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Compress-then-Analyze vs
Analyze-then-Compress:

what is best in Visual Sensor Networks?
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Abstract—Visual Sensor Networks (VSNs) have attracted the interest of researchers worldwide in the last few years, and are expected
to play a major role in the evolution of the Internet-of-Things (IoT). When used to perform visual analysis tasks, VSNs may be operated
according to two different paradigms. In the traditional compress-then-analyze paradigm, images are acquired, compressed and
transmitted for further analysis. Conversely, in the analyze-then-compress paradigm, image features are extracted by visual sensor
nodes, encoded and then delivered to a remote destination where analysis is performed. The question this paper aims to answer is
What is the best visual analysis paradigm in VSNs? To do this, first we empirically characterize the rate-energy-accuracy performance
of the two aforementioned paradigms. Then, we leverage such models to formulate a resource allocation problem for VSNs. The
problem optimally allocates the specific paradigm used by each camera node in the network and the related transmission source rate,
with the objective of optimizing the accuracy of the visual analysis task and the VSN coverage. Experimental results over several VSNs
instances demonstrate that there is no “winning” paradigm, but the best performance are obtained by allowing the coexistence of the
two and by properly optimizing their utilization.

Index Terms—Visual Sensor Networks, Local Visual Features, Resource Allocation, SIFT, BRISK.
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1 INTRODUCTION

R READING a book or recognizing a familiar face are
actions that characterize people’s everyday life and

require processing of visual stimuli. The early visual system,
comprising the pathway from the eye to the visual cortex, is
responsible for processing such stimuli in a rich, yet energy-
efficient manner, so that they can be interpreted, memorized,
communicated and finally analyzed and converted into high
level semantic concepts. The physiology of the early visual
system is the result of a sophisticated balancing between
information coding, i.e., the transfer of the data captured
by the photoreceptor field to the visual cortex, and energy
efficiency. Indeed, sight is characterized by extremely low
metabolic energy expenditure.

Digital cameras have been developed mimicking a sim-
plified model of the human visual system in a two step
process following a compress-then-analyze (CTA) paradigm:
images are acquired in digital format by sampling and
quantizing the light-field on a discrete lattice of pixels.
Images, or image sequences, are then compressed in order
to be stored and/or transmitted for further analysis. A
large body of research has focused on the analysis of visual
data to accomplish high level tasks, e.g., recognizing letters,
faces, objects, detecting events, etc. In this paradigm, image
analysis is often based on a compressed and hence lossy
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representation of the original image, which might signifi-
cantly impair its efficiency [3], [4], [5], [6], [7]. Nonetheless,
such a compress-then-analyze paradigm is being employed
in many application scenarios where energy constraints are
not overwhelming (e.g., video surveillance).

The integration of low-power wireless networking tech-
nologies such as IEEE 802.15.4-enabled transceivers [8] with
inexpensive camera hardware [9], [10] has enabled the
development of the so-called wireless multimedia sensor
networks (WMSNs), also known as visual sensor networks
(VSNs). VSNs can be thought of as networks of wireless
devices capable of sensing visual content [11], such as still
images and video, depth maps, etc. Due to their flexibility
and low-cost, VSNs have attracted the interest of researchers
worldwide in the last few years, and are expected to play a
major role in the evolution of the Internet-of-Things (IoT)
paradigm [12], [13].

The compress-then-analyze paradigm can be adapted to
VSNs by properly accounting for the additional energy con-
straints posed by the resource-constrained sensor platform
and the limited nominal bandwidth of current standards
for low-power communication among sensor nodes. Several
research efforts have been put in place to design wire-
less sensor networks for supporting still image and video
delivery [14], [15]. However, when only the result of the
visual analysis matters, transmitting image or video data
retaining a pixel-level representation is inefficient in terms
of the computational and network resources used, especially
when the analysis is based on data sensed by more than one
camera.

Alternatively, it is possible to consider a scenario where
the bitstream flowing in the visual sensor network is re-
duced by some sort of local processing which extracts and
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encodes visual features, rather than compressing and trans-
mitting a representation of the sensed images in the pixel
domain. The key tenet is that most visual analysis tasks
can be carried out based on a succinct representation of the
image, which entails both global and local features, while
it disregards the underlying pixel-level representation, thus
leading to a joint analyze-then-compress (ATC) paradigm; im-
age features are collected by visual sensor nodes, processed
(compressed), and then delivered to the final destination(s)
in order to enable higher level visual analysis tasks. Extract-
ing features from visual data is, however, a computationally
intensive task. The process entails detecting image key-
points and computing the corresponding descriptors; the
related computational complexity grows linearly with the
image size and with the required number of descriptors [16].

The question this paper aims to answer is What is the
best visual analysis paradigm in VSNs? We consider a scenario
in which a visual sensor network is deployed to support
applications based on image retrieval and object recognition.
Our specific contributions are:

1) We empirically characterize the rate-accuracy and
the rate-energy behavior of the two visual analysis
paradigms. For the rate-accuracy models, we build up
the full visual analysis pipeline for image retrieval
under the two paradigms, which is then used to derive
experiment-based models for the achieved accuracy at
different target transmission rates. For the rate-energy
models, we implement a working visual sensor plat-
form based on a BeagleBone Linux computer and a
IEEE802.15.4 compliant radio transceiver, and we de-
rive experimentally the consumed energy to accom-
plish the image retrieval task according to the two
paradigms.

2) The rate-accuracy and rate-energy models are then
leveraged to design a resource and paradigm alloca-
tion problem for visual sensor networks. The problem
returns as a solution the specific paradigm used by each
camera node in the network (ATC or CTA) and the
related transmission rate. The target is to maximize a
multi-objective function which comprises the accuracy
of the visual analysis task and the VSN coverage, i.e.,
the number of cameras which can be concurrently acti-
vated, under a predefined target lifetime constraint.

3) The resource and paradigm allocation problem is
solved for several VSN instances, characterized by dif-
ferent parameters in terms of network topology, lifetime
constraints and application frame rate requirements.
The obtained solutions show that there is no clear
winner between CTA and ATC, and depending on the
particular parameters, each camera in the network may
select a different paradigm. Thus, the coexistence of
both paradigms allows to operate the VSN at its best.

In Section 2, we review the related work on the design of
wireless networks for video transmission and analysis. In
Section 3 we introduce the two visual paradigms subject
of our analysis and the accuracy measure used for their
comparison. Sections 4 and 5 present the rate-accuracy and
rate-energy models for both the CTA and ATC paradigms,
and compare their behavior. Section 6 introduces the pro-
posed resource and paradigm allocation problem for VSNs

whose solution for several network instances is commented
in the experimental evaluation in Section 7. Finally, Section
8 concludes the paper and discusses future works.

2 RELATED WORK

The design of energy efficient wireless sensor networks
has been largely debated and addressed in the literature
[17], [18] [19], [20], [21], [22]. The proposed solutions gen-
erally scale down to finding the resource allocation strate-
gies which lead to minimal energy consumption, and thus
maximal network lifetime. The resources under consider-
ation may include the transmitted power at the wireless
transceiver, Medium Access Control (MAC) parameters as
well as the routes to deliver the information to the final
destination(s).

The very same problem of energy efficiency becomes
even more relevant in visual sensor networks for two main
reasons: first, wireless nodes are now required to perform
additional energy-greedy multimedia processing tasks (ac-
quisition, encoding, etc.); second, multimedia applications
may have in general more stringent requirements in terms
of expected quality of service (QoS), which turns into higher
energy to be consumed to effectively support them.

A good deal of work has recently focused on design-
ing effective and long-lasting wireless networks to support
video transmission. The interested reader may refer to [23]
for a survey on the topic. The problem of resource allo-
cation for supporting video streams in wireless network
is addressed in [24] and [25]. In [24], the focus is on the
design of a dynamic video encoder which can be adapted to
the current status of the network conditions, whereas, [25]
proposes an optimization framework to maximize the peak
signal to noise ratio (PSNR) in cooperative wireless net-
works; namely, centralized and distributed PSNR-optimal
strategies are proposed to jointly control the video encoding
rate, the selection of relaying nodes and the allocated power
level to perform wireless transmissions.

In [26] and, successively, in [27] and [28] the authors
introduce an optimization framework to jointly optimize
the coding rate and the routes in wireless sensor networks
where correlated visual sensors operate under distributed
source coding. The proposed problem formulation uses an
objective function which is the combination of the overall
distortion and the lifetime of the wireless sensor network.
A distributed algorithm is further proposed to heuristically
solve the aforementioned problem.

A similar contribution and networking scenario is con-
sidered in [29] and [30] where power control is also included
in the optimization problem formulation. In [31], distributed
algorithms based on Lagrangian duality are proposed to
maximize the network lifetime of wireless video sensor
networks by properly setting the video source rates, the
encoding powers and the routing in the network. The col-
lected video quality is finally assessed against the achieved
maximal lifetime.

A two-step heuristic is introduced in [32] to prolong
the network lifetime in wireless video sensor networks.
The proposed algorithm first selects the routes between the
video sources and the sink nodes by resorting to an energy-
aware routing metric, and then properly sets the encoding
rate at the video sources.



1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2519340, IEEE
Transactions on Mobile Computing

3

Central
Controller

Camera

Network

Compressed
pixel-domain

data

Image/Video Acquisition

Image/Video Compression
Features Extraction
Features Matching

(a) Compress-then-analyze (CTA) paradigm

Central
Controller

Camera

Network

Compressed
features

Image/Video Acquisition

Features Extraction

Features Compression

Features Matching

(b) Analyze-then-compress (ATC) paradigm

Fig. 1: The two different approaches to implement image
analysis in visual sensor networks

Differently from the aforementioned work, which is gen-
erally targeting video delivery optimization, we focus on
image retrieval and object recognition applications, which
are based on local features extraction algorithms. In par-
ticular, we propose a thorough comparison between two
complementary paradigms to support image retrieval and
object recognition applications. The importance of these two
paradigms were already partially noticed in the field of
mobile visual search. In [33], Girod et al. compare the two
paradigms in terms of retrieval accuracy, system latency
and energy consumption in the case of an image retrieval
application for mobile phones. Here we make a further step,
proposing rate-energy and rate-accuracy models for the two
paradigms, which are then used to optimally allocate the
resources in a more complex scenario, such as the one
encountered in visual sensor network deployments.

3 COMPRESS-THEN-ANALYZE VS ANALYZE-
THEN-COMPRESS

The reference literature on visual sensor networks generally
evaluates the “quality” of multimedia encoding and trans-
mission based on rate-distortion models. These models cap-
ture the effect of varying the output bit-rate R on the visual
content distortion D, which is usually evaluated through
the computation of the signal-to-noise ratio (SNR) or peak
signal-to-noise ratio (PSNR). However, such models cannot
be used for capturing the effect of varying the transmission
rate on the accuracy of a visual analysis tasks such as
object recognition. Thus, we propose compact rate-accuracy
models for the two paradigms usable for visual analysis
(CTA or ATC). To this extent, we have implemented a full
image retrieval pipeline, as illustrated in Figure 1.

In the compress-then-analyze case, query images are
first compressed with JPEG at different rates by varying
the Quality Factor QF from 1 to 100. The images are then
transmitted to a central controller, which extracts local fea-
tures from the compressed query images and matches them
against the features extracted from a reference database of
(uncompressed) labeled images. Since features extraction is
performed at a remote, powerful central controller without
particular computational limits, we assume that the SIFT
algorithm [34] is used to extract features from the JPEG
encoded images in the CTA paradigm. SIFT features are
considered as the gold standard in visual analysis, as they
typically achieve state-of-the-art performance in most ap-
plications. At the same time, extracting and matching SIFT
features is costly.

In the analyze-then-compress case, features are extracted
from uncompressed query images, encoded with a suitable
algorithm and transmitted to a remote controller, where they
are matched with the features extracted from the reference
database images. Since feature extraction is now performed
on a resource-limited camera node, we consider the state-
of-the-art BRISK algorithm [35], which is optimized for fast
computation, and thus suitable for low-power and low-
complexity hardware, while guaranteeing accuracy perfor-
mance close to the one of SIFT. To encode BRISK features,
we use the method proposed in [36].

In the CTA paradigm, rate is controlled by operating on
the JPEG quality factor of the image queries. Conversely,
in the ATC paradigm, rate is controlled by tuning : (i) the
dimension D (in bits) of each BRISK descriptor; and (ii)
the number of features M to be transmitted to the central
controller. Note that the number of detected keypoints is
content-dependent and might exceedM . Therefore, a subset
ofM keypoints needs to be selected for the computation and
transmission of the associated descriptors. According to [1],
we sorted the features in descending order of their asso-
ciated strength, and we selected the top-M features. This
operation allows to obtain better rate-accuracy performance
than selecting the subset of features randomly.

For both CTA and ATC approaches, features matching
is performed computing either the Euclidean or Hamming
distances (for SIFT and BRISK, respectively), and filtering
matches using the ratio-test and a geometric consistency
check with RANSAC [34]. The Mean of Average Precision
(MAP) measure is used to assess the accuracy of the retrieval
process.

Two data sets have been considered in the evaluation:
• ZuBuD: The Zurich Building Database1 contains 1005

color images of 201 buildings of the city of Zurich.
Each building has five VGA images (640x480), taken at
random arbitrary view points under different seasons,
weather conditions and by two different cameras. A
separate archive containing 115 images (at a resolution
of 320x240) of the same buildings (with different imag-
ing conditions) is available as query dataset.

• Oxford: The Oxford Building Database2 consists of 5062
images collected from Flickr by searching for particular
Oxford landmarks. The collection has been manually

1. http://www.vision.ee.ethz.ch/showroom/zubud/index.en.html
2. http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/

http://www.vision.ee.ethz.ch/showroom/zubud/index.en.html
http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
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Fig. 2: Rate-accuracy curves for (a) the ZuBuD dataset and
(b) the Oxford dataset when using BRISK features. Each of
the solid colored lines represents the rate-accuracy curve
for a different number of features M, when varying the
dimension D of each BRISK feature in the range {32, 64,
128 256, 512} bits. The black dashed line is the envelope
of the rate-accuracy curves family, and represents the best
accuracy that can be obtained for a target rate. The curve
corresponding to the label ALL is obtained by using all the
detected features for matching.

annotated to generate a comprehensive ground truth
for 11 different landmarks, each represented by 5 pos-
sible queries, for a total of 55 queries. The resolution of
each query image is 768x1024, much greater than in the
ZuBuD dataset case.

4 RATE-ACCURACY MODELING

4.1 ATC rate-accuracy model

Figure 2(a) shows a family of rate-accuracy curves referring
to the ATC paradigm for the ZuBuD dataset when using
BRISK features; each curve is obtained with a different value
ofM , varying the dimension of BRISK descriptorD (in bits).
Similar curves have been obtained for the Oxford dataset
(see Fig. 2(b)). It is clear from the figures that different
combinations of M and D induce different performance.
To derive a synthetic rate-accuracy model for the ATC
paradigm, we focus on the envelope of the rate-accuracy
curves family, which represents the best operational trade-
off that can be obtained, that is, the minimum rate to be used
to achieve a given MAP.

In [1], we showed that it is possible to derive an analytic
expression for the envelope of the family of curves, which
can be written as:

A(ρ) = p1ρ+ p2

√
ρ2 + ρ+ p3, (1)

where A(ρ) is the MAP for a given rate ρ (in kB/query), and
p1, p2 and p3 are application-specific parameters. Moreover,
in [1] we also showed that the derivation of the analytic
rate-accuracy model for the ATC paradigm allows to define
the concept of internal allocation: namely, under a particu-
lar bitrate budget ρ, the internal allocation determines the
optimal number M(ρ) of local visual features to transmit
and their corresponding size (in bits) D(ρ) to obtain the
maximum accuracy.

Table 1 reports the values of the rate-accuracy model
parameters for all the tested datasets. To quantify the good-
ness of our model we compute the Pearson’s correlation
coefficient R2 between the real and the estimated envelope,
obtaining a value equal to or greater than 0.97.

4.2 CTA rate-accuracy model
Similar to the case of ATC, it is worthwhile to analyze the
performance of CTA at different rates. In this paradigm, the
images acquired by a camera node are compressed with
JPEG and transmitted to a central controller. Thus, rate may
be varied by properly modifying the JPEG quality factor.
High quality factors minimize the distortion introduced by
the encoding process, but the resulting image size may
struggle with the limitation imposed by the available band-
width. Conversely, low quality factors allow to efficiently
encode the input image at the cost of increasing distortion
in the pixel domain. Such artefacts may impact on the
object recognition task performance. To model the CTA rate-
accuracy performance, we have run the object recognition
pipeline on the ZuBuD and Oxford datasets, each time
varying the query images JPEG quality factor. Results are
reported in Figure 3(a), and 3(b). Two cases are considered
for CTA:
• SIFT features are extracted from the query image at the

central controller (green solid lines). Such a case allows
to obtain the best accuracy performance, at the cost of
increasing complexity at the central controller.

• BRISK features are extracted at the central controller
(red dashed line). This case is suitable when computa-
tional resources at the server are limited, but it results
in poorer visual accuracy.

The experimental results show that the rate-accuracy
curve for CTA paradigm is well represented by the follow-
ing functional form:

A(ρ) =
(q1ρ+ q2)

ρ+ q3
, (2)

whose parameters are reported in Table 1 (columns 6-9) for
the ZuBuD and Oxford data sets.

4.3 Comparison of CTA and ATC rate-accuracy
Figure 3(a), and 3(b) show the results for the ZuBuD, and
Oxford datasets, respectively. In each figure, we include the
rate-accuracy curves obtained for the two aforementioned
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Fig. 3: Comparison between the rate-accuracy curves
of the compress-then-analyze and the analyze-then-compress
paradigms

CTA configurations, and the curve for ATC (black dashed
line), when BRISK features are extracted and compressed at
the remote nodes. In this latter case, the curves correspond
to the envelopes in Figures 2(a), and 2(b). For SIFT, we used
the OpenCV v.2.4.3 implementation, while for BRISK we
used the implementation provided by the authors3.

The results in Figure 3 indicate that the choice of the
paradigm is dictated by the bandwidth constraints imposed
by the network. Indeed, at low bitrates, the ATC approach
is not only the preferable solution, but also the only one that
can be adopted as there exists a lower bound to the source
rate when operating in CTA which forces the source rate
to be above 17.3 kbyte/query for Oxford data set and 2.4
kbyte/query for ZuBud data set respectively. Conversely,
when the network allows to send high-quality query images
at high bitrates, extracting features at the central controller is
the best choice. However, note that this is a condition which
is seldom met in visual sensor networks. Moreover, if the
central controller is not subject to computational constraints,
the use of non-binary features like SIFT is to be preferred to
BRISK.

5 RATE-ENERGY MODELING

CTA and ATC may be compared not only with respect to
their rate-accuracy behaviors, but also looking at what is the
energy that each visual sensor node consumes to operate in

3. http://www.asl.ethz.ch/people/lestefan/personal/BRISK

Analyze-then-compress Compress-then-analyze
Dataset p1 p2 p3 R2 q1 q2 q3 R2

ZuBuD -2.83 2.83 -0.64 0.98 0.83 -1.68 -1.95 0.99
Oxford -2.25 2.25 -0.67 0.97 0.65 -7.42 -8.57 0.97

TABLE 1: Values of the model parameters for the two
different paradigms and datasets used. The parameters are
derived expressing the rate ρ in kB and the MAP accuracy
value between 0 and 1. We also report the value of the
Pearsons’s correlation value between the observed behav-
iors and the ones obtained with the proposed rate-accuracy
models (1) and (2).

one or the other paradigm. Generally speaking, the per-node
energy consumption is the sum of two components: the en-
ergy Ecpu for acquiring and processing data, and the energy
Etx for transmitting the data to a remote location. Typically,
in generic wireless sensor networks only the energy needed
for transmitting data is taken into account. This is motivated
by the fact that processing is generally limited to simple
operations and the energy spent for transmitting the sensed
information dominates on the total energy consumption.
However, this assumption does not hold when consider-
ing visual sensor networks, where the energy required to
process multimedia data can not be neglected.

While comparing the required transmission energy in
ATC and CTA is straightforward, as Etx depends primarily
only on the amount of data that is transmitted (i.e., it is
function of ρ only), the energy Ecpu spent by a particular
processing algorithm depends on several factors. First of all,
the hardware architecture on which the algorithms are eval-
uated plays a role of primary importance. Second, different
implementations of the tested algorithms may produce very
different results. It follows that the obtained results might
not be easily generalizable. A different approach could be
to dissect the algorithms in a series of simple operational
blocks (e.g., sums, multiplications, memory accesses, etc...),
and then compare the overall complexity based on the
number of used operational blocks. However, even in the
case, the elementary blocks may be implemented very dif-
ferently from architecture to architecture and they may have
different energy characteristics, thus making this approach
impractical.

We take here a practical approach to derive the energy-
rate characteristics of the two paradigms under investiga-
tion. We implemented a visual sensor platform composed
by a BeagleBone Linux computer4, which is equipped with
a low-power camera and a IEEE 802.15.4 compliant radio
transceiver, as illustrated in Figure 5(a) and 5(b). Then, we
measured the power Pcpu consumed by the processor of the
visual sensor node using an Adafruit INA219 DC current
sensor as done in [37] and observed that (i) the power con-
sumption is constant over time, and (ii) does not depend on
the particular activities performed by the processor (JPEG
compression, BRISK detection and description). Therefore,
the energy consumption may be estimated by keeping track
of the time taken by the processor for performing different
processing tasks and multiplying the result by the estimated

4. http://beagleboard.org/static/beaglebone/latest/Docs/
Hardware/BONE_SRM.pdf

http://www.asl.ethz.ch/people/lestefan/personal/BRISK
http://beagleboard.org/static/beaglebone/latest/Docs/Hardware/BONE_SRM.pdf
http://beagleboard.org/static/beaglebone/latest/Docs/Hardware/BONE_SRM.pdf
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Fig. 4: Indirect estimation of the processing energy through the measurement of the time needed to operate in the CTA or
ATC paradigm. Fitting the lines relative to detection, description and JPEG encoding allows to retrieve the parameters in
Table 2

(a) (b)

Fig. 5: (a) The main components of the reference visual
sensor node platform: a BeagleBone computer (left), a Shim-
mer Span IEEE 802.15.4-compliant transceiver (center) and
a low-power USB camera. The radio transceiver and the
camera are attached to the BeagleBone to form a visual
sensor node (b).

Parameter Description Value
Pcpu CPU processing power [W] 2.1
Etx Energy for transmitting one bit [J/bit] 2.6× 10−6

Erx Energy for receiving one bit [J/bit] 2.9× 10−6

τoff Time for initializing the detector [ms/pixel] 1.6× 10−4

τdet Time for detecting one BRISK feature [ms] 0.31
τdesc Time for describing one BRISK feature [ms] 0.16

TABLE 2: Energy and time parameters measured from ex-
tensive experiments on a BeagleBone-based visual sensor
node.

constant power consumption.
• For the CTA paradigm, we kept track of the time
tCTA

cpu (ρ) spent by the visual sensor node to encode an
input image with JPEG at different quality factors, as
illustrated in Figure 4(a). The energy consumption due
to processing can be consequently estimated as:

ECTA
cpu (ρ) = Pcpu · tCTA

cpu (ρ), (3)

Therefore, the total energy for operating in the CTA
paradigm at a particular target bitrate ρ can be esti-
mated as:

ECTA(ρ) = ECTA
cpu (ρ) + Etx(ρ). (4)

Note that we do not consider the energy needed for
feature extraction, as this step is performed on the
central controller.

• For the ATC paradigm, first we analyze the time needed
by the BeagleBone to detect and describe BRISK fea-

tures. As illustrated in Figure 4(b), the detection time
can be modeled as a function of the number of features
detected M :

tdet(M) = τoff +Mτdet, (5)

where τoff is an offset initialization time (needed to
initialize the detector) and τdet is the time needed to
detect one feature. Note that the initialization time τoff
depends also on the resolution of the input image.
Similarly, as illustrated in Figure 4(c), we can model
the description time as:

tdesc(M) = Mτdesc, (6)

where τdesc is the time needed to describe one fea-
ture. As explained in Section 4, the ATC paradigm
is operated through the use of a rate-accuracy model
that computes the optimal internal allocation for a given
bitrate target ρ, comprising the optimal number of fea-
tures M(ρ) to be used and the corresponding encoding
parameters. It follows that, to compute the processing
energy as a function of the rate ρ for the ATC paradigm
we can use the following equation:

EATC
cpu (ρ) = Pcpu · [τoff +M(ρ)(τdet + τdesc)] . (7)

Finally, the total energy consumption in the ATC mode,
is:

EATC(ρ) = EATC
cpu (ρ) + Etx(ρ). (8)

Table 2 reports the values of the energy parameters
obtained in our tests, and Figures 6(a) and 6(b) shows the
energy-wise comparison of the ATC and CTA paradigms
for the ZuBuD and Oxford datasets. As one can see, the
experiments on the BeagleBone platform reveal that the ATC
paradigm generally requires a camera node to consume
more energy for processing than CTA. This is due to the
high cost of extracting features on the camera node, while
such step is performed on the central controller in CTA.
However, it is important to consider that CTA is based
on JPEG encoding, whose implementation leverages more
than 20 years of optimizations and refinements; on the other
side, the algorithms that enable the ATC paradigm are very
recent and far from being at their maximum performance
energy-wise. Recently, some attention has been given to
this problem, with research studies on Application Specific
Integrated Circuits (ASIC) and Field Programmable Gate
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Fig. 6: Comparison between the rate-energy curves
of the compress-then-analyze and the analyze-then-compress
paradigms

Arrays (FPGA) capable of detecting and extracting features
in a very efficient way [38]. As a quantitative example, the
work in [39] present a feature extraction algorithm based
on FAST [40] that can run at 62.5 frame per second on a
Xilinx Vertex 5 FPGA chip. With the same architecture and
image resolution, the work in [41] reports a peak frame rate
of 45 fps for JPEG compression. This demonstrates that ATC
may constitute a viable option not only when bandwidth
availability is scarce, but also when the available energy is
limited. The shape of the curves in Figures 6(a) and 6(b)
also shows that there exists an upper bound to the camera
node lifetime when operating in CTA and ATC. In fact,
the ATC paradigm shows an offset energy consumption for
small values of the rate ρ, which is due to the fixed energy
consumption for initializing the features detector (see [16]),
and which is observed to be approximately 0.15 J and
1.6 J for the ZuBuD and Oxford datasets, respectively (the
energy requirements for operating with the Oxford dataset
are greater due to the higher resolution of the query images
with respect to ZuBuD). Similarly, the minimum consumed
energy under CTA (corresponding to the minimum feasible
rate for CTA) is observed to be approximately 0.1 J for
ZuBud and 0.9 J for Oxford. This leads to a maximum
lifetime for a camera given by Ē

Emin
, being Ē the energy

budget available at the camera node and Emin the energy
offset for a particular configuration of paradigm and dataset.
As an example, assuming an energy budget of Ē = 32.4 kJ,
the maximum feasible lifetimes for different configurations

Dataset CTA maximum lifetime ATC maximum lifetime
ZuBuD 311× 103 228.5× 103

Oxford 30.6× 103 20.5× 103

TABLE 3: Upper bounds to the lifetime (measured in max-
imum number of processed images) for camera nodes op-
erating at different visual analysis paradigms with different
visual content with an initial power budget of Ē=32.4 kJ.

of paradigm and visual content are reported in Table 3.

