Cold gas dynamic spray is increasingly used for dimensional repair in the aerospace sector as it is capable of producing dense, oxide-free deposits of significant thickness and with good levels of adhesion and inherent mechanical strength. There is significant interest in extending the application of cold spray deposits to include structural, load-bearing repairs. However, particularly for high strength aluminium alloys, cold spray deposits can exhibit high levels of porosity and micro-cracks, leading to mechanical properties that are inadequate for most load bearing applications. In this work, heat treatment was investigated as a potential means of improving the properties of a cold sprayed Al alloy C355 deposit. C355 alloy deposits were produced using two process gas temperatures (350°C and 500°C) and three gas pressures (40, 50 and 60 bar) using a commercially available HPCS system. Microstructural analysis of the coatings revealed that the optimal microstructure (ca. 1% porosity) was obtained at 500°C and 60 bar. Therefore, coatings produced with process conditions of 500°C and 60 bar were heat treated at 175, 200, 225, 250°C for 4h in air and the evolution of the microstructure and microhardness was analysed. The results show that heat treatment at 225°C can decrease porosity (<0.2%) and retain high hardness (105 HV0.05vs 130 HV0.05as-sprayed). Further investigation was performed on as-sprayed and 225°C heat treated deposits. The results show that this heat treatment can halve residual stress (-50 MPa vs -100 MPa as-sprayed), and improve tensile properties (UTS). Therefore, this work has demonstrated that the heat treatment of C355 cold sprayed deposits at 225°C can significantly improve their properties.

Post deposition heat treatment of cold sprayed C355 deposits for repair: Microstructure and mechanical properties

Zuccoli, M. V.;Guagliano, M.;
2017-01-01

Abstract

Cold gas dynamic spray is increasingly used for dimensional repair in the aerospace sector as it is capable of producing dense, oxide-free deposits of significant thickness and with good levels of adhesion and inherent mechanical strength. There is significant interest in extending the application of cold spray deposits to include structural, load-bearing repairs. However, particularly for high strength aluminium alloys, cold spray deposits can exhibit high levels of porosity and micro-cracks, leading to mechanical properties that are inadequate for most load bearing applications. In this work, heat treatment was investigated as a potential means of improving the properties of a cold sprayed Al alloy C355 deposit. C355 alloy deposits were produced using two process gas temperatures (350°C and 500°C) and three gas pressures (40, 50 and 60 bar) using a commercially available HPCS system. Microstructural analysis of the coatings revealed that the optimal microstructure (ca. 1% porosity) was obtained at 500°C and 60 bar. Therefore, coatings produced with process conditions of 500°C and 60 bar were heat treated at 175, 200, 225, 250°C for 4h in air and the evolution of the microstructure and microhardness was analysed. The results show that heat treatment at 225°C can decrease porosity (<0.2%) and retain high hardness (105 HV0.05vs 130 HV0.05as-sprayed). Further investigation was performed on as-sprayed and 225°C heat treated deposits. The results show that this heat treatment can halve residual stress (-50 MPa vs -100 MPa as-sprayed), and improve tensile properties (UTS). Therefore, this work has demonstrated that the heat treatment of C355 cold sprayed deposits at 225°C can significantly improve their properties.
2017
Proceedings of the International Thermal Spray Conference
9781510858220
Materials Chemistry2506 Metals and Alloys; Surfaces, Coatings and Films; Surfaces and Interfaces
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1063152
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact