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Experimental perfect state transfer of an entangled
photonic qubit
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Man-Hong Yung5, Roberto Osellame3,4 & Alberto Peruzzo1,2

The transfer of data is a fundamental task in information systems. Microprocessors contain

dedicated data buses that transmit bits across different locations and implement sophisti-

cated routing protocols. Transferring quantum information with high fidelity is a challenging

task, due to the intrinsic fragility of quantum states. Here we report on the implementation of

the perfect state transfer protocol applied to a photonic qubit entangled with another qubit at

a different location. On a single device we perform three routing procedures on entangled

states, preserving the encoded quantum state with an average fidelity of 97.1%, measuring in

the coincidence basis. Our protocol extends the regular perfect state transfer by maintaining

quantum information encoded in the polarization state of the photonic qubit. Our results

demonstrate the key principle of perfect state transfer, opening a route towards data transfer

for quantum computing systems.
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T
ransferring quantum information between locations with-
out disrupting the encoded information en route is crucial
for future quantum technologies1–8. Routing quantum

information is necessary for communication between quantum
processors, addressing single qubits in topological surface
architectures, and for quantum memories as well as many other
applications.

Coupling between stationary qubits and mobile qubits via cavity
and circuit quantum electrodynamics has been an active area of
research with promise for long-distance quantum communication9–
12; however, coupling between different quantum information
platforms is challenging as unwanted degrees of freedom lead to
increased decoherence13. Quantum teleportation between distant
qubits allows long-distance quantum communication via shared
entangled states14–17; however, in most quantum information
platforms this would again require coupling between stationary and
mobile qubits. Physically relocating trapped ion qubits has also been
demonstrated18,19, however, with additional decoherence incurred
during transport.

By taking advantage of coupling between neighbouring qubits,
it is possible to transport quantum information across a
stationary lattice2. This has the benefits that one physical
platform is being used and the lattice sites remain at fixed
locations. The most basic method is to apply a series of SWAP
operations between neighbouring sites such that, with enough
iterations, the state of the first qubit is relocated to the last. This
method requires a high level of active control on the coupling and
is inherently weak as individual errors accumulate after each
operation, leading to an exponential decay in fidelity as the
number of operations increases20.

The perfect state transfer (PST) protocol utilizes an engineered
but fixed coupled lattice. Quantum states are transferred between
sites through Hamiltonian evolution for a specified time2–7. For a
one-dimensional system with N sites, the state intially at site n is
transferred to site N� nþ 1 with 100% probability without need
for active control on the coupling21. PST can be performed on any
quantum computing architecture where coupling between sites can
be engineered, such as ion traps18 and quantum dots22. Figure 1
presents an illustration of the PST protocol. The encoded quantum
state, initially at the first site, is recovered at the final site after a
specific time. In the intermediate stages, the qubit is in a
superposition across the lattice. Aside from qubit relocation, the
PST framework can be applied to entangled W-state preparation23,
state amplification24 and even quantum computation25–29.

To date, most research on PST has been
theoretical2–7,20,21,23,24,28,30–42, with experiments43,44 being
limited to demonstrations where no quantum information is
transferred, and do not incorporate entanglement, often
considered the defining feature of quantum mechanics45. Here,
we present the implementation of a protocol that extends PST for
relocating a polarization-encoded photonic qubit across a
one-dimensional lattice, realized as an array of 11 evanescently
coupled waveguides46–48. We show that the entanglement
between a photon propagating through the PST waveguide
array and another photon at a different location is preserved.

Results
PST Hamiltonian. The Hamiltonian for our system in the
nearest-neighbour approximation is given by the tight-binding
formalism

Ĥ ¼
X

s2fH;Vg

XN � 1

n¼1

Cn;nþ 1 âynþ 1;sân;sþ âyn;sânþ 1;s

� �
; ð1Þ

where Cn,nþ 1 is the coupling coefficient between waveguides n
and nþ 1, and ân;s ðâyn;sÞ is the annihilation (creation) operator

applied to waveguide n and polarization s (horizontal or vertical).
Hamiltonian evolution of a state c0j i for a time t is
calculated via the Schrödinger equation, giving the final state
c tð Þj i ¼ expð� iĤt

‘ Þ c 0ð Þj i (ref. 49). Equation (1) is constructed of
independent tight-binding Hamiltonians acting on each ortho-
gonal polarization. This requires there to be no cross-talk terms
âyn;Hâm;V or âyn;V âm;H 8 m; n. The spectrum of coupling coeffi-
cients Cn,nþ 1 is crucial for successful PST. Evolution of this
Hamiltonian with a uniform coupling coefficient spectrum,
equivalent to equally spaced waveguides, is not sufficient for PST
with over three lattice sites as simulated in Fig. 2a. PST requires
the coupling coefficient spectrum to follow the function

