This paper examines how increasing the value of the Reynolds number affects the ability of spanwise-forcing techniques to yield turbulent skin-friction drag reduction. The considered forcing is based on the streamwise-travelling waves of spanwise-wall velocity (Quadrio et al., J. Fluid Mech., vol. 627, 2009, pp. 161-178). The study builds upon an extensive drag-reduction database created via direct numerical simulation of a turbulent channel flow for two fivefold separated values of Re, namely Reτ=200 and Reτ=1000 The sheer size of the database, which for the first time systematically addresses the amplitude of the forcing, allows a comprehensive view of the drag-reducing characteristics of the travelling waves, and enables a detailed description of the changes occurring when increases. The effect of using a viscous scaling based on the friction velocity of either the non-controlled flow or the drag-reduced flow is described. In analogy with other wall-based drag-reduction techniques, like riblets for example, the performance of the travelling waves is well described by a vertical shift of the logarithmic portion of the mean streamwise velocity profile. Except when is very low, this shift remains constant with, at odds with the percentage reduction of the friction coefficient, which is known to present a mild, logarithmic decline. Our new data agree with the available literature, which is however mostly based on low-information and hence predicts a quick drop of maximum drag reduction with . The present study supports a more optimistic scenario, where for an airplane at flight Reynolds numbers a drag reduction of nearly 30 % would still be possible thanks to the travelling waves.

Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing

QUADRIO, MAURIZIO
2016-01-01

Abstract

This paper examines how increasing the value of the Reynolds number affects the ability of spanwise-forcing techniques to yield turbulent skin-friction drag reduction. The considered forcing is based on the streamwise-travelling waves of spanwise-wall velocity (Quadrio et al., J. Fluid Mech., vol. 627, 2009, pp. 161-178). The study builds upon an extensive drag-reduction database created via direct numerical simulation of a turbulent channel flow for two fivefold separated values of Re, namely Reτ=200 and Reτ=1000 The sheer size of the database, which for the first time systematically addresses the amplitude of the forcing, allows a comprehensive view of the drag-reducing characteristics of the travelling waves, and enables a detailed description of the changes occurring when increases. The effect of using a viscous scaling based on the friction velocity of either the non-controlled flow or the drag-reduced flow is described. In analogy with other wall-based drag-reduction techniques, like riblets for example, the performance of the travelling waves is well described by a vertical shift of the logarithmic portion of the mean streamwise velocity profile. Except when is very low, this shift remains constant with, at odds with the percentage reduction of the friction coefficient, which is known to present a mild, logarithmic decline. Our new data agree with the available literature, which is however mostly based on low-information and hence predicts a quick drop of maximum drag reduction with . The present study supports a more optimistic scenario, where for an airplane at flight Reynolds numbers a drag reduction of nearly 30 % would still be possible thanks to the travelling waves.
2016
Drag reduction; turbulence control; Condensed Matter Physics; Mechanics of Materials; Mechanical Engineering
File in questo prodotto:
File Dimensione Formato  
GATTD_OA_02-16.pdf

Open Access dal 12/03/2017

Descrizione: Paper open access
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.71 MB
Formato Adobe PDF
2.71 MB Adobe PDF Visualizza/Apri
GATTD02-16.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 940.66 kB
Formato Adobe PDF
940.66 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/996057
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 94
  • ???jsp.display-item.citation.isi??? 78
social impact