An innovative approach for the numerical study of spontaneous adhesion (or stiction) phenomena in Micro-Electro-Mechanical Systems (MEMS) is proposed, based on the use of 3D Finite Element (FE) models. Stiction is a major reliability problem in MEMS which can completely destroy the normal mobility of parts which have the task e.g. to sense the external acceleration in micro-accelerometers or the rotation velocity in micro-gyroscopes. Capillary and van der Waals forces are first selected as the most important sources of stiction; subsequently, these forces are modelled in a simplified way in view of their introduction in a FE model. As a second important ingredient in the proposed modelling approach for spontaneous adhesion, rough surfaces are numerically generated by making use of suitably adapted algorithms originally developed for tribology studies. A complete 3D FE model for two rough surfaces which come at very short distances is thus built and various results showing the modelling capabilities are shown. A comparison with experimental results recently appeared in the literature is proposed.

Modelling of spontaneous adhesion phenomena in micro-electro-mechanical systems

ARDITO, RAFFAELE;CORIGLIANO, ALBERTO;FRANGI, ATTILIO ALBERTO
2013-01-01

Abstract

An innovative approach for the numerical study of spontaneous adhesion (or stiction) phenomena in Micro-Electro-Mechanical Systems (MEMS) is proposed, based on the use of 3D Finite Element (FE) models. Stiction is a major reliability problem in MEMS which can completely destroy the normal mobility of parts which have the task e.g. to sense the external acceleration in micro-accelerometers or the rotation velocity in micro-gyroscopes. Capillary and van der Waals forces are first selected as the most important sources of stiction; subsequently, these forces are modelled in a simplified way in view of their introduction in a FE model. As a second important ingredient in the proposed modelling approach for spontaneous adhesion, rough surfaces are numerically generated by making use of suitably adapted algorithms originally developed for tribology studies. A complete 3D FE model for two rough surfaces which come at very short distances is thus built and various results showing the modelling capabilities are shown. A comparison with experimental results recently appeared in the literature is proposed.
2013
MEMS; Micro-systems; Spontaneous adhesion; Stiction, Capillary forces, Van der Waals forces; Rough surfaces; FE simulations
File in questo prodotto:
File Dimensione Formato  
EJM-adhesion-published.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 857.52 kB
Formato Adobe PDF
857.52 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/705525
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 27
social impact