A numerical investigation was conducted into a perturbation-based analysis approach for assessing the imperfection sensitivity of composite cylindrical shells buckling under compression loading. The Single Perturbation Load Analysis (SPLA) approach was applied, which uses a single lateral load to introduce a realistic, worst-case and stimulating imperfection pattern. Finite element analysis was conducted for cylinders of both monolithic composite laminate and sandwich construction, with and without small and large cutouts. It was found that using a perturbation displacement equal to the shell thickness provides a suitable technique for estimating the reduction in buckling load caused by imperfections. Predictions of buckling knockdown factors using the SPLA approach showed advantages over the use of eigenmodes as the SPLA approach provides a clear design point and does not require experimental data for calibration. The effect of small and large cutouts was analogous to the effect of small and large perturbation loads. The location of the perturbation load influenced the buckling knockdown factors for both small and large cutouts, and worst-case locations were identified for both configurations.

Perturbation-Based Imperfection Analysis for Composite Cylindrical Shells Buckling in Compression

BISAGNI, CHIARA
2013-01-01

Abstract

A numerical investigation was conducted into a perturbation-based analysis approach for assessing the imperfection sensitivity of composite cylindrical shells buckling under compression loading. The Single Perturbation Load Analysis (SPLA) approach was applied, which uses a single lateral load to introduce a realistic, worst-case and stimulating imperfection pattern. Finite element analysis was conducted for cylinders of both monolithic composite laminate and sandwich construction, with and without small and large cutouts. It was found that using a perturbation displacement equal to the shell thickness provides a suitable technique for estimating the reduction in buckling load caused by imperfections. Predictions of buckling knockdown factors using the SPLA approach showed advantages over the use of eigenmodes as the SPLA approach provides a clear design point and does not require experimental data for calibration. The effect of small and large cutouts was analogous to the effect of small and large perturbation loads. The location of the perturbation load influenced the buckling knockdown factors for both small and large cutouts, and worst-case locations were identified for both configurations.
2013
Finite element analysis; Imperfection sensitivity; Knockdown factor; Shell buckling
File in questo prodotto:
File Dimensione Formato  
Orifici_Bisagni.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 3.97 MB
Formato Adobe PDF
3.97 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/742171
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 49
social impact