In the design of sheltering structures/embankments for the mitigation of the risk due to rapid and long spreading landslides, a crucial role is generally played by the assessment of the impact force exerted by the flowing mass on the artificial obstacle. This paper is focused on this issue and in particular on the evaluation of the maximum impact force on the basis of the results obtained by performing an extensive numerical campaign by means of a 3D discrete element code, in which a dry granular mass is schematised as a random distribution of rigid spherical particles. The granular mass is generated just in front of the obstacle: its initial volume, velocity distribution, height, length and porosity are arbitrarily assigned, and the impact process is exclusively analysed. The initial conditions are varied to take a large variety of geometrical/mechanical factors, such as the initial front inclination, its height, the initial void ratio, the length of the impacting mass and the inter-particle friction angle, into consideration. A design formula is also proposed on the base of the obtained results and critically compared with the literature data.

DEM assessment of impact forces of dry granular masses on rigid barriers

CALVETTI, FRANCESCO;DI PRISCO, CLAUDIO GIULIO;
2017-01-01

Abstract

In the design of sheltering structures/embankments for the mitigation of the risk due to rapid and long spreading landslides, a crucial role is generally played by the assessment of the impact force exerted by the flowing mass on the artificial obstacle. This paper is focused on this issue and in particular on the evaluation of the maximum impact force on the basis of the results obtained by performing an extensive numerical campaign by means of a 3D discrete element code, in which a dry granular mass is schematised as a random distribution of rigid spherical particles. The granular mass is generated just in front of the obstacle: its initial volume, velocity distribution, height, length and porosity are arbitrarily assigned, and the impact process is exclusively analysed. The initial conditions are varied to take a large variety of geometrical/mechanical factors, such as the initial front inclination, its height, the initial void ratio, the length of the impacting mass and the inter-particle friction angle, into consideration. A design formula is also proposed on the base of the obtained results and critically compared with the literature data.
2017
Discrete element modelling; Dry granular flows; Impact force; Landslides; Rigid barriers
File in questo prodotto:
File Dimensione Formato  
ActaGeotecnica-IMPACTS.pdf

Accesso riservato

Descrizione: Articolo
: Publisher’s version
Dimensione 3.02 MB
Formato Adobe PDF
3.02 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1008632
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 61
social impact