Herein, we demonstrate that a bottom-up approach, based on halogen bonding (XB), can be successfully applied for the design of a new type of ionic liquid crystals (ILCs). Taking advantages of the high specificity of XB for haloperfluorocarbons and the ability of anions to act as XB-acceptors, we obtained supramolecular complexes based on 1-alkyl-3-methylimidazolium iodides and iodoperfluorocarbons, overcoming the well-known immiscibility between hydrocarbons (HCs) and perfluorocarbons (PFCs). The high directionality of the XB combined with the fluorophobic effect, allowed us to obtain enantiotropic liquid crystals where a rigid, non-aromatic, XB supramolecular anion acts as mesogenic core. X-ray structure analysis of the complex between 1-ethyl-3-methylimidazolium iodide and iodoperfluorooctane showed the presence of a layered structure, which is a manifestation of the well-known tendency to segregation of perfluoroalkyl chains. This is consistent with the observation of smectic mesophases. Moreover, all the reported complexes melt below 100 °C, and most are mesomorphic even at room temperature, despite that the starting materials were non-mesomorphic in nature. The supramolecular strategy reported here provides new design principles for mesogen design allowing a totally new class of functional materials.

From molecules to materials: Engineering new ionic liquid crystals through halogen bonding

Cavallo, Gabriella;Terraneo, Giancarlo;Resnati, Giuseppe;Metrangolo, Pierangelo
2018-01-01

Abstract

Herein, we demonstrate that a bottom-up approach, based on halogen bonding (XB), can be successfully applied for the design of a new type of ionic liquid crystals (ILCs). Taking advantages of the high specificity of XB for haloperfluorocarbons and the ability of anions to act as XB-acceptors, we obtained supramolecular complexes based on 1-alkyl-3-methylimidazolium iodides and iodoperfluorocarbons, overcoming the well-known immiscibility between hydrocarbons (HCs) and perfluorocarbons (PFCs). The high directionality of the XB combined with the fluorophobic effect, allowed us to obtain enantiotropic liquid crystals where a rigid, non-aromatic, XB supramolecular anion acts as mesogenic core. X-ray structure analysis of the complex between 1-ethyl-3-methylimidazolium iodide and iodoperfluorooctane showed the presence of a layered structure, which is a manifestation of the well-known tendency to segregation of perfluoroalkyl chains. This is consistent with the observation of smectic mesophases. Moreover, all the reported complexes melt below 100 °C, and most are mesomorphic even at room temperature, despite that the starting materials were non-mesomorphic in nature. The supramolecular strategy reported here provides new design principles for mesogen design allowing a totally new class of functional materials.
2018
Fluorophobic effect; Halogen bonding; Haloperfluorocarbons; Imidazolium salts; Ionic liquids; Liquid crystals; Self-assembly; Supramolecular chemistry; Halogens; Ions; Liquid Crystals; Neuroscience (all); Chemical Engineering (all); Biochemistry, Genetics and Molecular Biology (all); Immunology and Microbiology (all)
File in questo prodotto:
File Dimensione Formato  
2018 JOVE.pdf

accesso aperto

Descrizione: Articolo Principale
: Publisher’s version
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1062945
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact