This paper evaluates the advantages and the drawbacks deriving from the use of MEMS (micro-electro-mechanical systems) accelerometers for hand-arm and whole-body vibration measurements. Metrological performances of different transducers were assessed through the identification of their frequency response function, linearity, floor noise and sensitivity to thermal and electromagnetic disturbances. Experimental results highlighted a standard instrumental uncertainty (including the nonlinearity) lower than 5% with the single frequency calibration procedure, such a value was reduced to 2%. The temperature effect was negligible and the electromagnetic disturbances sensitivity was comparable to that of the piezoelectric accelerometers. The compatibility of measurements obtained with MEMS accelerometers with those of piezoelectric-based measurement chains was verified for two specific applications. An example of direct transducer fixation on the skin for vibration transmissibility measurements is also presented. Thanks to the MEMS peculiarities – mainly small sizes and low cost – since novel approaches in the vibration monitoring could be pursued. For instance, it is possible to include by design MEMS accelerometers in any hand-held tool at the operator interface, or inside the seats structures of cars, tractors and trucks. This could be a viable solution to easily obtain repeatable exposure measurements and could also provide diagnostic signals for the tools or seats of functional monitoring.

The potential of micro-electro-mechanical accelerometers in humanvibration measurements

TARABINI, MARCO;SAGGIN, BORTOLINO;SCACCABAROZZI, DIEGO;MOSCHIONI, GIOVANNI
2012-01-01

Abstract

This paper evaluates the advantages and the drawbacks deriving from the use of MEMS (micro-electro-mechanical systems) accelerometers for hand-arm and whole-body vibration measurements. Metrological performances of different transducers were assessed through the identification of their frequency response function, linearity, floor noise and sensitivity to thermal and electromagnetic disturbances. Experimental results highlighted a standard instrumental uncertainty (including the nonlinearity) lower than 5% with the single frequency calibration procedure, such a value was reduced to 2%. The temperature effect was negligible and the electromagnetic disturbances sensitivity was comparable to that of the piezoelectric accelerometers. The compatibility of measurements obtained with MEMS accelerometers with those of piezoelectric-based measurement chains was verified for two specific applications. An example of direct transducer fixation on the skin for vibration transmissibility measurements is also presented. Thanks to the MEMS peculiarities – mainly small sizes and low cost – since novel approaches in the vibration monitoring could be pursued. For instance, it is possible to include by design MEMS accelerometers in any hand-held tool at the operator interface, or inside the seats structures of cars, tractors and trucks. This could be a viable solution to easily obtain repeatable exposure measurements and could also provide diagnostic signals for the tools or seats of functional monitoring.
2012
MEMS; accelerometer; vibration measurement; uncertainty
File in questo prodotto:
File Dimensione Formato  
Paper_MEMS_JSV.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/662316
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 24
social impact