ABSTRACT The flow field resulting from injecting a gas jet into a crossflow confined in a narrow square duct has been studied under steady regime using schlieren imaging and laser Doppler velocimetry (LDV). This transparent duct is intended to simulate the intake port of an internal combustion engine fueled by gaseous mixture, and the jet is issued from a round nozzle. The schlieren images show that the relative small size of the duct would confine the development of the transverse jet, and the interaction among jet and sidewalls strongly influences the mixing process between jet and crossflow. The mean velocity and turbulence fields have been studied in detail through LDV measurements, at both center plane and several cross sections. The well-known flow feature formed by a counter rotating vortex pair (CVP) has been observed, which starts to appear at the jet exit section and persists far downstream contributing to enhancing mixing process. In addition, jets of different gases have been investigated with various injection orientations, aiming to fully understand the behaviors of transverse jet and the mixing process in the simulated intake port under wide practical conditions. Particularly, jet injection against crossflow has been found favorable in this study. The results show that the injection direction can influence the flow field remarkably, while the effect of injected gas is negligible, when the appropriate scaling is applied. A detailed description of the flow field inside a model intake port of an engine fueled with gaseous fuel is provided by the presented study and can be the basis for future comparison with computations.

An Experimental Study of Gaseous Transverse Injection and Mixing Process in a Simulated Engine Intake Port

WANG, HUA;ARANEO, LUCIO TIZIANO;COGHE, ALDO SEBASTIANO
2013-01-01

Abstract

ABSTRACT The flow field resulting from injecting a gas jet into a crossflow confined in a narrow square duct has been studied under steady regime using schlieren imaging and laser Doppler velocimetry (LDV). This transparent duct is intended to simulate the intake port of an internal combustion engine fueled by gaseous mixture, and the jet is issued from a round nozzle. The schlieren images show that the relative small size of the duct would confine the development of the transverse jet, and the interaction among jet and sidewalls strongly influences the mixing process between jet and crossflow. The mean velocity and turbulence fields have been studied in detail through LDV measurements, at both center plane and several cross sections. The well-known flow feature formed by a counter rotating vortex pair (CVP) has been observed, which starts to appear at the jet exit section and persists far downstream contributing to enhancing mixing process. In addition, jets of different gases have been investigated with various injection orientations, aiming to fully understand the behaviors of transverse jet and the mixing process in the simulated intake port under wide practical conditions. Particularly, jet injection against crossflow has been found favorable in this study. The results show that the injection direction can influence the flow field remarkably, while the effect of injected gas is negligible, when the appropriate scaling is applied. A detailed description of the flow field inside a model intake port of an engine fueled with gaseous fuel is provided by the presented study and can be the basis for future comparison with computations.
2013
Transverse Gas Injection; Mixing; Laser Doppler Velocimetry; schlieren; Internal combustion engine
File in questo prodotto:
File Dimensione Formato  
SAE 2013-01-0561.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 7.56 MB
Formato Adobe PDF
7.56 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/715745
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact