We investigated the efficiency of attack strategies to network nodes when targeting several complex model and real-world networks. We tested 5 attack strategies, 3 of which were introduced in this work for the first time, to attack 3 model networks (Erdos and Renyi, Barabasi and Albert preferential attachment network, and scale-free network configuration models) and 3 real networks (Gnutella peer-to-peer network, email network of the University of Rovira i Virgili, and immunoglobulin interaction network). Nodes were removed sequentially according to the importance criterion defined by the attack strategy, and we used the size of the largest connected component (LCC) as a measure of network damage. We found that the efficiency of attack strategies (fraction of nodes to be deleted for a given reduction of LCC size) depends on the topology of the network, although attacks based on either the number of connections of a node or betweenness centrality were often the most efficient strategies. Sequential deletion of nodes in decreasing order of betweenness centrality was the most efficient attack strategy when targeting real-world networks. The relative efficiency of attack strategies often changed during the sequential removal of nodes, especially for networks with power-law degree distribution. © 2014 Elsevier B.V. All rights reserved.

Efficiency of attack strategies on complex model and real-world networks

VINCENZI, SIMONE
2014-01-01

Abstract

We investigated the efficiency of attack strategies to network nodes when targeting several complex model and real-world networks. We tested 5 attack strategies, 3 of which were introduced in this work for the first time, to attack 3 model networks (Erdos and Renyi, Barabasi and Albert preferential attachment network, and scale-free network configuration models) and 3 real networks (Gnutella peer-to-peer network, email network of the University of Rovira i Virgili, and immunoglobulin interaction network). Nodes were removed sequentially according to the importance criterion defined by the attack strategy, and we used the size of the largest connected component (LCC) as a measure of network damage. We found that the efficiency of attack strategies (fraction of nodes to be deleted for a given reduction of LCC size) depends on the topology of the network, although attacks based on either the number of connections of a node or betweenness centrality were often the most efficient strategies. Sequential deletion of nodes in decreasing order of betweenness centrality was the most efficient attack strategy when targeting real-world networks. The relative efficiency of attack strategies often changed during the sequential removal of nodes, especially for networks with power-law degree distribution. © 2014 Elsevier B.V. All rights reserved.
2014
Attack strategies; Immunization strategies; Network robustness; Condensed Matter Physics; Statistics and Probability
AUT
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0378437114005603-main.pdf

Accesso riservato

Descrizione: Full text
: Publisher’s version
Dimensione 555.09 kB
Formato Adobe PDF
555.09 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1000281
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 86
  • ???jsp.display-item.citation.isi??? 80
social impact