In this work, a method for monitoring fatigue crack growth in a metal to composite bonded joint based on the strain field is proposed and applied in the framework of a visualization tool based on Augmented Reality (AR). This tool superimposes some virtual objects, which are the data acquired by the sensors and the crack length, directly on top of the specimen under inspection and in real time. By finite element (FE) analyses, a good correlation between the crack tip position and the strain field in a single lap specimen is found and this feature is exploited to monitor the crack length during fatigue tests and to feed the AR system to virtually visualize the crack on the real specimen. An array of electrical resistance strain gauges is bonded to the surface of one adherend. A Matlab function collects values from the strain gauges mounted on the specimen under investigation analyses them on the basis of the FE analysis and finally feeds the AR system. The validation of this process is done by measuring the crack by optical microscope. This procedure is also tested with the use of Fiber Bragg Gratings (FBG) optical strain gauges.

Development of a Monitoring System for Crack Growth in Bonded Single-Lap Joints Based on the Strain Field and Visualization by Augmented Reality

BERNASCONI, ANDREA;KHARSHIDUZZAMAN, MD;ANODIO, LUCA FRANCESCO;BORDEGONI, MONICA;RE, GUIDO MARIA;BRAGHIN, FRANCESCO;COMOLLI, LORENZO
2014-01-01

Abstract

In this work, a method for monitoring fatigue crack growth in a metal to composite bonded joint based on the strain field is proposed and applied in the framework of a visualization tool based on Augmented Reality (AR). This tool superimposes some virtual objects, which are the data acquired by the sensors and the crack length, directly on top of the specimen under inspection and in real time. By finite element (FE) analyses, a good correlation between the crack tip position and the strain field in a single lap specimen is found and this feature is exploited to monitor the crack length during fatigue tests and to feed the AR system to virtually visualize the crack on the real specimen. An array of electrical resistance strain gauges is bonded to the surface of one adherend. A Matlab function collects values from the strain gauges mounted on the specimen under investigation analyses them on the basis of the FE analysis and finally feeds the AR system. The validation of this process is done by measuring the crack by optical microscope. This procedure is also tested with the use of Fiber Bragg Gratings (FBG) optical strain gauges.
2014
File in questo prodotto:
File Dimensione Formato  
Development of a monitoring system.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.16 MB
Formato Adobe PDF
2.16 MB Adobe PDF   Visualizza/Apri
Development of a monitoring system_11311-868945_Bernasconi.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/868945
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 12
social impact