Cn;nþ 1 ¼ C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n N � nð Þ

p
; ð2Þ

where C0 is a constant, N is the total number of lattice sites and
evolution is for a specific time tPST¼ p

2C0
(refs 3, 4). This enables

arbitrary-length PST as simulated in Fig. 2b for 11 sites.
The coupling coefficient spectrum for each polarization must be
equal and follow equation (2) for the qubit to be faithfully relo-
cated and the polarization-encoded quantum information to be
preserved. The distance between waveguides dictates the coupling
coefficient; however, for planar systems, the coupling coefficient
of each polarization will in general be unequal due to the wave-
guide birefringence. To achieve equal coupling between polar-
izations, the waveguide array is fabricated along a tilted plane in
the substrate50. This is made possible by the unique three-
dimensional capabilities of the femtosecond laser-writing
technique (see Supplementary Note 1 for further fabrication
and device details). We measure a total propagation loss of
1.8±0.2 dB; however, our figure of merit is how well preserved
the polarization quantum state is after the transfer protocol.
Therefore we calculate fidelity without loss. Ideally the PST
protocol exhibits unit fidelity and efficiency, where the quantum
state is reliably transferred and the encoded state is preserved.
Due to loss in our experiment, we have less than unit efficiency;
however, this loss is largely unrelated to the PST Hamiltonian in
equation (1). Further optimizing the fabrication process could
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Figure 1 | Illustration of a one-dimensional perfect state transfer lattice

connecting two quantum processors. By engineering the Hamiltonian of a

lattice, the state at the first site is transferred to the last site after a specific

time. This Hamiltonian defines the perfect state transfer protocol3, which

can be used for routing quantum information inside a quantum processor.
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reduce the level of propagation loss (see Methods and
Supplementary Note 2 for further details on loss).

We inject photons into waveguides 1, 6 and 10 of the array,
which after time tPST transfer to waveguides 11, 6 and 2,
respectively. Figure 3a–c presents propagation simulations for
each transfer. Input waveguides extend to the end of the device to
allow selective injection.

Transfer characterization. To characterize the coupling coeffi-
cient spectra, we inject horizontally and vertically polarized laser
light at 808 nm into each input waveguide. Laser light is more
robust to noise than single photons and we can monitor the
output with a CCD camera to fast gather results. Using laser light
at the same wavelength as our single photons will give an output
intensity distribution equivalent to the output probability dis-
tribution for detecting single photons46. Ideally light injected into
waveguide n will output the device only in waveguide N� nþ 1;
however, this assumes an approximate model of nearest-
neighbour coupling only. Taking into account coupling between
further separated waveguides reduces the transfer probability.
This decrease is greater for light injected closer to the centre of
the array (see Supplementary Note 1). Figure 3d–f presents our
measured output probability distribution for horizontally PH

n

� �
and vertically PV

n

� �
polarized laser light injected into each input

waveguide, where n is the output waveguide number. Fidelity
between the probability distributions for each polarization is
given by Fdistribution ¼

P
n

ffiffiffiffiffiffiffiffiffiffiffiffi
PH

n PV
n

p
. This fidelity is closely related

to how similar the two coupling coefficient spectra are. We
measure an average probability distribution fidelity for all
transfers of 0.976±0.006 (see Supplementary Table 1 for all
fidelity values). We encode quantum information in the
polarization state of the photon and are interested in reliably
relocating this qubit. We use a single optical fibre to capture
photons from the designed output waveguide, which, in all cases,
is the waveguide with the greatest output probability.

Quantum process tomography. We perform quantum process
tomography to understand the operation performed on the
single-photon polarization state during each PST transfer. We
inject single-photon states cinj i ¼ ðaâyS;H þbâyS;VÞ 0j i into
each input waveguide SA{1,6,10}, where a (b) is the probability
amplitude of the horizontal (vertical) component of the photon
and aj j2þ bj j2¼ 1. From quantum process tomography on the
output polarization states, we can generate a process matrix wpol

for each transfer1,51. We aim to perform the identity operation so
that the quantum information encoded in the polarization can be
recovered after relocation. We measure a polarization phase shift
associated with each transfer. This phase shift can be
compensated for with a local polarization rotation applied
before injection. Figure 3g–i presents our measured process
matrix for each transfer. Across all transfers we demonstrate
an average fidelity of the polarization process including
compensation to an identity of 0.982±0.003 (see Supple-
mentary Note 3 for details of the compensation scheme and
Supplementary Table 2 for all fidelities). Process fidelity is calcu-
lated as Fprocess ¼ Trfw1wpolþ compg (ref. 52), where w1 is the process
matrix for the identity operation and wpolþ comp is the combined
polarization operation and compensation process matrix.

Ideally the output state for each transfer is
coutj i ¼ ðaâyT;H þ bâyT;VÞ 0j i, where TA{11,6,2} and the probabil-

ity amplitude of each polarization component remains equal to
the input state. Our high-fidelity measurements on single-photon
relocation demonstrate that we can route a polarization-encoded
photonic qubit across our device and faithfully recover the
encoded quantum information.

Entangled state transfer. Entanglement is likely to be a defining
feature of quantum computing, and preserving entanglement is
therefore critical to the success of any qubit relocation protocol. We
prepare the Bell state 1ffiffi

2
p H1V2j i þ V1H2j ið Þ using the spontaneous

parametric downconversion process. The polarization is controlled
using rotatable half and quarter waveplates (HWPs and QWPs),
and polarizing beam splitters (PBSs) as shown in Fig. 4 (ref. 53) (see
Methods for details). This set-up prepares a general state
ajH1V2iþ bjV1H2i when measuring in coincidence, where
jaj2þ jbj2 ¼ 1. Photon 1 is injected into the waveguide array,
while photon 2 propagates through polarization-maintaining fibre
(PMF). In terms of waveguide occupancy, our input state is cinj i ¼
1ffiffi
2
p ðâyS;Hây0;V þ âyS;V ây0;HÞ 00j i for each input waveguide SA{1,6,10},

where ây0;s denotes the creation operator acting on polarization s in
PMF. Full two-qubit polarization tomography54 is performed on
the output and the fidelity calculated as

Fquantum ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rinput

p
routput

ffiffiffiffiffiffiffiffiffiffi
rinput

pqn o� �2
; ð3Þ

where routput is the density matrix after the PST protocol has been
applied and rinput is the density matrix after propagation through a
reference straight waveguide55. After all qubit relocations we
measure an average polarization state fidelity of 0.971±0.014.
Fidelity is measured in the two-photon coincidence basis. This value
is therefore the fidelity on the quantum state transferred without
taking into account the loss (see Methods and Supplementary Note
2 for loss analysis). We can use the results from quantum process
tomography to generate a characterized model of our device. We
can now use this model to calculate the similarity between the
predicted output state and our measured output state as

Squantum ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rpredicted
p

routput
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rpredicted

pqn o� �2
: ð4Þ

We calculate an average similarity of 0.987±0.014 across
all transfers (see Supplementary Table 3 for all fidelities
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Figure 2 | Propagation simulations with different coupling coefficient

spectra. (a) A photon is injected into the first waveguide of an array of

eleven coupled waveguides with the Hamiltonian in equation (1) and a

uniform coupling coefficient spectrum. With the constraint that reflections

off boundaries are not allowed, we calculate a maximum probability of

transferring the photon to waveguide 11 of 78.1% (ref. 2). (b) A photon is

injected into the first waveguide of an array of eleven coupled waveguides,

this time with the coupling coefficient spectrum of equation (2). After

evolution for a pre-determined time, the photon is received at waveguide 11

with 100% probability3–7.
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and similarities). Figure 3j–l presents our measured density
matrix after each entangled state transfer.

Ideally, the output state for each transfer is
Coutj i ¼ 1ffiffi

2
p ðâyT;Hây0;V þ âyT;V ây0;HÞ 00j i, where TA{11,6,2}. With

high fidelity the probability amplitude of each component is
preserved and the state remains almost pure. This result
demonstrates that with our device we can relocate a polarization
qubit between distant sites and preserve entanglement
with another qubit at a different location. In principle our
device could route qubits from any waveguide n to wave-
guide N� nþ 1. Quantum error correction protocols
require sophisticated interconnection to access individual
qubits for control and measurement within large, highly
entangled surface code geometries56. PST is a clear
gateway towards accessing qubits in such systems without
disrupting quantum states and entanglement throughout the
surface code.

Decohered state transfer. Decoherence has applications in
quantum simulation to emulate systems in nature57, and it is
therefore important to note that this approach for relocating
quantum information can be applied to states of any purity3. We
prepare decohered states by introducing a time delay between the
horizontal and vertical components of the polarization qubit. We
implement this delay by extending one arm of the source, which
reduces the overlap of the photons after they are both incident on
the PBS, as shown in Fig. 4. This delay extends the state into a
time-bin basis, which we trace over on measurement, leading to a
mixed state. The purity of the state can be calculated as the
convolution of the horizontal and vertical components with a
time delay t:

Purity tð Þ �
Z 1
�1

H tð ÞV t� tð Þdt; ð5Þ

where t is controlled by altering the path length of the vertical
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Figure 3 | Experimental data from the characterization and performance of perfect state transfer waveguide array. (a–c) Propagation simulations

showing the device implementation to enable specific waveguide input. (d–f) Output probability distributions for each input of the PSTarray for horizontally

and vertically polarized laser light. (g–i) Quantum process matrix for each transfer in the PST array measured with single-photon quantum process

tomography. (j–l) Two-photon quantum state tomography is performed after photon 1 of the polarization entangled Bell state 1ffiffi
2
p H1V2j iþ V1H2j ið Þ has been

relocated. Results have had the small imaginary components removed for brevity.
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component of the state. H(V) is the horizontal (vertical)
component of the photon. Figure 5 presents density matrices
for PST from waveguide 1 to waveguide 11 applied to entangled
states of varying purity. The injected states are recovered with an
average fidelity of 0.971±0.019 and an average similarity of
0.978±0.019 (see Supplementary Table 4 for all values).

Discussion
We have proposed and experimentally demonstrated a protocol
for relocating a photonic qubit across eleven discrete sites,
maintaining the quantum state with high fidelity and preserving
entanglement with another qubit at a different location. We can
aim to improve our fidelity by reducing next-nearest-neighbour
coupling by further separating the waveguides and having a
longer device. This would increase the contrast between nearest-
and next-nearest-neighbour coupling to better fit the Hamilto-
nian in equation (1). A by-product of longer devices, however, is
an increase in propagation loss. Depth-dependent spherical
aberrations in the laser irradiation process may also affect
the homogeneity of the three-dimensional waveguide array.

Additional optics in the laser writing set-up could be employed to
reduce this effect. Protocols for relocating quantum information
across discrete sites are essential for future quantum technologies.
Our protocol builds on the PST with extension to include an
additional degree of freedom for encoding quantum information.
This demonstration opens pathways towards faithful quantum
state relocation in quantum computing systems.

Methods
Experimental set-up. Horizontally polarized photon pairs at 807.5 nm are
generated via type 1 spontaneous parametric downconversion in a 1-mm-thick
BiBO crystal, pumped by an 80-mW, 403.75-nm CW diode laser. Both photons are
rotated into a diagonal state 1ffiffi

2
p Hj i þ Vj ið Þ by a half waveplate (HWP) with fast

axis at 22.5� from vertical. One photon has a phase applied by two 45� quarter
waveplates (QWP) on either side of a HWP at y�. The second photon has its
diagonal state optimized with a PBS at B45�.

Each photon is collected in PMF and are incident on the two input faces of a
fibre pigtailed PBS. When measuring in the coincidence basis, this post-selects the
entangled state 1ffiffi

2
p H1V2j i þ eif V1H2j i
� �

, where f¼ 4 yþ Eð Þ and E is the intrinsic
phase applied by the whole system. The experimental set-up is illustrated in Fig. 4.

PMF is highly birefringent, resulting in full decoherence of the polarization state
after B1 m of fibre giving a mixed state. To maintain polarization superposition
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over several metres of fibre, we use 90� connections to ensure that both
polarizations propagate through equal proportions of fast- and slow-axis fibre.
Slight length differences between fibres and temperature variations mean the whole
system applies a residual phase E to the state, which can be compensated for in the
source using the phase-controlling HWP.

Polarization state tomography combines statistics from projection
measurements to generate the density matrix of a state. Single-photon rotations are
applied by a QWP and HWP before a PBS. Single-qubit tomography requires four
measurements and two-qubit tomography requires 16. Accidental counts are
removed by taking each reading with and without an electronic delay. This helps
reduce noise in our measurements.

Photon count rate. In our experiment, we prepare polarization Bell states with a
count rate of B2� 103 s� 1. After the PST array we measure a count rate of
B102 s� 1. The propagation loss of the array is only 1.8 dB. Most of the total loss
(B13 dB) is indeed due to mode mismatch between the waveguides and fibres,
imperfect coupling, reflections at interfaces, and non-unit relocation efficiency. We
integrate our measurements for 30 s to reduce the statistical noise due to the
Poisson distribution of the photon count rate.
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