6 RESOURCE AND PARADIGM ALLOCATION IN
VSNS

This section leverages the rate-accuracy and rate-energy
models developed in Sections 4 and 5 to cast a paradigm and
resource allocation problem in visual sensor networks. The
general target is to find the specific paradigm each active
camera node should adopt and the related transmission rate
to maximize the accuracy of the analysis task for a specific
target lifetime of the visual network. The problem formu-
lation explicitly considers bandwidth, energy, and routing
constraints dictated by the individual nodes and network
topology, as well as the costs of operating each camera node
in the two reference paradigms.

Let G = (V,E) be a directed graph that models a visual
sensor network, in which V denotes the set of nodes and
E denotes the set of wireless links. Two nodes i and j with
i, j ∈ V are in communication range if the directed link
starting from node i to node j, (i, j) ∈ E. Without loss
of generality, we consider the case of symmetric links only,
that is, if (i, j) ∈ E then (j, i) ∈ E. Here we consider
heterogeneous networks, i.e., composed by both camera
nodes and generic nodes. Camera nodes acquire images and
depending on the operational paradigm, either encode them
with JPEG or perform visual feature extraction locally. The
data resulting from such visual processing is then transmit-
ted to a remote central controller or sink node, possibly with
the aid of multiple generic nodes that act as relays. Hence,
let V = C ∪ N ∪ S, being C the set of camera nodes, N
the set of generic/relay nodes and S the set of sink nodes.
To simplify the discussion, here we assume the presence of
only one sink node.

Let yi denote a binary variable defined as

yi =

{
1 if camera i is active
0 if camera i is inactive

(9)

and xi the binary variables which specify the visual
paradigm used by camera i and defined as:

xi =

{
1 if camera i operates in CTA mode
0 if camera i operates in ATC mode

(10)

Finally, let f(i,j) denotes the flow over directed link (i, j) ∈
E, and ρi denotes the source rate generated by camera i
with i ∈ C.

In the following, we will gradually introduce and ex-
plain the objective function and the constraints used for the
problem formulation.
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6.1 Objective function
We are interested in maximizing the accuracy of the analysis
task performed by the visual sensor network. However, we
should point out that the VSN can be composed of several
camera nodes, each one possibly being active or inactive,
and, if active, acquiring different visual contents. In such
setting, a high level objective is to maximize the number of
active cameras while, at the same time, getting the “best”
accuracy out of the active cameras. Such high-level objec-
tive is composed of two contrasting sub-objectives target-
ing respectively “coverage” and “accuracy” of the visual
task. Generally speaking, the accuracy of active cameras
decreases as their number increases; this is due to the fact
that a larger number of active cameras leads to higher traffic
in the network. To account for both aspects, we leverage a
multi-component objective function to be maximized. Let
Ai(ρi) be the rate-accuracy function of the i-th camera, the
aforementioned objective can be implemented through the
following combination of objective function and constraints:

max

[
αA∗ + (1− α)

(
1

|C|
∑
i∈C

yi

)]
(11)

s.t.

Ai(ρi) ≤ yi[xiACTA
i (ρi) + (1− xi)AATC

i (ρi)]∀i ∈ C (12)
yi[Ai(ρi)−A∗] ≥ 0 ∀i ∈ C (13)
A∗ ≤ Ai(ρi) ∀i ∈ C, (14)

where the constraints (12-14) force the accuracy of active
cameras to be higher than a reference threshold variable
A∗ and the objective function aims at maximizing a convex
combination of A∗ (minimum accuracy) and the fraction of
cameras which are activated in the solution (second term,
coverage). Note that other “measures” of the visual task
accuracy can be used in the objective function depending on
the specific application scenario: as an example, the average
accuracy of active cameras can be used in place of the
minimum accuracy, or, if all the cameras have overlapping
field-of-views, thus they are “seeing” the same visual con-
tent, one may want that at least on one camera the visual
analysis task have the maximum accuracy. In that case,
one could decide to maximize the maximum accuracy, thus
allocating all the available bandwidth to only one camera.
Note that, in case the application executed on the VSN has
particular accuracy requirements, these can be enforced by
adding proper constraints on the minimum accuracy (e.g,
A∗ > Ā, with Ā the required accuracy threshold). The same
can be done on a per-camera basis, by properly inserting
constraints to ensure that each camera gets a minimum
accuracy (e.g., Ai(ρi) ≥ Āi). However, we do not explore
this possibility in the rest of this paper.

6.2 Flow conservation constraints
The formulation of the resource allocation problem is based
on a “fluidic” model, with flows of data streaming from the
sources of the network (camera nodes), to a remote desti-
nation (sink nodes), through one or multiple relay nodes.
Clearly, one should ensure that all the data produced by the
cameras is correctly received by the sink node. This fact can
be conveniently expressed using the following constraints:

∑
(i,j)∈E
j∈N∪S

fi,j = yiρi ∀i ∈ C (15)

∑
(k,j)∈E
j∈N∪S

fk,j −
∑

(j,k)∈E
j∈N∪C

fj,k = 0 ∀k ∈ N (16)

∑
i∈C

yiρi =
∑

(j,i)∈E
j∈N∪C, i∈S

fj,i (17)

∑
(j,i)∈E
j∈V

fj,i = 0 ∀i ∈ C. (18)

Constraint sets (15), (16) and (17) impose that the flow is
conserved across camera nodes, relay nodes and sink nodes
respectively. In this formulation, we assume that camera
nodes cannot act as relays of information, thus incoming
flow into camera nodes has to be set to 0 by constraints (18).

6.3 Interference a constraints
The available bandwidth in the network is limited and must
be shared among sensor nodes. To ensure that transmis-
sions of multiple nodes do not interfere with each other,
one should carefully allocate the camera source rates. Such
allocation should then permit to schedule the transmission
of multiple nodes in such a way that neither interferences
nor delays reduce the overall quality of delivery. Here, we
translate this requirements by identifying subsets of inter-
fering links in the network. The main idea is to constraint
the total amount of data streamed over those links, so that
scheduling is possible and interference or collisions are
avoided. We assume that nodes use a mechanism similar
to RTS/CTS prior to packets transmission so that two links
(i, j) and (h, k) interfere with each other if and only if i)
(i, j) = (h, k); ii) (i, j) is adjacent to (h, k); or iii) (i, j)
is adjacent to another link which is adjacent to (h, k). We
can then introduce the set I(i,j) which includes all the links
interfering with link (i, j). If the generic link (i, j) has
capacity C(i,j), the interference constraint can be expressed
as:

fi,j +
∑

(h,k)∈I(i,j)

f(h,k) ≤ C(i,j) ∀(i, j) ∈ E. (19)

6.4 Lifetime constraints
As explained before, our formulation attains the objective of
maximizing a convex combination of accuracy and coverage
subject to a predefined network lifetime constraint. Here,
we will use a classical definition of network lifetime, that
is the period of time from the beginning of the operation
of the system to the instant when the first sensor node fails
due to energy depletion. To correctly express the lifetime
constraints we assume that (i) the i-th node in the network
starts its operation with a pre-defined energy budget Ēi,
and (ii) the lifetime L of the VSN is expressed in terms
of the number of consecutive images that can be acquired
and transmitted by each camera. Let T be the period of
acquisition (i.e., the inverse of the frame rate of the system),
in seconds, which may be tuned according to the specific
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applications. With these assumptions, the lifetime of the
network can be expressed as either L image acquisitions
or L × T seconds. As explained in Section 5, the energy
spent by each node in the sensor network is determined by
two components, namely the transmission/reception and
processing energy. Depending on the role of each node in
the network, we identify two possibilities:

1) Relay nodes: relay nodes in the sensor network consume
Etx Joules per bit transmitted and Erx joules per bit
received. The lifetime constraint for relay nodes can be
thus expressed as:

Etx

∑
(k,j)∈E

fk,j + Erx

∑
(j,k)∈E

fj,k ≤
Ēk

L
∀k ∈ R.

(20)
2) Camera nodes: camera nodes consume energy to acquire

and process images, and to transmit the multimedia
content (whether it refers to a compressed-image or to
compressed features). Depending on the visual analysis
paradigm used by each camera (i.e., compress-then-
analyze or analyze-then-compress), the processing en-
ergy will follow the behavior illustrated in Section 5.
Without loss of generality, let ECTA

cpu,i and EATC
cpu,i be the

processing energy consumed by the i-th camera node
in either the CTA or ATC paradigm (expressed in Joules
per bit); the lifetime constraint for camera nodes can be
expressed as:

Etx,iρi + ECTA
cpu,i ≤ xi

Ēi

L
+ (2− xi − yi)K ∀i ∈ C

(21)

Etx,iρi + EATC
cpu,i ≤ (1− xi)

Ēi

L
+ (1 + xi − yi)K ∀i ∈ C

(22)

where K is set to a sufficiently big value in order to (i)
satisfy the constraint which is not active in the particular
solution (i.e., constraint (22) if the camera is in CTA mode or
constraint (21) if the camera is in ATC mode), or (ii) satisfy
both constraints (21) and (22) when a camera is inactive,
regardless to the value of xi.

The complete formulation for the resource and paradigm
allocation problem in VSNs is reported hereafter:

max

[
αA∗ + (1− α)

(
1

|C|
∑
i∈C

yi

)]
, (23)

s.t.(12)− (22)

ρi ≤ yiK ∀i ∈ C (24)

yixi(ρi − ρCTA
min ) ≥ 0 ∀i ∈ C (25)

yi(1− xi)(ρi − ρATC
max,i) ≤ 0 ∀i ∈ C (26)

A∗ ∈ [0, 1] (27)
Ai(ρi) ∈ [0, 1] ∀i ∈ C (28)
yi ∈ {0, 1} ∀i ∈ C (29)
xi ∈ {0, 1} ∀i ∈ C (30)

fi,j ∈ R+ ∀(i, j) ∈ E (31)

where constraint (24) forces the source rate of inactive
camera to be 0. Constraints (25) and (26) can be explained
by referring to Figure 3, which reports the rate-accuracy

curves when operating in CTA or ATC mode; it is clear
from the figure that there is a minimum rate below which
CTA cannot be used (ρCTA

min ); moreover, it is also clear that
if the achievable rate of a camera exceeds ρATC

max , that cam-
era is better off operating in CTA as this provides higher
accuracy. In other words, if the rate achievable by a camera
is below ρCTA

min or above ρATC
max , the camera is forced to run

ATC or CTA paradigms, respectively. We can thus exploit
such properties to introduce in the formulation the two
additional constraints (25), which impose minimum source
rate for active cameras operating in CTA, and constraint
(26), which impose that the source rate of an active camera
operating in ATC cannot exceed to maximum rate ρATC

max .
Finally, constraints (27)-(31) define the decision variables of
the formulation. Operatively, the resource allocation prob-
lem may be solved in a centralized fashion on the base sta-
tion once the topology and the application requirements are
known. The solution (source rate and operative paradigm)
can be then transmitted to each camera in the network.
Moreover, the base station may compute and transmit a
new optimal solution whenever changes in topology or
application requirements occur.

6.5 Generalization to other visual analysis tasks and
hardware platforms

The proposed resource and paradigm allocation problem
is built around network specific constraints and the rate-
accuracy and rate-energy models derived in Section 4 and 5,
respectively5. Although such rate-energy-accuracy models
were specifically derived for the case of image retrieval
and object recognition applications, the resource allocation
problem may be easily generalized to other application
scenarios, comprising different system assumptions or even
totally different visual analysis tasks. As an example, the
model can be easily adapted to the case where visual
queries are obtained starting from video streams rather
then from still images. In that case, a camera operating
according to the CTA paradigm would acquire and transmit
a compressed video stream (e.g., by using a state-of-the-art
encoder such as MPEG or H.264/AVC). In the case of ATC,
recent schemes for encoding visual features extracted from
video sequences may be adopted [42]. Clearly, adapting
the resource allocation problem to this scenario requires
the experimental derivation of the rate-accuracy and rate-
energy models for both CTA and ATC starting from video
sequences. Following the same idea, it would be possible to
use the proposed framework also when another hardware
platform, different from the BeagleBone, is available. In this
case, in order to re-use the proposed resource allocation and
paradigm problem, it is required to derive experimentally a
proper rate-energy model for the platform under considera-
tion. As an example, we performed the experimental energy
evaluation proposed in Section 5 using a Raspberry PI
model B platform in place of the BeagleBone. Our analysis
revealed that the same energy model can be used, that is the

5. Note also that the proposed rate-accuracy and rate-energy models
can be also fused to produce a parametric energy-accuracy model,
using the rate ρ as parameter. Such representation may be easier to
use for comparing the two paradigms in specific scenarios, e.g., when
rate cannot be directly controlled/measured [37].
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processing power Pcpu remains constant (and equal to 2.31
W in this case) and therefore energy can be estimated solely
based on the processing time.

7 EXPERIMENTAL RESULTS

This section comments on the solutions of the resource
allocation problem for simulated visual sensor networks
instances. The simulation instances are created with Matlab
and characterized by tunable input parameters including
the number of deployable camera nodes, c = |C|, the
number of relay nodes, n = |N |, and the number h of
routing hops along the paths between each camera node
and the information sink. Moreover, on each camera node,
we randomly select one visual content between the ZuBuD
dataset and the Oxford dataset characteristics. Depending
on the chosen dataset, the energy parameters and the rate-
accuracy behavior of camera nodes are set according to
the characteristics of the BeagleBone-based visual sensor
nodes presented in Sections 4 and 5. Assuming that each
BeagleBone (either camera or relay) is powered by 4 AA
batteries, each node in the network starts its operations
with an energy budget Ēi = Ē = 32.4 kJ. The capacity
of each link in the network is set to 31.25 kilobytes per
second (i.e., 250 kbps), and the application frame rate is
set to f = 1 query/second or f = 0.1 query/second
We formalized the optimization problem defined in (23)-
(31) through AMPL [43] and for each network instance
characterized by a specific parameters tuple <c,n,h,f>, we
produced 10 realizations of the relative network topology,
and the corresponding AMPL data files. Then, we solved
each problem instance using the Bonmin solver [44], and
averaged the results. All tests were carried out on a 2.3 GHz
Intel Core 2 Duo PC under Windows.

The quality of the solutions is evaluated with respect to
the following three performance metrics:

1) Coverage (COV ): the fraction of cameras which are
active in the solution, that is, the second term of the
objective function in (11):

COV =

∑
i∈C yi
c

;

2) Minimum Guaranteed Accuracy (MGA): the minimum
value of accuracy over all the cameras which are active
in the solution, that is, A∗ in the objective function (11);

3) Lifetime Accuracy Ratio (LAR): the two aforementioned
performance measures, namely COV and MGA, are
able to capture the performance of a specific solution of
the resource allocation problem, that is, for a particular
lifetime constraint L. Let J be the optimal value of
the objective function defined in (11). Clearly, J is a
function of the independent variable L. The function
J (L) corresponds to the solid line in the upper row of
Figure 7. To generalize such measures to any possible
lifetime constraint, we compute the (normalized) area
under the curve defined by J (L), that is:

LAR =

∫ LMAX

0 J (L)dL

LMAX
,

where the upper integral limit LMAX can be selected
arbitrarily. By definition, the LAR ranges between 0
and 1, and allows to compare different solutions of

the resource allocation problem in terms of their energy
efficiency and accuracy, considering all possible values
for the lifetime constraint.

7.1 Walk-through Example
To clarify the dynamics behind the solutions to the resource
allocation problem, we start off by considering a sample
scenario where we simulated a network instance composed
of four camera nodes directly connected to a single sink
node.

We assume that two cameras work according to the
ZuBuD dataset parameters and the other two according to
the Oxford dataset parameter. Moreover, we set the param-
eter α in (11) to 0.5.

Fig. 7(a) and 7(d) summarize the results obtained by
solving the optimization problem in the aforementioned
sample topology. Figure 7(a) shows the behavior of the cov-
erage, COV , the minimum guaranteed accuracy, MGA and
the utility function J as a function of the required lifetime
L, whereas Fig. 7(d) gives the corresponding breakdown of
the active camera types distinguished in ZuBud and Oxford
cameras (zoomed for the sake of readability in Figure 8).
Three operation regions can be appreciated in the curves of
Fig. 7(a):
• 0 ≤ L ≤ 20 × 103: all four cameras are active

(COV = 1) and they are all using ATC. The choice of
ATC is driven by the fact that the available bandwidth
per camera is below the lower bound of the bandwidth
for operating in CTA (see Section 4.3); namely, the max-
imum available bandwidth per camera is 31.25/4 =
7.81 kB/query, which is below the minimum required
rate for operating Oxford cameras in CTA, that is, 17.3
kB/query. As illustrated in Fig. 8, for L = 17× 103 and
L = 18×103, one of the ZuBuD cameras switch to CTA
mode. This doesn’t violate any problem constraints,
and does not modify the value of the objective function,
which is lower bounded by the value of accuracy given
by the Oxford cameras.

• 21 × 103 ≤ L ≤ 30 × 103, having all cameras active
and operating in ATC mode is no longer feasible as the
target lifetime L is now higher than the upper bound of
the lifetime for Oxford cameras operating in ATC (see
Table 3). Conversely, operating the Oxford cameras in
CTA is not feasible as the required rate would exceed
the available bandwidth. The solution thus turns off
one of the Oxford cameras and changes the operation
paradigm of the other Oxford camera to CTA as more
bandwidth is now available (the bandwidth has to be
split among three cameras only). Also in this case, as
showed in Fig. 8, for L = 29 × 103 and L = 30 × 103

one of the two ZuBuD cameras switches to CTA mode.
Again, this does not violate any constraints and does
not modify the value of the objective function.

• L ≥ 31 × 103, the required rate to operate the Oxford
camera in CTA at the target lifetime is no longer feasible
as the target lifetime is higher than the lifetime upper
bound for Oxford cameras operating in CTA (see Table
3); in the solution, the Oxford camera is turned off and
the two Zubud cameras switch to the CTA paradigm as
more bandwidth in now available (the bandwidth has
to be split among only two cameras now).
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(e) Coverage breakdown - CTA
case
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Fig. 7: Utility functions and coverage breakdown for (a,d) the mixed case, (b,e) the CTA case and (c,f) the ATC case.

We also compare the cases where all the cameras in the
network use only the CTA (Figures 7(b) and 7(e)) or the
ATC (Figures 7(c) and 7(f)) paradigm, against the solution
of the proposed formulation, which allows solutions where
the two paradigms coexist. Operatively, this is achieved by
forcing the value of the binary variables xi in (30) to 1 or
0 respectively. By looking at the solid line (i.e., the curve
relative to J ) in Figure 7(a) and 7(b), it is clear that the
mixed case outperforms CTA for low values of the required
lifetime. This is due to the smaller coverage achievable
by CTA due to bandwidth constraints. This is generally
true, as CTA cannot cope with very low-bandwidth regimes
(differently from ATC) and sacrifices the functioning of the
most bandwidth-eager cameras to free bandwidth for the
other cameras. Hence, in the CTA-only case, coverage is
penalized. Conversely, by looking at the solid line in Figure
7(a) and 7(c), it is clear that the mixed approach outperforms
ATC for high values of the require lifetime: this is again
generally true, as ATC is more energy-eager than CTA.
Generally speaking, ATC should be used when bandwidth
is the primary constraint, while CTA when energy is the
primary constraint. In a situation where the two dimensions
(energy/bandwidth) are equally important and changing
with time, the mixed paradigm allows to obtain the best
results by adapting to the particular network conditions.

7.2 General Topologies

To generalize the results obtained for the sample topology,
we tested the solution of the proposed optimization model
on several synthetic network topology instances. Specif-
ically, we varied the number of cameras c, the number
of network hops h and the application frame rate f . The
number of network hops set as input parameter impacts on
the number of relay nodes that each camera uses to deliver
the visual data to the sink node. Each topology is created
by randomly deploying camera nodes and relay nodes in a
variable-sized area, whose dimensions are adjusted based
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Fig. 8: Detailed (zoomed) version of Fig. 7(d)

on the number of network hops h. The communication
range of each node in the topology is set to 15 m and some of
the radio links were deleted randomly to simulate an indoor
environment.

Then, for each topology, we create and solve several
instances of the resource allocation problem, by varying
the lifetime constraint L, from 1 to LMAX. For each solved
instance, we analyze the lifetime-accuracy tradeoff that re-
sults from the solution of the problem. Again, we compare
the solution obtained with the proposed model with the
cases in which only the CTA and ATC paradigms are used
(i.e., a traditional scenario). We report LAR values for two
representative cases: one in which LMAX is set to a small
value, representing a loose lifetime constraint, and one in
which LMAX is high. For each configuration of the topology
parameters, the reported LAR value has been obtained by
averaging over 10 different topologies realizations.

Table 4 reports the LAR values for different numbers of
camera nodes c, different values of the network diameter
(network hops h) and different image retrieval query rate
f , when LMAX is set to 18 × 103 (e.g. 5 days of network
utilization at 1 query per second). Similarly, Table 5 reports
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f h c Mixed ATC Only CTA Only

1 query/second

1
2 0.74 0.70 0.73
4 0.70 0.70 0.61
6 0.69 0.69 0.60

2
2 0.70 0.70 0.61
4 0.66 0.66 0.61
6 0.67 0.67 0.60

0.1 query/second

1
2 0.77 0.70 0.77
4 0.77 0.70 0.77
6 0.77 0.70 0.77

2
2 0.77 0.70 0.77
4 0.77 0.70 0.77
6 0.76 0.70 0.75

TABLE 4: Lifetime Accuracy Ratio (LAR) values for differ-
ent network topologies when LMAX = 18× 103 queries

f h c Mixed ATC Only CTA Only

1 query/second

1
2 0.66 0.56 0.65
4 0.65 0.56 0.64
6 0.65 0.56 0.64

2
2 0.65 0.56 0.64
4 0.64 0.55 0.63
6 0.64 0.55 0.62

0.1 query/second

1
2 0.67 0.56 0.67
4 0.67 0.56 0.67
6 0.67 0.56 0.67

2
2 0.66 0.56 0.66
4 0.66 0.55 0.66
6 0.66 0.55 0.64

TABLE 5: Lifetime Accuracy Ratio (LAR) values for differ-
ent network topologies when LMAX = 180× 103 queries

the LAR values when LMAX is increased by ten times (i.e.,
180× 103).

From our results, the following comments can be made:
1) When a loose lifetime constraint is set (e.g., Table 4) and

for high application frame rates (1 query per second,
rows from 1 to 6), bandwidth is the primary limitation
and dominates over the energy constraint. In most of
these cases, ATC outperforms CTA as it allows for
low-bitrate utilization. Conversely, for low application
frame rates (0.1 query per second, rows from 7 to 12)
energy is the primary limitation and dominates over
bandwidth. Thus, in these cases, CTA outperforms
ATC.

2) Conversely, when a tight lifetime constraint is set (e.g.,
Table 5) and regardless to the input application frame
rate, CTA outperforms ATC. Again, this is due to the
fact that energy is the dominating constraint and CTA
shows better rate-energy performance than ATC.

3) In general, and not surprisingly, increasing the number
of cameras c, the network hops h or the application
frame rate f decreases the achievable LAR value.

4) In all cases, the proposed mixed approach which allows
the coexistence of the two paradigms shows the best
performance. Clearly, this is due to the flexibility of the
proposed solution, which can adapt to the particular
network topology conditions and setup of problem
parameters.

7.3 Real-life testbed

We implemented both CTA and ATC approaches on several
BeagleBone-based visual sensor nodes coupled with IEEE

Cameras Mixed ATC-only CTA-only
2 0.88 0.84 0.88
4 0.82 0.82 0.675
6 0.79 0.79 0.55

TABLE 6: Values of the objective function J computed on
experiments with a real-life VSN testbed based on Beagle-
Bone camera nodes

802.15.4 compliant transceivers. Visual sensor nodes acquire
and transmit visual data (compressed images or features)
to a sink node [45]. There, a graphical user interface allows
to control the operative paradigm to use on each camera,
including the possibility to tune operational parameters
such as the JPEG quality factor or the number of features
to transmit. Additionally, an object recognition engine is
implemented on the sink, thus allowing to compute per-
formance measures such as the MAP. Such information,
together with the rate-energy model validated with real-life
measurements (see Section 5), allow to solve the resource
allocation problem for any value of desired lifetime. To
demonstrate the feasibility of the proposed method in a real-
life experiment, we deployed three different VSN topologies
composed by 2, 4 and 6 BeagleBone camera nodes The
camera nodes were in direct communication range with the
sink, and the bandwidth achievable with the IEEE 802.15.4
transceivers was estimated to be equal to 4 kBytes per
second. Assuming a frame rate of f = 1fps, it is clear that
such bandwidth does not allow to use the Oxford dataset
in CTA mode (for which the minimum bandwidth is 17.3
kBytes per second, see Fig. 3(b)). Therefore, we pre-loaded
on each camera node query images from the ZuBuD dataset
only. For each of the three topologies, we solved the resource
allocation problem (with α = 0.5, L = 18 × 103 and f = 1
fps) and operate the camera nodes according to the optimal
solution returned by the problem. That is, each camera is
operated according either to CTA or ATC. If the former is
selected, the JPEG quality factor is tuned so that the output
rate matches the rate returned by the optimal solution. The
same is done for ATC, properly selecting the number of
features to transmit. Note that some cameras may be also
turned-off. In such conditions, we computed the MAP over
the ZuBuD query dataset for each camera and the number
of active cameras, and evaluated the optimal value of the
objective function J , defined in (11) and capturing both the
object recognition accuracy and the VSN coverage. Results
were compared with the ATC-only or CTA-only approaches.
Table 6 reports the computed value of J for the three
topologies. As one can see, the proposed mixed approach
allows to obtain the best results in terms of minimum
guaranteed accuracy and coverage. Also, it can be observed
that the performance of the CTA-only approach rapidly
decrease as the number of camera increases: due to the
limited bandwidth available, one has to either switch off
some camera nodes or use a very low quality factor, thus
resulting in poor application performance.

8 CONCLUSIONS

In this paper, we considered VSNs deployed to support
applications based on object recognition. We focused on
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two complementary paradigms for performing remote vi-
sual analysis: the traditional compress-then-analyze (CTA)
paradigm, where images are compressed and transmitted
to a central controller for analysis, and a novel, alternative
paradigm called analyze-then-compress (ATC). In this latter
paradigm, camera nodes extract visual features from the
acquired images. Such features are then transmitted to a cen-
tral controller for further analysis. Through experiments on
a real visual sensor node testbed, we characterized the two
paradigms in terms of their rate-energy and rate-accuracy
performance, showing that ATC allows for low-bandwidth
visual analysis at the cost of higher energy consumption.
Then, we formulated a resource allocation problem leverag-
ing the proposed rate-energy-accuracy models and showed
through simulations that the best results are obtained when
the two paradigms are allowed to coexist in the network.
Future works will address the problem of filling the gap
between the energy performance of the two paradigms: this
may be achieved by properly optimizing the execution of
state-of-the-art features extraction algorithms, either with
software or hardware design methodologies. Also, we plan
to extend the presented rate-energy-accuracy modeling to
other tasks that may be supported by VSNs, such as pedes-
trian detection and tracking.
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