PVT technology presents many attractive features for a wide application in the building sector since it is able to produce electricity and thermal energy at the same time with better overall performances and reduced surfaces in comparison with the two separated solar technologies. However the effectiveness of the PVT modules is most evident when they are integrated in complex systems, capable of fully exploiting their multi-functionality (e.g. heat pump coupling, multi-storage interconnection, etc.). For that reason, the research work presents a mathematical model for energy simulation of PVT systems, which takes in account all factors and parameters involved in the energy performance of an uncovered hybrid collector; the model can be easily implemented in any performance calculation tool in order to carry out technical-economic assessment of PVT systems.The experimental calibration and validation of the proposed model was performed in outdoor conditions on a commercial PVT product, at the Test Facility of the Politecnico di Milano University, and finally the model was ran supposing the application in three different locations. The validation of the developed simulation model shows a good agreement with monitored data also if a mismatch occurred due to an assembling defect of the tested commercial PVT component.

Performance monitoring and modeling of an uncovered photovoltaic-thermal (PVT) water collector

ASTE, NICCOLO';DEL PERO, CLAUDIO;LEONFORTE, FABRIZIO;MANFREN, MASSIMILIANO
2016-01-01

Abstract

PVT technology presents many attractive features for a wide application in the building sector since it is able to produce electricity and thermal energy at the same time with better overall performances and reduced surfaces in comparison with the two separated solar technologies. However the effectiveness of the PVT modules is most evident when they are integrated in complex systems, capable of fully exploiting their multi-functionality (e.g. heat pump coupling, multi-storage interconnection, etc.). For that reason, the research work presents a mathematical model for energy simulation of PVT systems, which takes in account all factors and parameters involved in the energy performance of an uncovered hybrid collector; the model can be easily implemented in any performance calculation tool in order to carry out technical-economic assessment of PVT systems.The experimental calibration and validation of the proposed model was performed in outdoor conditions on a commercial PVT product, at the Test Facility of the Politecnico di Milano University, and finally the model was ran supposing the application in three different locations. The validation of the developed simulation model shows a good agreement with monitored data also if a mismatch occurred due to an assembling defect of the tested commercial PVT component.
2016
IR acquisition; PVT water collector; Simulation model; Thermal and electrical performance; Renewable Energy, Sustainability and the Environment; Materials Science (all)
File in questo prodotto:
File Dimensione Formato  
9 Performance monitoring and modeling of an uncovered photovoltaic-thermal (PVT) water collector.pdf

Accesso riservato

: Publisher’s version
Dimensione 4.87 MB
Formato Adobe PDF
4.87 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1001268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 104
  • ???jsp.display-item.citation.isi??? 81
social impact