This paper presents a Mixed Reality environment, named Virtual Orthopedic LABoratory (VOLAB), which permits to emulate an orthopedic lab and design lower limb prosthesis, in particular, the socket component. The proposed solution is based on low cost devices (e.g., Microsoft Kinect) and open source libraries (e.g., OpenCL and VTK). In detail, the hardware architecture consists of three Microsoft Kinect v2, Oculus Rift for 3D environment visualization and Leap Motion device for hand/fingers tracking. The software development has been based on the modular structure of the prosthetic CAD system, named Socket Modelling Assistant (SMA) and modules have been developed to guarantee the communication among the devices and the performance. Finally, preliminary tests are illustrated as well as results reached so far and future development.

Mixed reality to design lower limb prosthesis

COLOMBO, GIORGIO;
2016-01-01

Abstract

This paper presents a Mixed Reality environment, named Virtual Orthopedic LABoratory (VOLAB), which permits to emulate an orthopedic lab and design lower limb prosthesis, in particular, the socket component. The proposed solution is based on low cost devices (e.g., Microsoft Kinect) and open source libraries (e.g., OpenCL and VTK). In detail, the hardware architecture consists of three Microsoft Kinect v2, Oculus Rift for 3D environment visualization and Leap Motion device for hand/fingers tracking. The software development has been based on the modular structure of the prosthetic CAD system, named Socket Modelling Assistant (SMA) and modules have been developed to guarantee the communication among the devices and the performance. Finally, preliminary tests are illustrated as well as results reached so far and future development.
2016
Prosthesis design; Mixed Reality; Augmented Interaction; Low Cost Hand-Tracking devices;Human body devices; Socket Modelling Assistant
File in questo prodotto:
File Dimensione Formato  
11311-989612Colombo.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 453.1 kB
Formato Adobe PDF
453.1 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/989612
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact