The power consumption is a key metric to design computing platforms. In particular, the variety and complexity of current applications fueled an increasing number of run-time power-aware optimization solutions to dynamically trade the computational power for the power consumption. In this scenario, the online power monitoring methodologies are the core of any power-aware optimization, since the incorrect assessment of the run-time power consumption prevents any effective actuation. This work proposes PowerTap, an all-digital power modeling methodology for designing online power monitoring solutions. In contrast with state-of-the-art solutions, PowerTap adds domain-specific constraints to the data-driven power modeling problem. PowerTap identifies the power model iteratively to balance the accuracy error of the power estimates and the complexity of the final monitoring infrastructure. As a representative use-case, we employed a complex hardware multi-threaded SIMD processor, also considering different operating clock frequencies. The RTL implementation of the identified power model targeting an Xilinx Artix 7 XC7A200T FPGA highlights an accuracy error within 1.79% with an area overhead of 9.95% (LUT) and 3.87% (flip flops) and an average power overhead of 12.17 mW regardless of the operating conditions, i.e., number of software threads and operating frequency.

PowerTap: All-digital Power Meter Modeling for Run-time Power Monitoring

Davide Zoni;Luca Cremona;Alessandro Cilardo;William Fornaciari
2018-01-01

Abstract

The power consumption is a key metric to design computing platforms. In particular, the variety and complexity of current applications fueled an increasing number of run-time power-aware optimization solutions to dynamically trade the computational power for the power consumption. In this scenario, the online power monitoring methodologies are the core of any power-aware optimization, since the incorrect assessment of the run-time power consumption prevents any effective actuation. This work proposes PowerTap, an all-digital power modeling methodology for designing online power monitoring solutions. In contrast with state-of-the-art solutions, PowerTap adds domain-specific constraints to the data-driven power modeling problem. PowerTap identifies the power model iteratively to balance the accuracy error of the power estimates and the complexity of the final monitoring infrastructure. As a representative use-case, we employed a complex hardware multi-threaded SIMD processor, also considering different operating clock frequencies. The RTL implementation of the identified power model targeting an Xilinx Artix 7 XC7A200T FPGA highlights an accuracy error within 1.79% with an area overhead of 9.95% (LUT) and 3.87% (flip flops) and an average power overhead of 12.17 mW regardless of the operating conditions, i.e., number of software threads and operating frequency.
2018
Dynamic Power Modeling; Power Monitoring; run-time power optimization; RTL methods; Low power
File in questo prodotto:
File Dimensione Formato  
micpro2018.pdf

accesso aperto

Descrizione: main article
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF Visualizza/Apri
1-s2.0-S0141933118302308-main.pdf

Accesso riservato

Descrizione: versione pubblicata
: Publisher’s version
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1058320
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 13
social impact