The discrete element method (DEM) is progressively gaining acceptance as a modelling tool for engineering problems of direct geotechnical relevance. One area for which the method seems naturally well adapted is that of crushable soils. Grain Crushing is generally modeled using the discrete element method (DEM) via two alternative methods: replacing the breaking grains with new, smaller fragments; or by using agglomerates. The latter, despite being very helpful for the understanding of the micromechanics occurring in a single grain, becomes an unpractical tool for the modeling of larger scale problems. In fact, when considering those alternatives there is always a need to balance computational expediency, accuracy of results and soundness of principle. This work focuses on the encounter of those two last requirements, as exemplified in a series of simulation of high pressure one-dimensional and isotropic compression of Fontainebleau sand. A recently developed model for crushable soils is briefly outlined. It is shown that the upscaling procedure adopted allows a considerable reduction of computational bargain without losing accuracy in terms of grain size distribution evolution and mechanical response.

A NEW STRATEGY TO SIMULATE PARTICLE CRUSHING IN DEM ANALYSIS

CALVETTI, FRANCESCO
2014-01-01

Abstract

The discrete element method (DEM) is progressively gaining acceptance as a modelling tool for engineering problems of direct geotechnical relevance. One area for which the method seems naturally well adapted is that of crushable soils. Grain Crushing is generally modeled using the discrete element method (DEM) via two alternative methods: replacing the breaking grains with new, smaller fragments; or by using agglomerates. The latter, despite being very helpful for the understanding of the micromechanics occurring in a single grain, becomes an unpractical tool for the modeling of larger scale problems. In fact, when considering those alternatives there is always a need to balance computational expediency, accuracy of results and soundness of principle. This work focuses on the encounter of those two last requirements, as exemplified in a series of simulation of high pressure one-dimensional and isotropic compression of Fontainebleau sand. A recently developed model for crushable soils is briefly outlined. It is shown that the upscaling procedure adopted allows a considerable reduction of computational bargain without losing accuracy in terms of grain size distribution evolution and mechanical response.
2014
11th World Congress on Computational Mechanics (WCCM XI)
9788494284472
DEM analysis; crushable soils; particle failure
File in questo prodotto:
File Dimensione Formato  
p3898.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 477.88 kB
Formato Adobe PDF
477.88 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/884559
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact