In this work, novel composite silicone-SAPO-34 foams have been prepared and experimentally characterized for application in desiccant open cycles. Water adsorption isotherms of several samples have been measured by a gravimetric dynamic vapour sorption analyser at 30°C and 70°C up to the relative humidity RH= 75%, representing typical process and regeneration air conditions in desiccant evaporative cooling cycles. Adsorbent foams manufactured with 20%, 40% and 60% weight fraction of SAPO-34 have been compared with the pure SAPO-34 powder. Results highlighted that the prepared foams adsorb a significant amount of water, according to the initial mass fraction of zeolite used in the compound. Moreover, the tested foams exhibited sufficiently fast water sorption rate for practical application in a desiccant open cycle system.

Composite silicone-SAPO-34 foams: Experimental characterization for open cycle applications

De Antonellis S.;Joppolo C.;Motta M.
2019-01-01

Abstract

In this work, novel composite silicone-SAPO-34 foams have been prepared and experimentally characterized for application in desiccant open cycles. Water adsorption isotherms of several samples have been measured by a gravimetric dynamic vapour sorption analyser at 30°C and 70°C up to the relative humidity RH= 75%, representing typical process and regeneration air conditions in desiccant evaporative cooling cycles. Adsorbent foams manufactured with 20%, 40% and 60% weight fraction of SAPO-34 have been compared with the pure SAPO-34 powder. Results highlighted that the prepared foams adsorb a significant amount of water, according to the initial mass fraction of zeolite used in the compound. Moreover, the tested foams exhibited sufficiently fast water sorption rate for practical application in a desiccant open cycle system.
2019
E3S Web of Conferences
File in questo prodotto:
File Dimensione Formato  
Composite silicone-SAPO-34 foams - experimental characterization for open cycle applications.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1121388
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact