Data replication and in-network storage are two basic principles of the Information Centric Networking (ICN) framework in which caches spread out in the network can be used to store the most popular contents. This work shows how one of the ICN architectures, the Named Data Networking (NDN), with content pre-fetching can maximize the probability that a user retrieves the desired content in a Vehicle-to-Infrastructure scenario. We give an ILP formulation of the problem of optimally distributing content in the network nodes while accounting for the available storage capacity and the available link capacity. The optimization framework is then leveraged to evaluate the impact on content retrievability of topology- and network-related parameters as the number and mobility models of moving users, the size of the content catalog and the location of the available caches. Moreover, we show how the proposed model can be modified to find the minimum storage occupancy to achieve a given content retrievability level. The results obtained from the optimization model are finally validated against a Name Data Networking architecture through simulations in ndnSIM.

Optimal Content Prefetching in NDN Vehicle-to-Infrastructure Scenario

MAURI, GIULIA;CESANA, MATTEO;VERTICALE, GIACOMO
2017-01-01

Abstract

Data replication and in-network storage are two basic principles of the Information Centric Networking (ICN) framework in which caches spread out in the network can be used to store the most popular contents. This work shows how one of the ICN architectures, the Named Data Networking (NDN), with content pre-fetching can maximize the probability that a user retrieves the desired content in a Vehicle-to-Infrastructure scenario. We give an ILP formulation of the problem of optimally distributing content in the network nodes while accounting for the available storage capacity and the available link capacity. The optimization framework is then leveraged to evaluate the impact on content retrievability of topology- and network-related parameters as the number and mobility models of moving users, the size of the content catalog and the location of the available caches. Moreover, we show how the proposed model can be modified to find the minimum storage occupancy to achieve a given content retrievability level. The results obtained from the optimization model are finally validated against a Name Data Networking architecture through simulations in ndnSIM.
2017
Prefetching, Optimization, Mobile communication, Handover, Data models, Protocols, vehicular network, Content store, information-centric networking (ICN), integer linear programming (ILP), Named Data Networking (NDN), ndnSIM
File in questo prodotto:
File Dimensione Formato  
mobility.pdf

accesso aperto

Descrizione: manuscript
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/991701
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 55
social impact