proof of Theorem 4

Let n ≥ 1. We notice that, mutatis mutandis, all the steps in the proof of Theorem 5
can be carried out following the same ideas. The only part that actually changes is the
estimate in Claim 5, which now concerns the quantity

E
1/2‖μ − μn‖2L2(�)

,

where μn ≈ μ is the nth KKL truncation of the random field μ. However, the latter
can be estimated trivially as, by orthonormality, one has

E‖μ − μn‖2L2(�)
= E

[∑
i>n

λ
μ
i η2i

]
=
∑
i>n

λ
μ
i ,

so that the conclusion follows. ��

5 Numerical experiments

The purpose of this Section is to assess the error estimates in Theorems 4 and 5 through
a set of numerical experiments. To do so, we proceed in a schematic way so that we
may synthesize as follows. First, we introduce the PDE of interest, together with the
corresponding solution operator G : μ → uμ, and a given probability distribution P

defined over the input space,μ ∼ P. Then, we fix a suitable high-fidelity discretization
of the input-output spaces, typically via Finite Elements or Finite Volumes, so that
the operator under study becomes Gh : μh → uh

μh (here, the superscript h is used
to emphasize the presence of a spatial discretization). The discrete operator is then
evaluated relying on a given numerical solver, which we exploit to generate a suitable
training set, that is, a collection of random independent realizations {μh

i ,u
h
i }, where

uhi := Gh(μh
i ) ∈ R

Nh ,

and the μh
i ’s are sampled according to P.

To check whether the error bounds in Theorems 4 and 5 are observed in practice,
we consider a sequence of ”nested” autoencoder architectures,�n ◦� ′

n , characterized
by an increasing latent dimension n, so that

� ′
n : R

Nh → R
n, �n : R

n → R
Nh .

The architectures are nested in that they share the same depth and widths, except for
the innermost layers (that is, those mapping to/from the latent space, respectively). All
the architectures are then trained over the same training set, and their performances
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are evaluated in terms of the test error below

Etest(n) := 1

Ntest

N∑
j=1

‖uhj,test − �n(�
′
n(u

h
j,test))‖Vh , (38)

which serves as a Monte Carlo estimate of E‖uh
μh − �n(�

′
n(u

h
μh ))‖Vh . Here,

{μh
j,test,u

h
j,test}Ntest

j=1 is a suitable test set, generated independently of the training set.

On the contrary, the norm ‖ · ‖Vh corresponds to the discretized L2-norm associated
to the underlying Finite Element (or Finite Volume) space, Vh ⊆ L2(�), i.e.

‖v‖Vh :=
√
vTMv

for all v ∈ R
Nh , whereM ∈ R

Nh×Nh is the so-calledmass matrix. The purpose is then
to compare the behavior of the three quantities below

Etest(n),

√∑
i>n

λ
μ
i ,

√∑
i>n

λui , (39)

for varying n, as suggested by Theorems 4 and 5. To this end, we exploit the POD algo-
rithm to approximate the first n eigenvalues of the (uncentered) covariance operators
of the two fields. Then, the two tails can be easily approximated by noting that

∑
i>n

λ
μ
i =

+∞∑
i=1

λ
μ
i −

n∑
i=1

λ
μ
i ≈ Var‖μh‖2Vh −

n∑
i=1

λ
μh

i ,

where λ
μh

i ≈ λ
μ
i are the eigenvalues computed via POD. The same can be done for

u. For our analysis, we typically let n = 1, 2, . . . , 6, so that the resulting autoencoder
architectures are fairly light. This allows us to keep external sources of error out of
the way (such as, e.g., inaccuracies due to an inexact optimization of the loss function
or shortage in the training data), and thus provide cleaner results.

Once the theoretical error bounds have been assessed, we also take the opportunity
to implement a complete DL-ROM surrogate: while this is not directly related to our
analysis in Section 4, it serves the purpose of showing how thewholemachinery can be
put into action to provide an operative ROM. For simplicity, this step is only repeated
once with a fixed latent dimension of choice.

Last but not least, we mention that all the code supporting the forthcoming analysis
has been written in Python 3, specifically relying on the FEniCS and Pytorch libraries.
The code is available upon request to the authors.
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5.1 Problems description

We start by introducing the three case studies one by one: all the results are then
reported and discussed at the end of this Section. For the sake of our analysis, we have
selected two prototypical problems that aim to show different possible behaviors of the
solution manifold. The first case study features a diffusive phenomenon, which results
in a highly regularizing solution operator: as a consequence, this problem models a
scenario in which the eigenvalues of the solution field, λui , decay faster than those
of the input field, λμ

i . Conversely, the second case study concerns a nonlinear advec-
tion characterized by the presence of shock waves and thus constitutes a remarkable
example of the opposite situation (i.e., λμ

i → 0 faster than λui ).
We believe that despite their simplicity, these problems suffice to show the practical

counterpart of our theoretical analysis in Section 4. In this respect, we remark that
this work does not aim at showcasing the abilities of DL-ROMs in handling complex
problems: in fact, the effectiveness of theDL-ROMapproach has already been reported
elsewhere; see, e.g., [45] for problems concerning fluid dynamics or multiphysics.

5.1.1 Stochastic Darcy flowwith random permeability

To start, we consider an elliptic problem that describes diffusion in a porous medium
with random permeability, in the same spirit as our previous discussion in Section 3,
cf. Proposition 2. More precisely, let � := (0, 1)2 be the unit square. We consider the
boundary value problem below

{
−∇ · (eμ∇u) = 10 in �

u = 0 on ∂�
, (40)

where μ is a centered Gaussian random field with covariance

Cov(x, y) := exp(−|x − y|2).

Here, we focus our attention on the solution operatorG : μ → uμ that maps the log-
permeability of the medium onto the corresponding solution to (40). We discretize the
problem using piecewise linear continuous Finite Elements over a structured triangular
mesh of step size h = √

2/50, resulting in a state space Vh ⊆ L2(�) with Nh = 2601
degrees of freedom. We generate a total of 5000 snapshots, split between training and
testing with a 90:10 ratio. For technical details on the DL-ROM architectures and their
training, we refer the reader to the appendix, Section D.

5.1.2 Burger’s equation with random data

On the segment � := (0, L), L = 5, we consider the inviscid Burger equation

∂v

∂t
+ 1

2
v
∂v

∂x
= 0, (41)
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describing the nonlinear transport of a given solute v = v(x, t) with random initial
condition v(·, 0) = μ. We complement Eq. (41) with a stationary inflow condition
on the left boundary, that is, v(0, t) ≡ v(0, 0) for all t ≥ 0. Here, we model the
trajectories of the random field μ as

μ(x) = 1

2
ρ

(
φ0(x) +

+∞∑
k=1

1

k2
ηk sin

(
kπx

L

))
(42)

where {ηi }+∞
i=1 are i.i.d. standard Gaussians, ρ(x) := min{max{x, 0}, 1} is a suitable

transformation that clamps the data within [0, 1], and

φ0(x) := (x − 1)(2− x)1[1,2](x).

We are interested in approximating the following parameter-to-solution operator

G : μ → uμ := v(·, T ), (43)

which maps any given initial profile onto the state of the system at time T = 2. We
discretize the problemusing theFiniteVolumemethod,with a temporal step�t = 0.01
and cells size h = 0.01, resulting in a high-fidelity state space of dimension Nh = 500.
We exploit the FOM to generate a total of 2000 snapshots, split between training and
testing with a 90:10 ratio. Once again, to keep the paper self-contained, we postpone
all the technical details about the DL-ROM architectures and their training to the
Appendix, Section D.

5.2 Results

We start with the first case study, Section 5.1.1. As we mentioned, the parameter-to-
solution operator of this problem is highly regularizing because of the diffusive term
in the PDE. Indeed, when comparing the tails of the eigenvalues, we see that those of
the output field decay 2.5× faster than those of the input field; see Fig. 3. The same
rate is also achieved by autoencoders, both across the training and the test set. This
result is in agreement with our theory since, in this case, Theorem 5 applies (cf. 2).

Since linearmethods, such as POD, can directly exploit the decay of the eigenvalues
of the output field, and they require fewer data with respect to deep autoencoders, these
approaches should be favored when dealing with problems of this type. It should be
noted that this conclusion can already be derived from Theorem 5 without having to
test multiple autoencoder modules. Nevertheless, if provided with enough data, one
may still choose to use autoencoders: at worst, they will match the same accuracy as
linear methods (up to optimization errors).

The second case study, on the contrary, shows the opposite situation. This time, the
eigenvalues of the output field have a tail that decays 20%-50% slower than that of the
input field. Then, our theory suggests that a nonlinear method based on deep autoen-
coders can exploit this hidden regularity to provide better approximation capabilities.
Indeed, this is what we observe in practice; see Fig. 4.
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Fig. 3 Decay of the reconstruction error for Darcy’s law §5.1.1 computed over the training set (left) and the
test set (right). In both cases, errors are compared with the tails of the eigenvalues of the input and output
fields, respectively: cf. Equations (38) and (39). Eigenvalues of the input field have been scaled by a factor
C > 0 to improve readability. Dashed lines are obtained through least-squares in the loglog space. β = rate
of decay, computed as the slope of the dashed lines

Not only do autoencoders surpass the performances of PODby a significantmargin,
but they also report a much faster decay rate. Notably, when n ≤ 6, the latter is seen
to perfectly match the decay rate of the eigenvalues λμ. The situation is similar for
7 ≤ n ≤ 12, where both quantities are seen to accelerate towards 0. However, as we
come to large architectures, n = 13, 14, 15, 16, we notice an increasingly larger gap

Fig. 4 Decay of the reconstruction error for Burger’s equation §5.1.2 computed over the training set (left)
and the test set (right). In both cases, errors are compared with the tails of the eigenvalues of the input and
output fields, respectively: cf. Equations (38) and (39). Dashed lines are obtained through least-squares in
the loglog space. β = rate of decay, computed as the slope of the dashed lines
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between training and test errors. Thismay be due to the fact that largermodels typically
requiremore data in order to generalize properly. Thiswould explainwhy autoencoders
seem to reach the optimal decay rate —according to Theorem 5— over the training
set but not over the test set (at least for large n). In this sense, although our findings
agree with Theorem 5, they also highlight some of its inherent limitations, namely,
the lack of a comprehensive analysis encapsulating model accuracy, complexity, and
training.

Last but not least, it should be also noted that the results in Fig. 4 are even more
interesting if we consider that Problem (41) only partially fulfills the hypothesis of
Theorem 5. Indeed, while it can be shown that the parameter-to-solution operator in
(43) enjoys a form of L∞ → L2 Lipschitz continuity, the probability law of the input
field is non-Gaussian: see also our previous discussion in Remark 4.

In this concern, we also mention that although Theorem 5 would require the com-
putation of an L∞-tail, that is,

∥∥∑
i>n λ

μ
i ϕ2

i

∥∥∞ , it is sufficient to monitor the behavior
of the L2-tail,

∑
i>n λ

μ
i . This is because, in this case, the eigenfunctions of the input

field are uniformly bounded in the L∞-norm, fact that we can easily appreciate from
the plot in Fig. 5. Then, the two tails can be shown to decay at the same rate (see also
our discussion in Remark 5).

For the sake of completeness, Table 1 shows the overall performances attained
by two DL-ROM surrogates for the problems at hand. Although this analysis is not
directly related to the theory developed in Section 4, it might still be of interest as it
goes back to the global picture (that is, that of reduced order modeling). This time,
we train all the architectures in the DL-ROM pipeline simultaneously following our

Fig. 5 L∞-norms of the eigenfunctions in the KKL expansion of the input fieldμ for the Burger’s equation
§5.1.2: see Equations (31) and (42), respectively
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Table 1 Average test errors for the three case studies in Section 5

Problem n POD L2-error AE L2-error DL-ROM L2-error

Darcy’s law §5.1.1 16 4.46% 4.94% 5.43%

Burger’s §5.1.2 16 9.74% 5.07% 5.62%

Here, the latent dimension n is fixed. POD = projection error, AE = reconstruction error, DL-ROM =model
error

initial discussion in Section 2.1: see, in particular, Equation (6). This means that the
autoencoder module, � ◦ � ′, is trained together with all the remaining parts of the
DL-ROM: consequently, although we are minimizing the reconstruction error made
by the autoencoder, there are also other quantities driving the optimization (such as,
e.g., the approximation error of the DL-ROM).

In the Darcy flow example, the DL-ROM reports an average L2-error of 5.43%. At
the same time, its autoencoder module shows a similar accuracy, with a reconstruction
error of 4.94%.As expected, this performance is also comparablewith the one achieved
by a linear approach such as POD: aswementioned previously, in fact, we do not really
need a nonlinear technique to reduce a problem of this type. However, things become
quite different when we move to Burger’s equation. In this case, the autoencoder
module is almost twice as accurate compared to its linear counterpart, with an average
L2 error of 5.07%. This fact is also reflected in the overall performance of the DL-
ROM, which reports an average test error of 5.62%. The interested reader can also find
a few examples in Fig. 6, where we compare ground-truth simulations and DL-ROM
outputs for new random realizations of the input field μ.

Inspired by the results in Table 1, we conclude with a short digression on the
interplay between reconstruction errors and approximation errors. In general, when it
comes to DL-ROMs, the two quantities are only indirectly related. To better explain
this fact, let us first consider the opposite case of POD-based ROMs. Ultimately, the
POD projector V ∈ R

Nh×n operates as a linear autoencoder module, as

uhμ ≈ VVTuhμ,

which allows one to represent each uhμ with the corresponding set of projection coef-
ficients VTuhμ ∈ R

n . Then, any POD-based ROM, such as, e.g., POD-Galerkin [34],

Fig. 6 DL-ROM predictions for three unseen initial states of Burger’s equation,§5.1.2
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POD-NN [37], POD-DeepONet [59] and POD-GPR [38], can be written abstractly as

uhμ ≈ VφPOD(μ),

where φPOD : R
Nh → R

n is some black-box procedure that maps parameters onto
reduced coefficients: the latter can be a neural networkmodel, as in POD-NNandPOD-
DeepONet, a Gaussian process approximator, as in POD-GPR, or a suitable numerical
method solving the projected PDE, as in POD-Galerkin. Then, by orthogonality, the
error of any such method can be bounded from below as

‖uhμ−VφPOD(μ)‖2 = ‖uhμ−VVTuhμ‖2+‖VTuhμ−φPOD(μ)‖2 ≥ ‖uhμ−VVTuhμ‖2.

That is: the approximation error of any such ROM is bounded from below by the
projection error of the POD. Furthermore, this fact is not an intrinsic property of the
POD basis; instead, it is a feature common to all projection-based methods.

In general, the same is not true for DL-ROMs. In fact, since all architectures in the
DL-ROM pipeline are optimized simultaneously, cf. Equation (6), the approximation
error of the DL-ROM might as well be smaller than the reconstruction error of the
autoencoder, and vice versa. This can happen, for example, if it turns out to be simpler
to describe latent variables using the input parameters (thus, through φ) rather than
using the output features (that is, through the encoder � ′).

Still, when constructing a DL-ROM, a good rule of thumb is to prefer those archi-
tectures for which the two errors behave similarly: this, in fact, ensures a stronger
connection between inputs and outputs, and it increases the interpretability of the
DL-ROM as a whole.

6 Conclusions

Thiswork addresses the practical problemof designing deep autoencoders, specifically
in terms of their latent dimension, in the context of reduced order modeling for PDEs
parametrized by random fields. This topic is of particular interest, since deep autoen-
coders have recently emerged as the pivotal element of Deep Learning based ROMs
(DL-ROMs), a novel class of approaches that exploit manifold learning to approximate
the solution manifold of a parametrized operator, equipping them with the ability to
tackle complex problems for which traditional methods may fall short. The presented
research is novel in that it addresses both theoretically and practically the case of
stochastic PDEs, a scenario that is particularly relevant to applications involving, e.g.,
uncertainty quantification or Bayesian inversion, aspects hitherto unexplored in the
DL-ROM literature.

Our main contribution is well summarized by Theorems 3-5, in which we provide
explicit error bounds that can aid domain practitioners in selecting the appropriate
latent dimension for deep autoencoders. Our findings are highly interpretable as they
demonstrate the capacity of deep autoencoders to match or surpass the performance
achieved by linear techniques. Numerical experiments agree with our theory, effec-
tively highlighting the practical importance of our analysis in the intricate design of
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DL-ROMs. Future work may include the derivation of complementary results on the
complexity of deep autoencoders and their training, possibly exploring a compromise
between data-driven and physics-based approaches, in the same spirit of other recent
works; see, e.g., [56, 60, 61].

Appendix A Technical proofs for Section 3

Lemma 1 Let P be a probability distribution over R
p. Let ρ : R → R be a continuous

map. Assume that either one of the following holds:

i) ρ is bounded and nonconstant;
ii) ρ is bounded from below and ρ(x) → +∞ as x → +∞.
iii) there exists some a, b ∈ R such that x → aρ(x) + bρ(−x) satisfies (ii).

Then, for every ε > 0 and every measurable map f : R
p → R

n with E| f (x)| <

+∞, there exists � ∈ Nρ(Rp, R
n) such that

Ex∼P| f (x) − �(x)| < ε.

Proof If (i) holds, then this is just a consequence of Hornik’s Theorem [51]. Then, let
(ii) hold. Since ρ is bounded from below, ρ(R) ⊂ [A,+∞) for some A ∈ R. Let

σ(x) := ρ(−ρ(x) + α),

where α is some parameter to be fixed later on. We have,

sup
x∈R

|σ(x)| = sup
x∈R

|ρ(−ρ(x) + α)| = sup
y∈ρ(R)

|ρ(−y + α)| ≤

≤ sup
y≥A

|ρ(−y + α)| = sup
z≤α−A

|ρ(z)| < +∞,

in fact, by continuity, ρ is bounded on all intervals of the form (−∞, c], with c ∈ R.
In particular, σ is bounded. Furthermore, since ρ(x) → +∞ as x → +∞,

lim sup
x→∞

σ(x) ≤ lim sup
z→−∞

ρ(z) = c0 < +∞.

Let now α be such that

σ(0) = ρ(α − ρ(0)) > c0.

Then, σ is guaranteed to be both bounded and nonconstant. However, because of
the way we defined σ , we also have

Nσ (Rp, R
n) ⊆ Nρ(Rp, R

n),
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and the conclusion now follows by (i). Finally, assume that (iii) holds and let

ρ̃(x) := aρ(x) + bρ(−x).

As before, we have Nρ̃ (Rp, R
n) ⊆ Nρ(Rp, R

n), and the conclusion follows by
(ii). ��

Proposition 1 Let G : (W , ‖ · ‖W ) → (V , ‖ · ‖V ) be an operator between two normed
spaces. We have the following,

i) ‖∂G‖V (w) < +∞ for all w ∈ K ⊂ W ⇐⇒ G is locally Lipschitz over K ;
ii) if K ⊂ W is compact and ‖∂G‖V (w) < +∞ for all w ∈ K, then G is Lipschitz

over K ;
iii) if C ⊆ W is convex, then

LC := sup
w∈C

‖∂G‖V (w) < +∞

if and only if G is LC-Lipschitz over C.
iv) ifG is Fréchet differentiable atw ∈ W, then ‖∂G‖V (w) coincideswith the operator

norm of the Fréchet derivative of G at w.

v) given any F : (V , ‖ · ‖)V → (Y , ‖ · ‖Y ), one has the chain-rule inequality

‖∂(F ◦ G)‖Y (w) ≤ ‖∂F‖Y (G(w)) · ‖∂G‖V (w),

for all w ∈ W .

Proof Since (i) is trivial, we skip its proof.

ii) Let K ⊂ W be a compact subset. Seeking contraddiction, let us assume that G
is not Lipschitz continuous over K . Then, there exists two sequences {wn}n, and
{vn}n such that

‖G(wn) − G(vn)‖V
‖wn − vn‖W → +∞ (A1)

as n → +∞. Since G is locally Lipschitz, it also continuous, and thus bounded
over K : therefore, the above implies ‖wn − vn‖W → 0. At the same time, by
compactness, there exists a subsequence {wnk }k ⊆ {wn}n and an element w ∈ K
such that wnk → w. In particular, we have wnk , vnk → w. But then (A1) would
yield ‖∂G‖V (w) = +∞, absurd.

iii) Let C be convex and assume that LC := supw∈C ‖∂G(w)‖V < +∞. Given any
two points v, v′ ∈ C , let K be the segment between the two. Since K is compact,
it follows from (ii) that G is Lipschitz continuous over K . Furthermore, since
K ⊆ C ,

sup
w∈K

‖∂G(w)‖V ≤ LC
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Exploiting the very definition of limit supremum, for all w ∈ K , let B(w, rw) be
a ball of radius rw > 0 such that∣∣∣∣‖G(w + h) − G(w)‖V

‖h‖W − ‖∂G‖V (w)

∣∣∣∣ < ε ∀h ∈ B(w, rw).

Then, up to rewriting the above, for all w ∈ K we have

h ∈ B(w, rw) �⇒ ‖G(w + h) − G(w)‖V ≤ (LC + ε)‖h‖W .

Wenownote that, since K ⊂ ∪w∈K B(w, rw) and K is compact, there exists a finite
sequence of points w1, . . . , wn ∈ K , and finite sequence of radii r1, . . . , rk > 0,
such that K ⊂ ∪n

i=1B(wi , ri ). Furthermore, upto to removing some of the balls,
since K is actually a segment, we can sort the subcover so that

K ∩ B(wi , ri ) ∩ B(wi+1, ri+1)  = ∅ ∀i = 1, . . . , n − 1.

For each i = 1, . . . , n−1, let w∗
i ∈ K ∩ B(wi , ri )∩ B(wi+1, ri+1). We note that,

since Sv,v′ is a straightline, we have

‖v − v′‖W = ‖v − w∗
1‖W + · · · + ‖w∗

n−1 − v′‖W .

In particular,

‖G(v) − G(v′)‖W ≤
≤ ‖G(v) − G(w∗

1)‖W + · · · + ‖G(w∗
n) − G(v′)‖W ≤

≤ (LC + ε)
(‖v − w∗

1‖W + · · · + ‖w∗
n−1 − v′‖W

) =
= (LC + ε)‖v − v′‖W .

Since v, v′ ∈ C and ε > 0 were arbitrary, this concludes the proof (the other
implication, ” ⇐� ”, is trivial and left to the reader).

iv) Assume that G is Fréchet differentiable at w ∈ W , and let δG[w] : W → V be
the linear operator representing its derivative. Let {hn}n be a sequence of unitary
increments, ‖hn‖W = 1, such that

‖δG[w](hn)‖V −→ ‖δG[w]‖W ,V

where ‖ · ‖W ,V is the operator norm for linear maps going from W to V . Then,

‖∂G‖W (w) ≥ lim
n→+∞

‖G(w + n−1hn) − G(w)‖V
‖n−1hn‖W =

= lim
n→+∞

‖δG[w](n−1hn)‖V
‖n−1hn‖W = lim

n→+∞
‖δG[w](hn)‖V

‖hn‖W =
= ‖δG[w]‖W ,V .
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Conversely, let {h̃n}n be such that h̃n → 0 and

‖∂G‖W (w) = lim
n→+∞

‖G(w + h̃n) − G(w)‖V
‖h̃n‖W

.

Then,

‖∂G‖W (w) = . . . = lim
n→+∞

‖δG[w](h̃n)‖V
‖h̃n‖W

≤ ‖δG[w]‖W ,V ,

thus ‖∂G‖W (w) = ‖δG[w]‖W ,V as claimed.
v) Let w ∈ W . If either ‖∂F‖Y (G(w)) = +∞ or ‖∂G‖V (w) = +∞, then the

claim is trivially true. Thus, we assume both quantities to be finite. Fix any ε >

0. Then, by definition of limit supremum, there exists rε > 0 such that F is
(‖∂F‖Y (G(w))+ ε)-Lipschitz over the open ball of radius rε centered at G(w). It
follows that

lim
r→0+

sup
0<‖h‖W≤r

‖F(G(w + h)) − F(G(w))‖V
‖h‖W ≤

≤ lim
r→0+

sup
0<‖h‖W≤r

(‖∂F‖Y (G(w)) + ε)‖G(w + h) − G(w)‖V
‖h‖W =

= (‖∂F‖Y (G(w)) + ε)‖∂G‖V (w),

as r ≤ rε definitely. Since ε was arbitrary, the conclusion follows.

��

Proposition 2 Let � ⊂ R
d be a bounded domain with Lipschitz boundary and let

f ∈ H−1(�) be given. For any σ ∈ L∞(�), let u = uσ be the solution to the
following boundary value problem,

{
−∇ · (eσ∇u) = f in �

u = 0 on ∂�
.

Let G : L∞(�) → L2(�) be the operator that maps σ to u. Then, for all σ, σ ′ ∈
L∞(�)

‖G(σ ) − G(σ ′)‖L2(�) ≤ C‖ f ‖H−1(�)e
3‖σ‖L∞(�)+3‖σ ′‖L∞(�)‖σ − σ ′‖L∞(�) (A2)

and, in particular,

‖∂G(σ )‖L2(�) ≤ C‖ f ‖H−1(�)e
6‖σ‖L∞(�) ,

where C = C(�) is some positive constant.
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Proof By classical energy estimates on elliptic PDEs, see e.g. Lemma C.1. in [27], we
have

‖G(σ ) − G(σ ′)‖L2(�) ≤ C‖G(σ ) − G(σ ′)‖H1
0 (�) ≤

≤ C

[
min
x∈�

eσ (x)
]−1 [

min
x∈�

eσ ′
(x)

]−1

‖ f ‖H−1(�)‖eσ − eσ ′ ‖L∞(�).

The latter is bounded by

Ce‖σ‖L∞(�)+‖σ ′‖L∞(�)‖ f ‖H−1(�)‖eσ ′ ‖L∞(�)‖eσ−σ ′ − 1‖L∞(�).

We now note that, for all a ∈ R one has |ea − 1| ≤ |a|e|a|. Also, ‖eσ ′ ‖L∞(�) =
e‖σ ′‖L∞(�) by monotinicity of the exponential. It follows that

‖G(σ ) − G(σ ′)‖L2(�) ≤
≤ Ce‖σ‖L∞(�)+2‖σ ′‖L∞(�)‖ f ‖H−1(�)‖eσ−σ ′ ‖L∞(�)‖σ − σ ′‖L∞(�).

Since ‖eσ−σ ′ ‖L∞(�) ≤ ‖eσ ‖L∞(�)‖eσ ′ ‖L∞(�) = e‖σ‖L∞(�)+‖σ ′‖L∞(�) , (A2) easily
follows. ��
Lemma 2 Let � ⊂ R

d be pre-compact, and let Z be a mean zero Gaussian random
field defined over �. Assume that, for some 0 < α ≤ 1, the covariance kernel of the
process,

Cov : � × � → R,

Cov(x, y) := E
[
Z(x)Z(y)

]
,

is α-Hölder continuous, with Hölder constant L > 0. Then, Z is sample-continuous,
that is P(Z ∈ C(�)) = 1. Furthermore, for σ 2 := maxx∈� Cov(x, x), one has

E
1/2‖Z‖2L∞(�) ≤ c1σ

(
1+

√
log+(1/σ)

)
and E

[
eβ‖Z‖L∞(�)

]
= c2 < +∞,

(A3)
for all β > 0, where c1 = c1(d, L, α,�) and c2 = c2(d, L, α, σ, β,�) are constants
that depend continuously on their parameters (domain excluded). Here,

log+(a) := max{log a, 0}.

Proof If σ = 0, the proof is trivial; thus, we let σ > 0. Let

d(x, y) := E
1/2|Z(x) − Z(y)|2 = √

Cov(x, x) − 2Cov(x, y) + Cov(y, y),

be a metric over � induced by the Gaussian process Z . We note that the Hölder
continuity of the covariance kernel implies

d(x, y) ≤ √
Cov(x, x) − Cov(x, y) +√

Cov(y, y) − Cov(x, y) ≤ √
2L|x − y|α.
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In particular, the balls Bd(x, ε) := {y ∈ � : d(x, y) < ε} induced by the metric
d satisfy

Bd(x, ε) ⊇ B
(
x, 2−1/αL−1/αε2/α

)
, (A4)

where B(x, ε) is the Euclidean ball of radius ε centered at x. In fact,

|x − y| ≤ 2−1/αL−1/αε2/α �⇒ d(x, y) ≤
√
2L(2L)−1ε2 = ε.

Now, for any ε > 0, let Nd(ε) be the minimum number of d-balls of radius ε that
are required for covering �. Similarly, let N (ε) be the covering number associated to
the Euclidean metric. It is straightforward to see that (A4) implies

1 ≥ Nd(ε) ≤ N (2−1/αL−1/αε2/α) ≤ max

{(
Cε2

2L

)−d/α

, 1

}
, (A5)

where C = C(d, α,�) > 0 is an absolute constant. In fact,

N (ε) ≤ max{3ddiam(�)dε−d , 1},

where diam(�) is the domain diameter under the Euclidean metric. In particular, we
have Nd(ε) < +∞ for all ε > 0, meaning that � is d-compact. Furthermore, (A5)
also implies that Nd(ε) = 1 for all ε ≥ √

C/2L .
We now note that for all x, y ∈ � one has

d(x, y) ≤ E
1/2|Z(x)|2 + E

1/2|Z(y)|2 ≤ 2σ.

In particular, the d-diameter of � is bounded by 2σ . Then, Theorem 1.3.3 in [62]
implies

E

[
sup
x∈�

Z(x)
]
≤ K

∫ σ

0
log1/2 Nd(ε)dε,

where K is a universal constant. Then, the above together with (A5) yields

E

[
sup
x∈�

Z(x)
]
≤ K

∫ min{σ,
√
C/2L}

0

√
−d

α
log

(
C

2L
ε2
)
dε.

By operating the change of variables ε := √
C/2Lε, we may rewrite the previous

as

E

[
sup
x∈�

Z(x)
]
≤ K

√
4Ld

C ′α

∫ min{√C/2Lσ,1}

0

√
log(1/ε)dε.

At this point, it useful to note that for any 0 < a < 1 one has

∫ a

0

√
log εdε = a

√
log(1/a)+

√
π

2
(1− erf(

√
log(1/a))) ≤ a

(√
π

2
+√

log(1/a)

)
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where erf is the error function, which is known to satisfy 1− erf(z) ≤ e−z2 . It follows
immediately that

E

[
sup
x∈�

Z(x)
]
≤ K

√
2d

α
σ

⎛
⎝√

π

2
+
√√√√− logmin

{√
C

2L
σ , 1

}⎞⎠ ≤

≤ C ′σ
(
1+

√
log+(1/σ)

)
, (A6)

where C ′ = C ′(d, α,�, L) grows less than logarithmically in L .

The first consequence of this fact, is that the paths of Z are almost-surely uniformly
continuous (c.f. Theorem 1.3.5 in [62]). Additionally, since the Gaussian process
Z̃ := −Z satisfies the same upper bound, it is straightforward to conclude that

E‖Z‖L∞(�) ≤ C̃σ

(
1+

√
log+(1/σ)

)
,

where C̃ := 2C ′. We now recall the celebrated Borell-TIS inequality, see Theorem
2.1.1 in [62],

P(‖Z‖L∞(�) − E‖Z‖L∞(�) > z) ≤ exp

(
− z2

2σ 2

)
,

from which it is straightforward to prove that Var ‖Z‖L∞(�) ≤ 4σ 2. Then,

E
1/2‖Z‖2L∞(�) ≤

√
Var ‖Z‖L∞(�) + E‖Z‖L∞(�) ≤ c1σ

(
1+

√
log+(1/σ)

)
,

as claimed. Finally, the statement concerning E
[
eβ‖Z‖L∞(�)

]
follows directly from

Theorem 2.1.2 in [62]: see also (A15) and the reasoning explained thereby. ��
Lemma 3 Let � ⊂ R

d be a compact subset and let Z be a mean zero Gaussian
random field defined over�. Assume that the covariance kernel of Z,Cov, is Lipschitz
continuous. Then, there exists a nonincreasing summable sequenceλ1 ≥ λ2 ≥ · · · ≥ 0
and a sequence of Lipschitz continuous maps, {ϕi }+∞

i=1 , forming an orthonormal basis
of L2(�), such that

Cov(x, y) =
+∞∑
i=1

λiϕi (x)ϕi (y) (A7)

for all x, y ∈ �. Furthermore, there exists a sequence of independent standard normal
random variables, {ηi }+∞

i=1 , such that

Z =
+∞∑
i=1

√
λiηiϕi (A8)
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almost surely. Finally, the truncated kernels,

Covp,q(x, y) :=
q∑

i=p

λiϕi (x)ϕi (y),

defined for varying 1 ≤ p ≤ q ≤ +∞,

i) converge uniformly as p, q → +∞;
ii) are all 1/2-Hölder continuous, with a common Hölder constant.

Proof Without loss of generality, we shall assume that λi > 0 for all i ∈ N. The series
expansion in (A7), and the uniform convergence claimed in (i), are a consequence
of Mercer’s Theorem [63]. There, the basis functions ϕi are obtained by solving the
eigenvalue problem below

λiϕi (x) =
∫

�

Cov(x, y)ϕ(y)dy, (A9)

where the equality holds for almost every x ∈ �, and, similarly, (A7) is shown to
hold almost everywhere. However, the right-hand-side of (A9) is easily shown to be
Lipschitz continuous in x, since

∣∣∣∣
∫

�

Cov(x, y)ϕ(y)dy −
∫

�

Cov(x′, y)ϕ(y)dy

∣∣∣∣ ≤
≤ L|x − x′|

∫
�

|ϕi (y)|dy ≤ L|x − x′||�|1/2, (A10)

where L is the Lipschitz constant of Cov. Thus, without loss of generality, wemay pick
the ϕi to be Lipschitz continuous. Since the series in (A7) converges uniformly, both
the left-hand-side and the right-hand-side of (A7) are continuous: as they coincide a.e.
in �, they must be equal everywhere. To conclude, we shall now prove (ii), as (A8)
is just the well-known statement of the Kosambi-Karhunen-Loeve Theorem. Pick any
0 ≤ p ≤ q ≤ +∞. For x, x′, y, y′ ∈ � we have

∣∣∣∣∣∣
q∑

i=p

λiϕi (x)ϕi (y) −
q∑

i=p

λiϕi (x′)ϕi (y′)

∣∣∣∣∣∣ ≤
q∑

i=p

λi |ϕi (x)ϕi (y) − ϕi (x′)ϕi (y′)| ≤

≤
q∑

i=p

λi |ϕi (x) − ϕi (x′)||ϕi (y)| +
q∑

i=p

λi |ϕi (y) − ϕi (y′)||ϕi (x′)|. (A11)
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Applying the Cauchy-Schwarz inequality, and using λi = √
λi
√

λi , allows us to
continue inequality (A11) as

· · · ≤
√√√√ q∑

i=p

λi |ϕi (x) − ϕi (x′)|2
√√√√ q∑

i=p

λiϕi (y)2

+
√√√√ q∑

i=p

λi |ϕi (y) − ϕi (y′)|2
√√√√ q∑

i=p

λiϕi (x′)2. (A12)

Since all the sums involved concern positive values, we may further bound the
above by letting p = 0 and q = +∞. Then, thanks to (A7), we get

∣∣∣∣∣∣
q∑

i=p

λiϕi (x)ϕi (y) −
q∑

i=p

λiϕi (x′)ϕi (y′)

∣∣∣∣∣∣ ≤
≤ √

Cov(x, x) − 2Cov(x, x′) + Cov(x′, x′)
√
Cov(y, y)

+√
Cov(y, y) − 2Cov(y, y′) + Cov(y′, y′)

√
Cov(x′, x′) ≤

≤ √
2LM |x − x′| +√

2LM |y− y′|, (A13)

where M := maxx∈� Cov(x, x). This shows that the truncated kernel is 1/2-Hölder
continuous with Hölder coefficient bounded by

√
2LM . As the latter is independent

on both p and q, this concludes the proof. ��
Lemma 4 Let� ⊂ R

d be a compact subset and let Z be amean zeroGaussian random
field defined over�. Assume that the covariance kernel of Z,Cov, is square-integrable
over�×�. Then, there exists a nonincreasing summable sequence λ1 ≥ λ2 ≥ · · · ≥ 0
and an orthonormal basis of L2(�), {ϕi }+∞

i=1 , such that

Cov(x, y) =
+∞∑
i=1

λiϕi (x)ϕi (y)

for almost every (x, y) ∈ �×�. Furthermore, there exists a sequence of independent
standard normal random variables, {ηi }+∞

i=1 , such that

Z =
+∞∑
i=1

√
λiηiϕi

almost surely. Finally, the L2-norm of the process is exponentially integrable, i.e.

E

[
eβ‖Z‖L2(�)

]
< +∞ (A14)

for all β > 0.
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Proof We only need to prove (A14), as the rest of the Lemma simply follows from the
Kosambi-Karhunen-Loeve Theorem. To this end, we first note that for any random
variable X one has

∃ε > 0 such that E

[
eεX2

]
< +∞ �⇒ E

[
eβ|X |] < +∞ ∀β > 0. (A15)

In fact, given any two positive numbers ε and β, there exists some M > 0 such that
M + εx2 > β|x | for all x ∈ R. In light of this, let ε > 0 be a parameter, whose value
shall be chosen later on. By orthonormality, we have

‖Z‖2L2(�)
=

+∞∑
i=1

λiη
2
i .

As the ηi ’s are independent, it follows that

E

[
e
ε‖Z‖2

L2(�)

]
= E

[
eε

∑+∞
i=1 λiη

2
i

]
=

+∞∏
i=1

E

[
eελiη

2
i

]
. (A16)

For each index i , if ελi − 1/2 < 0, we have

E

[
eελiη

2
i

]
= 1√

2π

∫ +∞

−∞
eελi z2e−z2/2dz =

√
1

1− 2ελi
.

We thus choose ε < 1/2λ1, so that, by monotonicity, the above holds for all i .
Resuming (A16), we get

E

[
e
ε‖Z‖2

L2(�)

]
=

+∞∏
i=1

√
1

1− 2ελi
= exp

(
−1

2

+∞∑
i=1

log(1− 2ελi )

)
.

Since, for i → +∞, − 1
2 log(1− 2ελi ) is asymptotic to ελi , which is a summable

sequence, the conclusion now follows by (A15). ��
Lemma 5 Let (V , ‖ ·‖) be a separable Hilbert space and let u be a squared integrable
V -valued random variable, E‖u‖2 < +∞. Then, there exists an orthonormal basis
{vi }+∞

i=1 ⊂ V , a sequence of (scalar) random variables {ωi }+∞
i=1 , with E[ωiω j ] = δi, j ,

and a nonincreasing summable sequence λ1 ≥ λ2 ≥ · · · ≥ 0 such that

u =
+∞∑
i=1

√
λiωivi

almost-surely.
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Proof Consider the operator C : V → V defined as C (v) = E[〈u, v〉u], where the
expectation is intended in the Bochner sense. We show that C is symmetric semi-
positive definite trace class operator. Indeed, for any v, v′ ∈ V one has

〈C (v), v′〉 = 〈E[〈u, v〉u], v′〉 = E[〈u, v〉〈u, v′〉] = 〈v,C (v′)〉,

and
〈C (v), v〉 = E[〈u, v〉2] ≥ 0.

Furthermore, given any orthonormal basis {ei }+∞
i=1 we have

+∞∑
i=1

〈C (ei ), ei 〉 =
+∞∑
i=1

E[〈u, ei 〉2] = E

[+∞∑
i=1

〈u, ei 〉2
]
= E‖u‖2 < +∞,

bymonotone convergence. Thus, by the well-known Spectral Theorem, there exists an
orthonormal basis {vi }+∞

i=1 ⊂ V and a nonincreasing summable sequence λ1 ≥ λ2 ≥
· · · ≥ 0 such that

C (v) =
+∞∑
i=1

λi 〈v, vi 〉vi ∀v ∈ V .

Furthermore, as directly implied by the above, C (vi ) = λivi , meaning that the
λi ’s and the vi ’s are the eigenvalues and eigenvectors of the (uncentered) covariance
operator C , respectively. Let now

ωi := 1√
λi
〈u, vi 〉.

It is straightforward to see that for all i, j ∈ N we have

E[ωiω j ] = 1√
λiλi

E[〈u, vi 〉〈u, v j 〉] = 1√
λiλi

〈C (vi ), v j 〉 = λi√
λiλi

〈vi , v j 〉 = δi, j .

Finally,

u =
+∞∑
i=1

√
λiωivi (A17)

by definition of the ωi ’s. To this end, we also note that, since

+∞∑
i=1

E

∥∥∥√λiωivi

∥∥∥2 = E

[+∞∑
i=1

∥∥∥√λiωivi

∥∥∥2
]
= E‖u‖2 < +∞,

the series in (A17) is L2(P; V ) convergent (in the Bochner sense [64]), where P is the
probability law of u. Thus, (A17) holds P-almost surely. ��
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Appendix B Complementary results for Section 4

Lemma B1 Let (X , ‖ · ‖) be a normed space. If A ⊆ X is dense in X, then:

i) A ∩ O is dense in O for all open sets O ⊆ X;
ii) A ∩ C is dense in C for all convex closed sets C ⊆ X.

Proof i) Let O ⊆ X be open and let U be an open subset in the subspace topology
of O . Then, U = Ũ ∩ O for some Ũ ⊆ X open in X . In particular, U is also
open in the topology of the larger space, X . Thus,U ∩ A  = ∅, and the conclusion
follows.

ii) LetC ⊆ X be convex and closed. Fix any c0 in int(C), the interior ofC . Let c ∈ C .
It is well known that, under these hypothesis, the segment {(1− t)c0 + tc}t∈[0,1]
can only, at most, intersect ∂C at c, as all the remaining points lie in the interior
of the set. Let cn := c0/n + (1− 1/n)c, so that cn is a sequence of interior points
converging to c. Since A∩ int(C) is dense in int(C), see (i), for every n there exists
c∗n ∈ A ∩ int(C) ∈ A ∩ C such that |cn − c∗n | ≤ 1/n. Then, c∗n → c as n → +∞,
as wished.

��
Lemma B2 Let σ be a finite measure over R

N , and let B ⊂ R
N be a bounded set. Let

ρ : R → R satisfy the assumptions in Lemma 1. Consider the following functional
space

V :=
{
f ∈ M(RN , R

n) s.t. f|B ∈ C(B), ‖ f ‖V := ‖ f ‖C(B) +
∫
RN \B

| f (x)|σ(dx) < +∞
}

.

Then, Nρ(RN , R
n) is ‖ · ‖V -dense in V .

Proof For the sake of simplicity, we only prove the case n = 1. We note that V ∼=
C(B) × L1

σ (RN \ B) in the natural way. As a consequence, the dual space of V can
be given as

V ′ ∼= R(B) × L∞
σ (RN \ B)

where R(B) is the set of (signed) Radon measures over B, considered with the total
variation norm. In particular, for every F ∈ V ′ there exist ν ∈ R(B) and g ∈
L∞

σ (RN \ B) such that

F( f ) =
∫
B
f dν +

∫
RN \B

f gdσ (B18)

for all f ∈ V . Assume that Nρ(RN , R
n) is not dense in V . Then, there exists some

F ∈ V ′ \ {0} such that F ≡ 0 over Nρ(RN , R
n) ⊂ V . Let ν and g be as in (B18),

and define ν̂ := ν + gdσ. Then, we have ν̂ ∈ R(RN ) and∫
RN

f d ν̂ = 0 ∀ f ∈ Nρ(RN , R
n).
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However, thanks to our assumptions on ρ, the above implies ν̂ ≡ 0 �⇒ F ≡ 0
(cf. Theorem 5 in [51]), thus yielding a contraddiction. ��
Lemma B3 Let σ be a finite measure over R

n and let Q := [−M, M]n be a given
hypercube, M > 0. Let ρ : R → R be the α-leaky ReLU activation, |α| < 1. Consider
the following functional space

W :=
{
f ∈ M(Rn, R

N ) s.t. ‖ f ‖W := ‖ f ‖W 1,∞(Q) +
∫
Rn\Q

| f (x)|σ(dx) < +∞
}

.

Then, Nρ(Rn, R
N ) is ‖ · ‖W -dense in W .

Proof We recall that, since ρ is the α-leaky ReLU activation, the set Nρ(Rn, R
N )

contains all those functions f : R
n → R

N that are piecewise linear over polyhedra.
Following the same idea as in the proof of Lemma B2, let us assume that

Nρ(Rn, R
N ) is not dense inW . Then, there exists some nontrivial functional F ∈ W ′

that vanishes overNρ(Rn, R
N ). Since,W ∼= W 1,+∞(Q)× L1

σ (Rn \Q) in the natural
way, we have

F( f ) = F1( f|Q) + F2( f|Rn\Q)

for some F1 ∈ W 1,+∞(Q)′ and F2 ∈ L1
σ (Rn \ Q)′. Let now g ∈ W 1,+∞(Q).

Since Q is a polyhedron, it is straightforward to see that for every ε > 0 there exists
φε ∈ Nρ(Rn, R

N ) such that

‖φε − g‖W 1,∞(Q) < ε, ‖φε‖C(Rn) ≤ ‖g‖C(Q), φε ≡ 0 on R
n \ Qε,

where Qε := (−M − ε, M + ε)n . In fact, such a piecewise linear approximation
is easily constructed and it is guaranteed to be a member of Nρ(Rn, R

N ). Then,
φε → g · 1Q in ‖ · ‖W -norm as ε → 0. Thus, we have

F1(g) = F1(g) + F2(0) = lim
ε→0

F(φε) = 0,

proving that F1 ≡ 0. In particular, for F to vanish over Nρ(Rn, R
N ) we must have

F2(φ|Rn\Q) = 0 ∀φ ∈ Nρ(Rn, R
N ).

However, since ρ satisfies the assumptions in Lemma 1, this would imply F2 ≡ 0,
ultimately yielding a contraddiction. ��
Corollary B1 Let σ be a probability measure over R

N , with finite moment and abso-
lutely continuous with respect to the Lebesgue measure. Let B ⊂ R

N be a bounded
set, and let M, L > 0, n ∈ N. Consider the families

EB,M (RN , R
n) :=

{
� ′ ∈ M(RN , R

n) s.t.
∫
RN

|� ′(v)|σ(dv) < +∞, sup
v∈B

|� ′(v)| ≤ M

}
,
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DM,L(Rn, V ) :=
{

� ∈ M(Rn, R
N ) s.t. sup

c∈[−M,M]n
‖∂�‖V (c) ≤ L

}
.

Let ρ be the α-leakyReLU, with |α| < 1. Then, for every ε > 0 and every pair
� ′ ∈ EB,M (RN , R

n), � ∈ DM,L(Rn, R
N ) such that

∫
RN

|u− �(� ′(u))|σ(du) < +∞, (B19)

there exists �̂ ′ ∈ EB,M (RN , R
n) ∩ Nρ(RN , R

n) and �̂ ∈ DM,L(Rn, R
N ) ∩

Nρ(Rn, R
N ) such that

∣∣∣∣
∫
RN

|u− �(� ′(u))|σ(du) −
∫
RN

|u− �̂(�̂ ′(u))|σ(du)

∣∣∣∣ < ε,

Proof Let � ′ ∈ EB,M (RN , R
n) and � ∈ DM,L(Rn, R

N ) satisfy (B19), and let ε > 0.
Define ν as the push-forwardmeasure of σ through the encoder� ′, and let (W , ‖·‖W )

be the normed space in Lemma B3, defined with respect to ν and M . We note that,
since σ has finite moment, Eq. (B19) implies

∫
RN

|�(c)|ν(dc) < +∞ �⇒ � ∈ L1
ν(R

n).

In particular, � ∈ DM,L(Rn, R
N )∩ L1

ν(R
n) ⊆ W . Since the setDM,L(Rn, R

N )∩
L1

ν(R
n) is both convex and closed in (W , ‖ · ‖W ), by Lemmas B1 and B3, there exists

some �̂ ∈ DM,L(Rn, R
N ) ∩ Nρ(Rn, R

N ) ∩ L1
ν(R

n) such that ‖� − �̂‖W < ε/2.
Let now � be the (global) Lipschitz constant of �̂. Following the same computations
as in the proof of Theorem 1, we get

∣∣∣∣
∫
RN

|u− �(� ′(u))|σ(du) −
∫
RN

|u− �̂(�̂ ′(u))|σ(du)

∣∣∣∣ ≤
≤
∫
Rn

|�(c) − �̂(c)|ν(dc) + �

∫
RN

|� ′(v) − �̂ ′(v)|σ(dv) ≤

≤ ‖�(c) − �̂(c)‖W + �

∫
RN

|� ′(v) − �̂ ′(v)|σ(dv) ≤

≤ ε

2
+ �

∫
RN

|� ′(v) − �̂ ′(v)|σ(dv), (B20)

for all �̂ ′ ∈ Nρ(RN , R
n), where we exploited the fact that ν([−M, M]n) ≤ 1 due to

ν being a probability measure.

To conclude the proof, we now wish to bound the second term in (B20). This,
however, requires some additional care: in fact, we cannot directly repeat the same
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ideas and apply Lemma B2, as � ′ might be discontinuous over B. To account for this,
we shall introduce a proper smoothing step. Let

ϕ(x) := C exp−1/(1−|x|2) 1{|y|≤1}(x)

be the canonical mollifier in R
N , where C > 0 ensures that

∫
RN ϕ(x)dx = 1. For any

δ > 0, let � ′
δ : R

N → R
n be defined as

� ′
δ(v) := � ′(v)1RN \B(v) + (� ′ ∗ ϕδ)1B(v),

where ϕδ(x) := δ−Nϕ(x/δ) and ∗ denotes the convolution operator. Then, following
classical arguments (see, e.g. Theorem 7, Appendix C.2, in [64]), it is straightforward
to see that:

(i) � ′
δ is continuous over B;

(ii) � ′
δ ∈ EB,M (RN , R

n), as |� ′
δ(v)| ≤ M · ∫

RN ϕδ(v)σ (dv) = M for all v ∈ B;
(iii) � ′

δ → � ′ σ -almost everywhere, as σ is absolutely continuous with respect to
Lebesgue’s measure;

(iv)
∫
RN |� ′

δ(v) − � ′(v)|σ(dv) → 0 as δ → 0, due to dominated convergence and
(iii).

In light of (iv), let us fix δ > 0 such that
∫
RN |� ′

δ(v) − � ′(v)|σ(dv) ≤ ε/4�. As
before, let (V , ‖ · ‖V ) be the normed space in Lemma B2, defined according to the
measure σ . Then, due to (i) and (ii), we have � ′

δ ∈ EB,M (RN , R
n)∩V , with the latter

being a convex closed subset of (V , ‖ · ‖V ). In particular, by Lemmas B1 and B2,
there exists some

�̂ ′
δ ∈ Nρ(RN , R

n) ∩ EB,M (RN , R
n) ∩ V

such that ‖� ′
δ − �̂ ′

δ‖V < ε/4�. Consequently,

∫
RN

|� ′(v) − �̂ ′
δ(v)|σ(dv) ≤

∫
RN

|� ′(v) − � ′
δ(v)|σ(dv) + ‖� ′

δ − �̂ ′
δ‖V <

ε

4l
(B21)

where, as before, we exploited the fact that σ is a probability measure, and thus
σ(B) ≤ 1. Then, setting �̂ := �̂δ and plugging (B21) into (B20) yields the desired
conclusion. ��

Appendix C Measurable selections andmore

In what follows, we use the term Polish space to intend a complete separable metric
space. We recall, in particular, that all separable Banach spaces are Polish spaces.
Finally, given any set X , we shall write 2X for its power set, that is, the collection of
all subsets of X ,

2X := {A | A ⊆ X}.
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Definition C1 Let (Y ,M ) be a measurable space and let (X , d) be a Polish space.
Let F : Y → 2X . We say that F is a measurable set-valued map if the following
conditions hold:

a) F(y) is closed in X for all y ∈ Y ;
b) for all open sets A ⊆ X one has SA ∈ M , where

SA := {y ∈ Y | F(y) ∩ A  = ∅}. (C22)

Lemma C1 Let (X , d) be a Polish space and let (Y , τ ) be a topological space equipped
with a suitable σ -field M . Let f : X → Y be continuous. The following are equiva-
lent:

i) f maps open sets onto M -measurable sets;
ii) the map F : Y → 2X , defined as

F(y) :=
{
{x ∈ X | f (x) = y} y ∈ f (X)

X otherwise,
(C23)

is a measurable set-valued map.

Proof Let F be as in (C23). We first note that, since f is continuous, the preimage of
any singleton, f −1({y}), is closed. In particular, condition (a) in Definition C1 is met.
Next, we note that for any A ⊆ X one has

SA = f (A) ∪ f (X)c, (C24)

where Bc := Y \ B denotes the complement of B ⊆ Y , and SA is as in (C22). In fact,

y /∈ f (X) �⇒ F(y) = X �⇒ F(y) ∩ A = A  = ∅ �⇒ y ∈ SA,

meaning that SA ∩ f (X)c = f (X)c. On the other hand,

y ∈ f (X) ∩ SA ⇐⇒ ∃a ∈ A s.t. a ∈ {x ∈ X | f (x) = y} ⇐⇒ y ∈ f (A),

implying that SA ∩ f (X) = f (A). Since SA = (SA ∩ f (X)c) ∪ (SA ∩ f (X)), the
identity in (C24) easily follows.

At this point, it is straightforward to see that (i) ⇐⇒ (i i). Assume, for instance,
that (i) holds. Then, for any open set A ⊆ X , f (A) is M -measurable. In particular,
f (X) ∈ M �⇒ f (X)c ∈ M �⇒ SA ∈ M , meaning that condition (b) in
Definition C1 is met. Conversely, say that F is measurable, so that SA ∈ M for all
open sets A ⊆ X . Let A = ∅. Then, f (X)c ∈ M . Since f (A) and f (X)c are disjoint,
f (A) = SA \ f (X)c, proving that f (A) ∈ M , as claimed. ��
Lemma C2 Let f : (X , dX ) → (Y , dY ) be a continuous map between two Polish
spaces. Let M be the P-completion of the Borel σ -field defined over Y , where P is a
given probability distribution. Then f maps open sets onto M -measurable sets.
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Proof This is a standard result in the theory of Analytic sets, see, e.g., Theorem 4.3.1 in
[65]. In fact, any open set A ⊆ X is Borel measurable in X . Thus, by very definition,
f (A) is an analytic set in Y . Since M contains all Borel sets of Y and it is also
P-complete, it follows that f (A) ∈ M . ��

Corollary C1 Let f : (X , dX ) → (Y , dY ) be a continuous map between two Polish
spaces. Let M be the P-completion of the Borel σ -field defined over Y , where P is a
given probability distribution. Then, f admits an M -measurable right-inverse, that
is, a measurable map f −1 : Y → X for which

f ( f −1(y)) = y ∀y ∈ f (X).

Proof The nontrivial part of the statement lies in the measurability of f −1, as the
existence of a generic right-inverse is already guaranteed by the Axiom of Choice. Let
F : Y → 2X be as in (C23), so that, according toLemmasC1andC2, F is ameasurable
set-valued map. Then, a famous result by Kuratowski and Ryll-Nardzewski states that
F admits a measurable selection (see, e.g., Theorem 8.1.3 and Definition 8.1.1 in
[66]). That is, there exists a measurable map g : Y → X such that g(y) ∈ F(y) for
all y ∈ Y . It is straightforward to see that such map retains all the desired properties:
in fact, for all y ∈ f (X) the condition g(y) ∈ F(y) implies f (g(y)) = y. ��

Corollary C2 Let f : (X , dX ) → (Y , dY ) be a continuous map between two Polish
spaces. Let M be the P-completion of the Borel σ -field defined over Y , where P is
a given probability distribution. Let C ⊆ X be a closed subset. Then, there exists an
M -measurable map f −1 : Y → X such that

f ( f −1(y)) = y ∀y ∈ f (X), and f −1( f (C)) ⊆ C .

Proof In agreement with Corollary C1, let g0 : Y → X be an M -measurable right-
inverse of f . Consider the metric subspace (C, d) ⊆ (X , d). Since C is closed, (C, d)

is a Polish space. Thus, we may exploit Corollary C1 once again to construct an M -
measurable map g1 : Y → C that operates as a right-inverse of f|C , the restriction of
f to C . Define g : Y → X as

g(y) := g1(y) · 1 f (C)(y) + g0(y) · 1Y\ f (C)(y).

Then f −1 := g fulfills all the requirements. ��
Lemma C3 Let (X , dX ) be a Polish space and let (C, dC ) be a compact metric space.
Let J : X × C → R be continuous. Then, there exists a Borel measurable map
f : X → C such that

J (x, f (x)) = min
c∈C J (x, c)

for all x ∈ X.
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Proof First of all, we note that the statement is well-defined as all the minima are
attained by compactness of C and continuity of J . Let now F : X → 2C be the
following set-valued map

F : x →
{
c ∈ C such that J (x, c) = min

c′∈C
J (x, c′)

}
,

that assigns a (nonempty) subset of C to each x ∈ X . We aim at showing that F is a
measurable set-valued map. To this end, we start by noting that F(x) is closed in C
for all x ∈ X . To see this, fix any x ∈ X and let jx := J (x, ·), so that jx : C → R is
continuous. Then,

F(x) = j−1
x

({
min
c′∈C

jx (c
′)
})

is closed as it is the pre-image of a singleton under a continuous transformation.
Conversely, we now claim that, for any compact subset K ⊆ C , the set

SK := {x ∈ X : F(x) ∩ K  = ∅}

is closed. Indeed, let {xn}n ⊆ SK be a sequence converging to some x ∈ X . By
definition of SK , for each xn there exists a cn ∈ K such that cn ∈ F(xn), i.e. for which
J (xn, cn) = minc′ J (xn, c′). Since K is compact, up to passing to a subsequence,
there exists some c ∈ K such that cn → c. Let now c̃ ∈ C be a minimizer for x , i.e. a
suitable element for which J (x, c̃) = minc′∈C J (x, c′). By continuity, we have

J (x, c) = lim
n→+∞ J (xn, cn) = lim

n→+∞min
c′∈C

J (xn, c
′) ≤ lim

n→+∞ J (xn, c̃) = J (x, c̃),

implying that c is also aminimizer for x . As a consequence, we have c ∈ K ∩F(x) and
thus x ∈ SK . In particular, SK is closed. It is now straightforward to prove that SA is
Borel measurable whenever A ⊆ C is open. In fact, any open set A ⊆ C can be written
as the countable union of compact sets, A = ∪n∈NKn , and clearly SA = ∪nSKn .

We have then proven that F is a measurable set-valued map. In particular, we may
now invoke the measurable selection theorem by Kuratowski-Ryll-Nardzewski [66],
which ensures the existence of a measurable map f : X → C such that f (x) ∈ F(x),
i.e. J (x, f (x)) = minc∈C J (x, c), as wished. ��

Appendix D Architectures and training details

We report in this Section the technical details concerning the design of the autoencoder
modules (Tables 2 and 3) and the training of the DL-ROMs (Table 4). As for the latter,
Tables 5 and 6 complete the picture, with a description of the architectures employed
for reduced map, φ.

We mention that, both for the case of Darcy flow in a porous medium and Burger’s
equation, we exploited a combination of classical dense layers together with mesh-
informed layers. The latter are a particular class of sparse architectures first introduced
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Table 2 Autoencoder architecture for Darcy’s law example, §5.1.1

Layer # Type Input dim. Output dim. Activation

1 Dense 2601 500

2 Dense 500 n
3 Dense n 500

4 Dense 500 2601 -

The encoder and decoder modules, here presented together, are divided by a dashed line. n = latent
dimension; ρ = 0.1-leakyReLU

Table 3 Autoencoder architecture for Burger’s example, §5.1.2

Layer # Type Input dim. Output dim. Support Activation

1 Dense 500 n -

2 Dense n 100 -

3 Mesh-informed 100 500 0.4

4 Mesh-informed 500 500 0.1

Entries read as in Table 2; here, ρ̃(x) := ReLU(0.5− ReLU(0.5− x))

Table 4 Training of the DL-ROMs: technical details

Problem α1 α2 α3 Training time Epochs

Darcy’s law §5.1.1 1/5 1/5 1/16 7m 20.17s 300

Burger’s §5.1.2 rel 1 1/16 4m 01.58s 500

The α j ’s define the loss function as in Eq. (6); ”rel” means that the term α j‖yi − ŷi‖2 is replaced with a
relative error ‖yi − ŷi‖/‖yi‖

Table 5 Architecture of the reduced map network, φ, for Darcy’s law example, §5.1.1

Layer # Type Input dim. Output dim. Support Activation

1 Mesh-informed 2601 676 0.125 tanh

2 Mesh-informed 676 169 0.25 ρ

3 Dense 169 n - ρ

n = latent dimension; ρ = 0.1-leakyReLU

Table 6 Architecture of the reduced map network, φ, for Burger’s example, §5.1.2

Layer # Type Input dim. Output dim. Support Activation

1 Mesh-informed 500 250 0.25 ρ

2 Mesh-informed 250 125 0.5 ρ

3 Dense 125 n - ρ

Entries read as in Table 5
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in [67] as a way to handle mesh-based functional data. In short, they are obtained
through sparsification of dense architectures, which is achieved by means of a mesh-
dependent pruning strategy: for further details, we refer the reader to [67]. As for
our purposes, it is sufficient to know that mesh-informed layers are characterized by
a support hyperparameter: the smaller the support, the sparser the architecture; for
large supports, the module collapses to a classical dense layer. In all of the following,
mesh-informed layers are always constructed by relying on uniform structured grids
(with as many dofs as declared in the input-output dimensions).
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