There are several possible applications of quantum electrodynamics in dielectric media which require a quantum description for the electromagnetic field interacting with matter fields. The associated quantum models can refer to macroscopic electromagnetic fields or, in alternative, to mesoscopic fields (polarization fields) describing an effective interaction between electromagnetic field and matter fields. We adopt the latter approach, and focus on the Hopfield model for the electromagnetic field in a dielectric dispersive medium in a framework in which space-time dependent mesoscopic parameters occur, like susceptibility, matter resonance frequency, and also coupling between electromagnetic field and polarization field. Our most direct goal is to describe in a phenomenological way a space-time varying dielectric perturbation induced by means of the Kerr effect in nonlinear dielectric media. This extension of the model is implemented by means of a Lorentz-invariant Lagrangian which, for constant microscopic parameters, and in the rest frame, coincides with the standard one. Moreover, we deduce a covariant scalar product and provide a canonical quantization scheme which keeps into account the constraints implicit in the model. Examples of viable applications are indicated.

The Hopfield model revisited: covariance and quantization

BELGIORNO, FRANCESCO DOMENICO;
2016-01-01

Abstract

There are several possible applications of quantum electrodynamics in dielectric media which require a quantum description for the electromagnetic field interacting with matter fields. The associated quantum models can refer to macroscopic electromagnetic fields or, in alternative, to mesoscopic fields (polarization fields) describing an effective interaction between electromagnetic field and matter fields. We adopt the latter approach, and focus on the Hopfield model for the electromagnetic field in a dielectric dispersive medium in a framework in which space-time dependent mesoscopic parameters occur, like susceptibility, matter resonance frequency, and also coupling between electromagnetic field and polarization field. Our most direct goal is to describe in a phenomenological way a space-time varying dielectric perturbation induced by means of the Kerr effect in nonlinear dielectric media. This extension of the model is implemented by means of a Lorentz-invariant Lagrangian which, for constant microscopic parameters, and in the rest frame, coincides with the standard one. Moreover, we deduce a covariant scalar product and provide a canonical quantization scheme which keeps into account the constraints implicit in the model. Examples of viable applications are indicated.
2016
File in questo prodotto:
File Dimensione Formato  
11311-970113_Belgiorno.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 434.44 kB
Formato Adobe PDF
434.44 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/970113
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact