For many steels and alloys used in engineering field, the presence of atomic hydrogen in working environment can produce a deleterious effect. In fact, when this small element penetrates into the material lattice induces a drastically decrease of the mechanical properties. This process is known as hydrogen embrittlement. This complex phenomenon involves chemical and physical factors that are strictly dependent on the microstructure of the material. Some examples are hydrogen diffusivity, solubility of hydrogen into the material and concentration related not only to the interstitial lattice sites (NILS) but also to the traps sites that is the most difficult part to quantify. The present work starts from the development of 2D finite elements cohesive zone model reproducing a toughness test of a high-strength low carbon steel, AISI 4130 operating in hydrogen-contaminated environment. With three consequent steps of simulations, the model implements diffusion and crack propagation analyses using cohesive elements. The embrittlement effect of hydrogen is considered by decreasing the cohesive law (TSL), which expresses the constitutive response of the material to the fracture behavior, based on the total hydrogen concentration. It includes NILS and traps sites. Aim of the work is a sensitivity analysis of the parameters included into the model. In particular, the influence of the hydrogen diffusion coefficient as well as the initial concentration set to calculate the total hydrogen concentration at the crack tip are taken into account. Both a comparison of the values used in the model with literature data and a critical discussion of the results obtained by the sensitivity analysis will be presented.

Sensitivity analysis of cohesive zone model parameters to simulate hydrogen embrittlement effect

GOBBI, GIORGIA;COLOMBO, CHIARA;VERGANI, LAURA MARIA
2015-01-01

Abstract

For many steels and alloys used in engineering field, the presence of atomic hydrogen in working environment can produce a deleterious effect. In fact, when this small element penetrates into the material lattice induces a drastically decrease of the mechanical properties. This process is known as hydrogen embrittlement. This complex phenomenon involves chemical and physical factors that are strictly dependent on the microstructure of the material. Some examples are hydrogen diffusivity, solubility of hydrogen into the material and concentration related not only to the interstitial lattice sites (NILS) but also to the traps sites that is the most difficult part to quantify. The present work starts from the development of 2D finite elements cohesive zone model reproducing a toughness test of a high-strength low carbon steel, AISI 4130 operating in hydrogen-contaminated environment. With three consequent steps of simulations, the model implements diffusion and crack propagation analyses using cohesive elements. The embrittlement effect of hydrogen is considered by decreasing the cohesive law (TSL), which expresses the constitutive response of the material to the fracture behavior, based on the total hydrogen concentration. It includes NILS and traps sites. Aim of the work is a sensitivity analysis of the parameters included into the model. In particular, the influence of the hydrogen diffusion coefficient as well as the initial concentration set to calculate the total hydrogen concentration at the crack tip are taken into account. Both a comparison of the values used in the model with literature data and a critical discussion of the results obtained by the sensitivity analysis will be presented.
2015
File in questo prodotto:
File Dimensione Formato  
D2.4_Gobbi.pdf

accesso aperto

Descrizione: Poster conferenza
: Altro materiale allegato
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/986828
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact