The electroless deposition of metals has emerged as one of the leading growth areas in surface engineering and metal finishing, and, recently, it is gaining interest for the synthesis of metallic nanostructures for biomedical technologies. In this perspective, the fundamental aspects underlying the autocatalytic deposition (ACD) and immersion plating are briefly reviewed, establishing the unique identity of galvanic displacement among electrochemical processes in general, and electroless processes in particular. Numerous biological and biomedical phenomena occur at the nanometer level, and the current research focus of many fields is nanotechnology. Nanostructured metallic systems can provide the ability to probe the sub-optical, molecular level and are becoming powerful tools to study biomolecular processes. Metal nanosystems also hold great promise for the field of nanomedicine, where nanostructures are designed to diagnose and provide therapy at the single-cell level. The exploitation of the electroless methods as an amazingly simple and effective route for generating metal nanostructures will be reviewed within the frame of biomedical technologies, discussing the applications in sensors and microdevices, the preparation and use of nanostructured metals for supporting and wiring biomolecules, for DNA analysis and disease screening. The use of nanostructures such as nanorods and nanoparticles, as these structures show interesting optical, electrical, and mechanical properties, will be analyzed in view of their potential applications in nanobiotechnology.

Electroless synthesis of metallic nanostructures for biomedical technologies

MAGAGNIN, LUCA;COJOCARU, PAULA;
2012-01-01

Abstract

The electroless deposition of metals has emerged as one of the leading growth areas in surface engineering and metal finishing, and, recently, it is gaining interest for the synthesis of metallic nanostructures for biomedical technologies. In this perspective, the fundamental aspects underlying the autocatalytic deposition (ACD) and immersion plating are briefly reviewed, establishing the unique identity of galvanic displacement among electrochemical processes in general, and electroless processes in particular. Numerous biological and biomedical phenomena occur at the nanometer level, and the current research focus of many fields is nanotechnology. Nanostructured metallic systems can provide the ability to probe the sub-optical, molecular level and are becoming powerful tools to study biomolecular processes. Metal nanosystems also hold great promise for the field of nanomedicine, where nanostructures are designed to diagnose and provide therapy at the single-cell level. The exploitation of the electroless methods as an amazingly simple and effective route for generating metal nanostructures will be reviewed within the frame of biomedical technologies, discussing the applications in sensors and microdevices, the preparation and use of nanostructured metals for supporting and wiring biomolecules, for DNA analysis and disease screening. The use of nanostructures such as nanorods and nanoparticles, as these structures show interesting optical, electrical, and mechanical properties, will be analyzed in view of their potential applications in nanobiotechnology.
2012
Biomedical Applications
9781461431244
Electroless, metallization
File in questo prodotto:
File Dimensione Formato  
Biomedical.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/693780
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact