Using a 3D fully-vectorial coupled Bloch-mode method, we present a systematic study of the transport of slow-light pulses in single-mode photonic-crystal waveguides (PhCW) with a realistic disorder model. For the intermediate regime corresponding to waveguide lengths of the order of the mean-free path (3 dB attenuation), we show that the group-velocity has a strong impact on the pulse broadening and distortion, limiting the practical use of PhCW to group indices below ≈50. For smaller group velocities, the pulse experiences an additional delay and the group-velocity is no longer a meaningful quantity.

Slow pulses in disordered photonic-crystal waveguides

MELLONI, ANDREA IVANO
2011-01-01

Abstract

Using a 3D fully-vectorial coupled Bloch-mode method, we present a systematic study of the transport of slow-light pulses in single-mode photonic-crystal waveguides (PhCW) with a realistic disorder model. For the intermediate regime corresponding to waveguide lengths of the order of the mean-free path (3 dB attenuation), we show that the group-velocity has a strong impact on the pulse broadening and distortion, limiting the practical use of PhCW to group indices below ≈50. For smaller group velocities, the pulse experiences an additional delay and the group-velocity is no longer a meaningful quantity.
2011
TLC
File in questo prodotto:
File Dimensione Formato  
AO-pulses-Lalanne Article.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 294.25 kB
Formato Adobe PDF
294.25 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/634638
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact