A direct genetic algorithm (GA) approach with kinetic base, to provide effective numerical estimates of vulcanization level for EPDMcross-linkedwith accelerated sulphur is presented. The model requires a preliminary characterization of rubber through standard rheometer tests. A recently presented kinetic exponential model is used as starting point to develop the algorithm proposed. In such a model, three kinetic constants have to be determined by means of a non-linear least-squares curve fitting. The approach proposed circumvents a sometimes inefficient and not convergent non-linear data fitting, disregarding at a first attempt reversion and finding the local minimum of a suitable two-variable error function, to have an estimate of the first two kinetic constants. A comparison between present GA approach and traditional gradient based algorithms is discussed. The last constant, representing reversion is again evaluated through a minimization performed on a single variable error function. The applicability of the approach is immediate and makes the model extremely appealing when fast and reliable estimates of crosslinking density of cured EPDM are required. To show the capabilities of the approach proposed, a comprehensive comparison with both available experimental data and results obtained numerically with a least square exponential model for a real compound at different temperatures is provided.

Effective GA approach for a direct evaluation of reaction kinetic within EPDM accelerated sulphur crosslinking

MILANI, GABRIELE
2013-01-01

Abstract

A direct genetic algorithm (GA) approach with kinetic base, to provide effective numerical estimates of vulcanization level for EPDMcross-linkedwith accelerated sulphur is presented. The model requires a preliminary characterization of rubber through standard rheometer tests. A recently presented kinetic exponential model is used as starting point to develop the algorithm proposed. In such a model, three kinetic constants have to be determined by means of a non-linear least-squares curve fitting. The approach proposed circumvents a sometimes inefficient and not convergent non-linear data fitting, disregarding at a first attempt reversion and finding the local minimum of a suitable two-variable error function, to have an estimate of the first two kinetic constants. A comparison between present GA approach and traditional gradient based algorithms is discussed. The last constant, representing reversion is again evaluated through a minimization performed on a single variable error function. The applicability of the approach is immediate and makes the model extremely appealing when fast and reliable estimates of crosslinking density of cured EPDM are required. To show the capabilities of the approach proposed, a comprehensive comparison with both available experimental data and results obtained numerically with a least square exponential model for a real compound at different temperatures is provided.
2013
Simplified kinetic model; Genetic algorithm (GA); Sulphur vulcanization; Reversion; Rheometer curve fitting
File in questo prodotto:
File Dimensione Formato  
2013_JMC.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/685498
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact