In this paper, we investigate integral input-to-state stability for interconnected discrete-time systems. The system under consideration contains two subsystems which are connected in a feedback structure. We construct a Lyapunov function for the whole system through the nonlinearly-weighted sum of Lyapunov functions of individual subsystems. We consider two cases in which we assume that one of subsystems is integral input-to-state stable and the other is either input-to-state stable or only integral input-to-state stable.

Integral input-to-state stability for interconnected discrete-time systems

KARIMI, HAMID REZA
2014-01-01

Abstract

In this paper, we investigate integral input-to-state stability for interconnected discrete-time systems. The system under consideration contains two subsystems which are connected in a feedback structure. We construct a Lyapunov function for the whole system through the nonlinearly-weighted sum of Lyapunov functions of individual subsystems. We consider two cases in which we assume that one of subsystems is integral input-to-state stable and the other is either input-to-state stable or only integral input-to-state stable.
2014
IFAC Proceedings Volumes (IFAC-PapersOnline)
9783902823625
Control and Systems Engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1028778
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact