In the sector of Geographic Information (GI) there is a gap between the education and training currently being offered by European universities and the knowledge and skills required by enterprises and public authorities. New forms of collaboration based on innovative methods are needed to cope with the challenges derived from the fast technological developments in the geospatial and ICT field. This paper presents the approach and the first findings of the EU Erasmus+ project giCASES – Creating a University-Enterprise Alliance for a Spatially Enabled Society (2016–2018) which addresses this challenge by introducing new methods for case-based and collaborative learning, and for the co-creation, management and sharing of knowledge between universities and enterprises. The aim of the project is to develop new training material and create innovative, multi-disciplinary learning processes based on real-world case studies (case-based learning). The paper focuses on the methodological approach developed during the first half of the project, and presents the 6 case studies where this approach will be tested during the second half. Despite the diversity of application domains (indoor mapping, environmental hazards, e-Government, utility networks, energy saving policies, and forestry), the case studies are all relevant to open source software and FOSS4G technologies will play a key role in their implementation, thus demonstrating their matureness and flexibility not only as GI teaching tools at the universities, but also as powerful means to develop innovative new services at the companies.

FOSS4G as a key building block for case-based learning in Geographic Information education

M. Minghini;M. A. Brovelli;
2017-01-01

Abstract

In the sector of Geographic Information (GI) there is a gap between the education and training currently being offered by European universities and the knowledge and skills required by enterprises and public authorities. New forms of collaboration based on innovative methods are needed to cope with the challenges derived from the fast technological developments in the geospatial and ICT field. This paper presents the approach and the first findings of the EU Erasmus+ project giCASES – Creating a University-Enterprise Alliance for a Spatially Enabled Society (2016–2018) which addresses this challenge by introducing new methods for case-based and collaborative learning, and for the co-creation, management and sharing of knowledge between universities and enterprises. The aim of the project is to develop new training material and create innovative, multi-disciplinary learning processes based on real-world case studies (case-based learning). The paper focuses on the methodological approach developed during the first half of the project, and presents the 6 case studies where this approach will be tested during the second half. Despite the diversity of application domains (indoor mapping, environmental hazards, e-Government, utility networks, energy saving policies, and forestry), the case studies are all relevant to open source software and FOSS4G technologies will play a key role in their implementation, thus demonstrating their matureness and flexibility not only as GI teaching tools at the universities, but also as powerful means to develop innovative new services at the companies.
2017
FOSS4G-Europe 2017 – Academic Track
Academia, Cased-based Learning, Enterprise, Co-creation of Knowledge, Collaboration, Education, FOSS4G, Geographic Information
File in questo prodotto:
File Dimensione Formato  
isprs-archives-XLII-4-W2-129-2017.pdf

accesso aperto

Descrizione: articolo pubblicato
: Publisher’s version
Dimensione 920.54 kB
Formato Adobe PDF
920.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1054129
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact