The pantograph-catenary system is responsible to provide an uninterrupted energy supply to power electric traction railway vehicles. The analysis of the dynamic behaviour of the catenary and pantograph, as well as its interaction, has been the objective of active research to improve energy collection quality. This work proposes an approach for the fully three-dimensional dynamic analysis of pantograph-catenary interaction in general railway tracks including curves. The catenary model and the trajectory of the pantograph base are defined with respect to the track geometry considering the conventional definition used by the rail industry, i.e. the track curvature, cross-level and vertical position. The pantograph is modelled using a multibody formulation being its base motion constrained to follow the generalised trajectory from the railway vehicle roof. The finite element method is used to model the catenary. A co-simulation procedure is set to establish the coupled dynamics of the two systems. In order to demonstrate the methodology, setup models for curved catenaries, analyse modelling implications and highlight applicability, realistic case studies of pantograph-catenary interaction in high-speed rail operations are presented and discussed. In the process, significant differences are found in the dynamic response of the catenary in curved and straight tracks.

A new methodology to study the pantograph–catenary dynamics in curved railway tracks

Facchinetti A.
2020-01-01

Abstract

The pantograph-catenary system is responsible to provide an uninterrupted energy supply to power electric traction railway vehicles. The analysis of the dynamic behaviour of the catenary and pantograph, as well as its interaction, has been the objective of active research to improve energy collection quality. This work proposes an approach for the fully three-dimensional dynamic analysis of pantograph-catenary interaction in general railway tracks including curves. The catenary model and the trajectory of the pantograph base are defined with respect to the track geometry considering the conventional definition used by the rail industry, i.e. the track curvature, cross-level and vertical position. The pantograph is modelled using a multibody formulation being its base motion constrained to follow the generalised trajectory from the railway vehicle roof. The finite element method is used to model the catenary. A co-simulation procedure is set to establish the coupled dynamics of the two systems. In order to demonstrate the methodology, setup models for curved catenaries, analyse modelling implications and highlight applicability, realistic case studies of pantograph-catenary interaction in high-speed rail operations are presented and discussed. In the process, significant differences are found in the dynamic response of the catenary in curved and straight tracks.
2020
3D Pantograph–catenary interaction; Co-Simulation; Contact mechanics; Curved tracks; Railway dynamics
File in questo prodotto:
File Dimensione Formato  
paper_VSD_Curved_cat_AAM.pdf

Open Access dal 21/03/2020

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.71 MB
Formato Adobe PDF
1.71 MB Adobe PDF Visualizza/Apri
A new methodology to study the pantograph catenary dynamics in curved railway tracks.pdf

Accesso riservato

: Publisher’s version
Dimensione 4.82 MB
Formato Adobe PDF
4.82 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1130325
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 32
social impact