We develop a novel prognostic method for estimating the Remaining Useful Life (RUL) of industrial equipment and its uncertainty. The novelty of the work is the combined use of a fuzzy similarity method for the RUL prediction and of Belief Function Theory for uncertainty treatment. This latter allows estimating the uncertainty affecting the RUL predictions even in cases characterized by few available data, in which traditional uncertainty estimation methods tend to fail. From the practical point of view, the maintenance planner can define the maximum acceptable failure probability for the equipment of interest and is informed by the proposed prognostic method of the time at which this probability is exceeded, allowing the adoption of a predictive maintenance approach which takes into account RUL uncertainty. The method is applied to simulated data of creep growth in ferritic steel and to real data of filter clogging taken from a Boiling Water Reactor (BWR) condenser. The obtained results show the effectiveness of the proposed method for uncertainty treatment and its superiority to the Kernel Density Estimation (KDE) and the Mean-Variance Estimation (MVE) methods in terms of reliability and precision of the RUL prediction intervals.

Prediction of industrial equipment Remaining Useful Life by fuzzy similarity and belief function theory

Baraldi, Piero;Di Maio, Francesco;Al-Dahidi, Sameer;Zio, Enrico;Mangili, Francesca
2017-01-01

Abstract

We develop a novel prognostic method for estimating the Remaining Useful Life (RUL) of industrial equipment and its uncertainty. The novelty of the work is the combined use of a fuzzy similarity method for the RUL prediction and of Belief Function Theory for uncertainty treatment. This latter allows estimating the uncertainty affecting the RUL predictions even in cases characterized by few available data, in which traditional uncertainty estimation methods tend to fail. From the practical point of view, the maintenance planner can define the maximum acceptable failure probability for the equipment of interest and is informed by the proposed prognostic method of the time at which this probability is exceeded, allowing the adoption of a predictive maintenance approach which takes into account RUL uncertainty. The method is applied to simulated data of creep growth in ferritic steel and to real data of filter clogging taken from a Boiling Water Reactor (BWR) condenser. The obtained results show the effectiveness of the proposed method for uncertainty treatment and its superiority to the Kernel Density Estimation (KDE) and the Mean-Variance Estimation (MVE) methods in terms of reliability and precision of the RUL prediction intervals.
2017
Belief function; Boiling Water Reactor condenser; Fuzzy similarity; Prognostics; Remaining Useful Life; Uncertainty; Engineering (all); Computer Science Applications1707 Computer Vision and Pattern Recognition; Artificial Intelligence
File in questo prodotto:
File Dimensione Formato  
accepted_Uncertainty Prediction.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1043170
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 20
social impact