A new 3D mathematical-physical tire model is presented. This model considers not only the handling behavior of the tire but also its comfort characteristics, i.e., the dynamic properties in the lateral and the vertical planes. This model can be divided into two parts, the structural model and the contact area model. The structural parameters are identified by comparison with frequency responses of a 3D finite element model of the tire, whereas the contact parameters are directly calculated with a finite element model of the tread pattern. The 3D physical model allows predicting both steady state and transient behavior of the tire without the need of any experimental tests on the tire. The steady state analysis allows obtaining the friction circle diagram, i.e., the plot of the lateral force against the longitudinal force for different slip angles and for longitudinal slip, and the Gough plot, i.e., the diagram of the self-aligning torque versus the lateral force. The transient analysis allows obtaining the dynamic behavior of the tire for any maneuver given to the wheel. Among its outputs there are the relaxation length and the dynamic forces and torque transmitted to the suspension of the vehicle. Combining the tire model with the vehicle model it is possible to perform any kind of maneuver such as overtaking, changing of lane and steering pad at growing speed with or without braking, or accelerating. Therefore the 3D tire model can be seen as a powerful tool to optimize the tire characteristics through a sensitivity analysis performed with tire and vehicle models linked to each other without the need of building prototypes. Some preliminary comparisons with experimental data have been carried out.

A mathematical-physical 3D tire model for handling/comfort optimization on a vehicle: omparison with experimental results

BRAGHIN, FRANCESCO;CHELI, FEDERICO;
2000-01-01

Abstract

A new 3D mathematical-physical tire model is presented. This model considers not only the handling behavior of the tire but also its comfort characteristics, i.e., the dynamic properties in the lateral and the vertical planes. This model can be divided into two parts, the structural model and the contact area model. The structural parameters are identified by comparison with frequency responses of a 3D finite element model of the tire, whereas the contact parameters are directly calculated with a finite element model of the tread pattern. The 3D physical model allows predicting both steady state and transient behavior of the tire without the need of any experimental tests on the tire. The steady state analysis allows obtaining the friction circle diagram, i.e., the plot of the lateral force against the longitudinal force for different slip angles and for longitudinal slip, and the Gough plot, i.e., the diagram of the self-aligning torque versus the lateral force. The transient analysis allows obtaining the dynamic behavior of the tire for any maneuver given to the wheel. Among its outputs there are the relaxation length and the dynamic forces and torque transmitted to the suspension of the vehicle. Combining the tire model with the vehicle model it is possible to perform any kind of maneuver such as overtaking, changing of lane and steering pad at growing speed with or without braking, or accelerating. Therefore the 3D tire model can be seen as a powerful tool to optimize the tire characteristics through a sensitivity analysis performed with tire and vehicle models linked to each other without the need of building prototypes. Some preliminary comparisons with experimental data have been carried out.
2000
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/559132
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact