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Abstract—In this work, we analyze the use of a WiFi network
deployed in a large-scale technical university. To this extent, we
leverage three weeks of WiFi traffic data logs and characterize the
spatio-temporal correlation of the traffic at different granularities
(each individual access point, groups of access points, entire
network). The spatial correlation of traffic across nearby access
points is also assessed. Then, we search for distinctive fingerprints
left on the WiFi traffic by different situations/conditions; namely,
we answer the following questions: Do students attending a lecture
use the wireless network in a different way than students not
attending a lecture?, and Is there any difference in the usage of
the wireless network during architecture or engineering classes? A
supervised learning approach based on Quadratic Discriminant
Analysis (QDA) is used to classify empty vs. occupied rooms and
engineering vs. architecture lectures using only WiFi traffic logs
with promising results.

Index Terms—WiFi data analysis, user behaviour analysis,

I. INTRODUCTION

Wireless local area networks (WLANs) based on the IEEE
802.11 standard family (i.e., WiFi) are an essential building
block to provide widespread wireless connectivity in diverse
indoor/outdoor scenarios. The cities we live in, our work-
places, hospitals and other public and private buildings are
equipped with WiFi networks to provide hot spot or capillary
wireless connectivity.

The reasons for the success of WiFi range from the use
of unlicensed spectrum to their ease of deployment and man-
agement [1]. Nowadays, WiFi connectivity is available both in
users’ terminals (laptops, handheld devices, electronic gadgets)
as well as in embedded devices and appliances. To this extent,
WiFi plays a key role in the provision of connectivity in urban
environments and to fully realize the vision of smart cities.

Besides their primary role of providing connectivity, WiFi
networks and devices nowadays come with powerful monitor-
ing systems able to collect and store large quantities of data
on the behaviour of the network itself: traffic load, number
of users, quality of the wireless signal etc. Such data, which
is primarily used for network management, optimization, and
fine-tuning, is also a “goldmine” for offering byproduct ser-
vices; indeed, WiFi logs can be used to provide location-based
services by properly localizing the users and/or to estimate
flows and spatial distributions of people during events or at
shopping malls. Moreover, WiFi logs can be coupled with

other types of context data and, more generally, can be used to
assess the behaviour of users. Therefore, a careful analysis of
such a data provides valuable information that can be used
for several purposes. In particular, in the context of smart
cities and smart buildings, the availability of techniques for
extracting high-level information from network data may help
city and building administrators to better understand and react
to the citizens’ needs.

In this work, we focus on a particular type of building
present in many cities in the world, namely a university
campus building. We analyze the data coming from the local
WiFi network of Politecnico di Milano, a large-scale technical
university located in Italy and we provide the following contri-
butions: (i) we propose a temporal and spatial characterization
of the WiFi traffic; (ii) we leverage the WiFi traffic logs
to answer the following questions: Do students attending
a lecture use the wireless network in a different way than
students not attending a lecture?, and Is there any difference
in the usage of the wireless network during architecture or
engineering classes? To answer these two questions we first
propose a set of features which combine different attributes
of the WiFi traffic (number of users/devices associated to the
network, duration of such connections, etc.). Then we build up
a labeled data set by exploiting information from the facility
management department database which allows us to know if
a room is occupied by a given lecture in a given time slot.
Finally we propose a supervised learning approach based on
Quadratic Discriminant Analysis (QDA) to classify empty vs.
occupied rooms and engineering vs. architecture lectures by
observing related WiFi traffic.

This work is organized as follows: Section II reviews the
relevant literature on WiFi network data analysis; the reference
scenario and spatio-temporal analysis of the WiFi traffic is
presented in Section III. Section IV describes the supervised
learning approach to classify empty vs occupied rooms and
engineering vs architecture lectures. Section V concludes the
manuscript and comments on ongoing/future work.

II. RELATED WORK

The analysis of data records extracted from WiFi networks
has attracted much attention in the scientific community over



the last decade. The relevant work in the field can be classified
by the main target of the data analysis.

The first class focuses on general performance analysis
and characterization of WiFi-based wireless networks with
the goal of medium/long-term network optimization. In their
seminal work [2], Kotz and Essien focus on the analysis of a
WiFi campus network composed of 476 Access Points. The
reference data set spans a two-month period and is com-
posed of traffic- and association-related information collected
through SNMP polling and SYS log messaging. The active
data collection is further complemented by data collected by
passive sniffers to capture back-end traffic. The collected data
set is leveraged to perform a rather complete analysis on the
traffic load characteristics (per user, per access point traffic,
traffic variability over time, per building traffic), the traffic type
characteristics (traffic breakdown per application) and user
mobility (number of visited Access Points while associated).
A similar analysis is performed on the same WiFi network
in [3] after two years to assess the changes over time of the
aforementioned performance figures. A performance analysis
of a WiFi campus network is also targeted in [4].

Calabrese et al. use in [5] the wifi data collected within the
MIT WiFi network (3000 access points) to perform spatio-
temporal analysis of the traffic flowing through the access
points. Moreover, the information on the number of connected
users per access point over time is used to classify location-
dependent network behavior; namely, the authors show that
by applying standard clustering techniques, location-dependent
“fingerprints” can be determined for the network behavior
(number of users, traffic).

The analysis of a corporate WiFi network is addressed in
[6]; the authors collect a one-month dataset by polling every 5
minutes via SNMP 177 Access Points over three distinct cor-
porate buildings. Besides analyzing the traffic characteristics,
the authors also propose a clustering approach for the users
based on two features: the prevalence which accounts for the
time a user spends at an access point and the persistence which
captures the total consecutive time a user spends at a AP.

The analysis of outdoor commercial WiFi networks is
addressed in [7], [8] and [9]. In [7], Blinn et al. consider
a Verizon WiFi Hot Spot network composed of 312 access
points running IEEE 802.11b which are polled via SNMP
every 5 minutes to obtain traffic and load measures. The
proposed analysis is mainly targeted to characterize the access
point traffic distribution over time, further assessing the spatial
correlation existing among adjacent access points. A user
mobility analysis is also carried out by leveraging the same
clustering framework proposed in [6]. Afanasyev et al. [8],
[9] address the performance analysis of the Google WiFi
network in Mountain View (CA), composed of 500 access
points. Different from the previous works, the reference wire-
less network architecture also has a wireless mesh extension
interconnecting the access points. The proposed analysis has
three main contributions: (i) the characterization of per-user
traffic distributions, (ii) the classification of users in terms of
their pattern in network usage and generated traffic (sporadic

users, residential users, etc.), (iii) the assessment of users
mobility in terms of travelled distance distributions.

Ganji et al. leverage in [10] campus WiFi data collected
through SNMP polling and SYSlog messaging to evaluate the
potential savings of duty cycling management policies of the
access points in large-scale campus wireless networks.

A second class of work explicitly targets the assessment of
human mobility and the development of data-driven mobility
models [11]. Song et al. takes as reference the same data logs
used in [2] to build up and validate location predictors for WiFi
users of campus networks; two approaches are introduced
based on Markovian models and Lempel-Ziv predictors. Along
the same lines, in [12] and subsequent studies [13], [14], Kim
et al. introduce and evaluate mobility models for campus WiFi
users which are developed and trained on WiFi data logs.

Mobility analysis in hospitals is the main focus in [15] and
[16], where movements of people are estimated by leveraging
the data coming from a WiFi network deployment composed
of 798 access points at Aarhus hospital. Besides characterizing
the users mobility, the authors also propose a clustering
analysis to classify different types of users (medical staff,
visitors, patients, etc.).

The third and last class of works include the literature where
WiFi data logs are mainly leveraged to classify the type of
users. In [17], a 12-week trace of a wireless LAN is analyzed
to analyze the behavior of different users in terms of mobliity,
peak throughput rates and application mix. In [18] four months
of WiFi data logs are collected in a campus environment and
used to characterize the different behavior in terms of mobility
between smartphones and laptops. Gember et al. [19] extend
the comparative analysis between handheld and non-handheld
devices by characterizing the different users behaviors in terms
of type of generated traffic; namely, full packet data collected
in a WiFi campus environment are collected and analyzed
to assess the applications/traffic breakdown for handheld and
non-handheld devices.

Recently, Wei et al. analyzed in [20] the impact of the high
penetration of handheld devices in WiFi campus networks. A
one year-long DHCP log is used along with a one-month flow
level dataset to profile handheld and non-handheld devices in
terms of mobility behavior and traffic characteristics.

According to this characterization, this paper stands in the
third class.

III. SCENARIO

This work analyses network data logs extracted from the
wireless network of the architecture department building of the
Politecnico di Milano (PoliMi) university, located in Milan,
Italy. The wireless network under study is composed of 28
different access points (APs) located on four different floors
of the building and covering rooms devoted to lectures as well
as offices, corridors and other public spaces. The APs support
the AirWave Management Platform (AMP), that allows to
observe every device and user connected to the network. In
particular, the AMP allows to sample the bandwidth usage and
the number of clients connected for each APs every 5 minutes.
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Fig. 1. (a) Cumulative downlink/uplink usage over one week; (b) Down-
link/uplink usage of one particular AP over the same week

In this work, we focus on a period of three weeks, from
the 16th of November, 2015 to the 6th of December, 2015.
This period does not contain any national holiday, therefore
it represents well the “steady-state” behaviour of the wireless
network in terms of number of clients connected and average
usage. For each access point, the uplink/downlink bandwidth
usage and the number of clients connected were sampled and
stored every 5 minutes, for a total of 12 × 24 × 21 = 6048
data points per AP. Additionally, the list of devices associated
to each AP is downloaded and stored in a database. For each
device, the following information is stored and updated every
5 minutes: device MAC address, timestamp of the association
with the AP, duration of the connection (i.e., time elapsed
from the association event), average and variance of the signal
quality of the connection [dB] as well as average and variance
of the bandwidth usage [kbps]. Over the three weeks, a total
of 27538 unique devices were observed, generating 300681
different association events.

Figure 1(a) shows the cumulative uplink/downlink band-
width usage summed over all the APs during one of the se-
lected three weeks. As one can see, such cumulative measures
show a very nice periodic behaviour: the network usage is
very low during the night, increases rapidly in the morning,
experiences a short decline during lunch break and fades out
during the afternoon with a short constant period of about
two hours during the evening. This pattern is clearly associ-
ated with the behaviour of students and employees working
in the building under consideration, and repeats unchanged
every day from Monday to Friday. The behaviour during the
weekend is similar to the one during work days, although
with fewer clients connected and therefore less bandwidth
usage. The same behaviour is obtained for the other two weeks
in the dataset, which are not shown here for space reasons.
Unfortunately, the nice periodic behaviour observed on the
cumulative data is no more visible when analysing the data

Lag [hours]

0 
 

12
 

24
 

36
 

48
 

60
 

72
 

84
 

96
 

10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

20
4

21
6

22
8

24
0

25
2

26
4

27
6

28
8

30
0

31
2

32
4

33
6

34
8

36
0

37
2

38
4

39
6

40
8

42
0

43
2

44
4

45
6

46
8

48
0

49
2

50
4

C
or

re
la

tio
n 

co
ef

fic
ie

nt

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Downlink
Confidence Intervals

Fig. 2. Temporal correlation averaged over all APs. Local maxima are visible
after 7 and 14 days, according to the academic calendar.

of a particular AP. As an example, Figure 1(b) shows the
downlink and uplink usage measured on an AP located in
a room used for lectures throughout the week. As one can
see, the bandwidth usage is different from day to day and no
periodic pattern (except from the trivial night/day differences)
may be found. Such consideration, that periodicity is lost when
going from cumulative to individual AP data, is similar to what
was found in [21] for cellular networks.

In order to provide a more detailed analysis of the behaviour
of the network, we investigate how the network load varies
both spatially and temporally.

A. Temporal correlation analysis

As a first step, we compute the sample Pearson correlation
coefficient ri(t) of the downlink/uplink usage of the i-th AP
with a version of itself delayed by t samples (the so called
lagged correlation). This is done to determine if some temporal
pattern exists in individual AP data. Such information could
have tremendous implication in network resource management
techniques. Figure 2 shows the average lagged correlation
coefficient for the downlink bandwidth usage, where the
average is taken over all APs. As one can see, the average
temporal correlation is low, with peaks occurring every 12
and 24 hours according to the diurnal human activity pattern.
It is interesting to note that the correlation coefficient has local
maxima in correspondence to lags 168 and 336, that is after
one and two weeks. This can be explained taking into account
the schedule of lectures in some of the rooms covered by the
APs, which has a periodicity of one week. The 95% confidence
interval (red dashed line) is very narrow, meaning that all APs
show similar correlation coefficients. We repeated the same
test for the uplink traffic (not shown for space reasons), finding
weaker temporal correlation although with the same periodic
pattern.

B. Spatial correlation analysis

We also analyse the spatial correlation between different
APs. Again, such information could be used for mobility
modeling, traffic prediction and deployment planning. We
compute the Pearson correlation coefficient ri,j for all possible
pairs of APs (i, j). Figure 3 shows the computed correlation
coefficients for the downlink and uplink traffic, where blue
indicates no correlation (ri,j = 0) and yellow indicates
maximum correlation (ri,j = 1). The four red squares indicate
correlation values of APs located on the same floor (basement,
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ground, first and second floor, from the top left) and the
AP with index 13 is located alone on a mezzanine. Some
interesting observations can be made from the inspection of
Figure 3:
1) The maximum correlation is observed among APs on the

first and second floor, which are also those where most of
the classrooms are located. Overall, the maximum spatial
correlation value for the downlink traffic is 0.7, while
it is 0.5 for the uplink case (again indicating a weaker
correlation in the uplink usage).

2) Conversely, APs located in the basement and on the ground
floor, exhibit weak spatial correlation.

3) Some particular APs (rows 8, 11, 13 and 17) show very
low correlation values with all other APs. A more thor-
ough analysis revealed that these APs show the lowest
uplink/downlink traffic usage and the lowest average signal
quality towards connected devices. This may suggest that
either they are malfunctioning or that their location may
be changed to improve their performance.

IV. CLASSIFICATION

The wireless network under study is located in a building
belonging to the Department of Architecture of PoliMi univer-
sity. This building contains several classrooms that are used for
teaching classes from both the Architecture and Engineering
courses of study. Each classroom is different in size (maximum
number of students it may host) and is used for lectures only in
specific time slots during each day, according to the academic
calendar. When a room does not host a lecture, it may be still
used by students for studying or just for passing time between
a lecture and the following one.

In such a scenario, we rely on the data available AirWave
Management Platform and corresponding to those APs located
in the classrooms to answer two different questions:

1) Is there a difference between the WiFI usage inside rooms
during lecture times and “idle” times of these rooms?

2) Is there a difference between the WiFi usage inside rooms
during architecture lectures and engineering lectures in
these rooms?

The answer to the first question is somehow expected as
positive, as it seems logical to assume that students attending
a class will pay more attention to the teacher rather than to
their smartphones or laptops. At the same time, a user studying
or passing time in an empty room may be using its wireless
connection actively. Conversely, the answer to the second
question seems more unpredictable: although engineering and
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Fig. 4. Segmentation of network data into different time slots according to
the academic calendar.

architecture students tend to consider themselves as different
“species”, the way they behave during classes in terms of
network usage may be the same.

A. Feature extraction

To answer these questions, we take the following approach.
First, we rely on the academic calendar to identify when and
in which classroom architecture and engineering lectures are
given. This allows to extract several “time slots” from the data
logs of the APs located in the rooms where lectures are given,
where each time slot corresponds to either a particular lecture
(from the architecture or engineering courses) or to an empty
slot (see Figure 4). Note that we do not consider empty slots
occurring during night hours, but only those daytime periods
in which a room is not used for a lecture. Therefore, we only
consider time slots falling between 7 AM and 7 PM. Over the
three weeks under study, we extracted 213 non-empty time
slots (156 corresponding to architecture lectures and 57 to
engineering lectures) and 101 empty time slots.

For each time slot, we extract the following features:
• Total number of connections: the total number of connec-

tions whose start time falls inside the time slot.
• Number of unique devices: the number of unique MAC

addresses that started a connection in the time slot.
• Number of connections per device: the ratio between the

total number of connections and the number of unique
MAC addresses seen in the time slot, or how many times a
particular device connected to the network in the time slot.

• Average normalised duration: the average duration of each
connection, divided by the duration of the time slot.

• Average and variance of bandwidth usage: the mean and
variance of the bandwidth usage of each connection, av-
eraged over all the connections in the time slots. These
features capture how much traffic is produced by students
in a particular time slot and how variant this traffic is on
average.

• Average and variance of signal quality: the mean and vari-
ance of the signal quality experienced by each connection,
averaged over all the connections in the time slots.

• Occupancy: the ratio between the number of unique devices
seen during the time slot divided by the seating capacity of
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device.

the room in which the particular AP is installed.
• Normalised occupancy: the occupancy value normalised

with respect to the duration of the time slot.
• Connection distribution sparsity and peak: for each time

slot, we observe the particular minute at which each connec-
tion is started and we build an histogram with bins spaced
every five minutes, for a total of 12 bins. We then compute
the distribution sparsity and peak as the number of empty
bins and as the index of the bin with the highest connection
count, respectively. Such features capture the distribution
of the connections starting instants. If such a distribution
is sparse, it means that many devices started a connection
in the same 5 minutes (something that typically happens
during lecture breaks). If the distribution is uniform rather
than sparse, it means that students tend to start connection
randomly during the time slot and may indicate that they
are not particularly “interested” or “focused” on the lecture.

Ideally, such features should be computed only for the con-
nections started by devices who are actually located inside
a classroom where a lecture is (or is not) given. Therefore,
in the computation of the features we consider only those
connections whose average signal quality during the selected
time slot is greater than the average signal quality of all
possible connections to the AP covering that classroom.

B. Rooms with classes VS. empty rooms

To analyse the differences between the behaviour of students
during classes and empty slots, we use a classification-based
approach. First, we partition the dataset into a training-set
(80% of the time slots) and a test-set (the remaining 20%).
The training set is used to train different classifiers based
on (i) logistic regression, (ii) Linear Discriminant Analysis
(LDA) and (iii) Quadratic Discriminant Analysis (QDA),
whose performance are evaluated on the test set. The same
process is repeated 10 times, according to a stratified k-fold
cross validation approach (i.e., maintaining the proportion of
the different classes in each fold). Among the three classifiers,
QDA exhibits the best performance and only its results are
shown in the following for the sake of space.

Table I shows the performance of QDA in terms of a
confusion matrix. As one can see, time slots in which a class
was given are correctly classified 98% of the time, while this

TABLE I
CONFUSION MATRIX FOR THE EMPTY VS CLASS ROOM CLASSIFICATION

Predicted:
Empty

Predicted:
Class

Actual:
Empty 83.17% 16.83%

Actual:
Class 1.88% 98.12%

accuracy drops to 83% for empty time slots. Overall, the error
rate (that is, the percentage of misclassified time slots) of the
QDA classifier is as low as 8% and its F1-score is as high
as 0.87. To further analyse what are the most discriminative
features for such a classification, at each iteration of the k-
fold validation we perform forward stepwise feature selection,
each time keeping track of the top three selected features. It
turns out that the three most discriminative features in this
case are the average normalised duration, the occupancy and
the number of connections per device. Figure 5 gives a visual
explanation of the difference between empty and non-empty
time slots: empty time slots are characterised by a lower
average occupancy (0.6 vs. 0.9), and exhibit fewer connections
per device (1.2 vs. 1.5) but with a longer normalized duration
(0.6 vs. 0.3). That means that students occupying empty rooms
tend to connect once to the wireless network and to maintain
such a connection for a long time, while students attending a
class connect more frequently but for shorter periods.

C. Engineering VS. architecture classes

We repeated the same approach for identifying differences
between the behaviour of students during engineering or
architecture courses. Table II shows the performance of QDA
in terms of a confusion matrix. As one can see, even in this
case the performance of classification is very good, with an
overall error rate as low as 6% (F1-score equal to 0.96).
This means that there is indeed a difference in the usage
of the network by architecture or engineering students and
that the classifier is able to exploit such a difference. To
better understand what changes between the behaviour of the
two types of students, we again select the top three features
obtained with stepwise forward selection, which turn out to
be the occupancy, the sparsity of the connection distribution
and the average normalised duration. Figure 6 shows the
two types of classes when plotted on the planes individuated
by such features. We can observe that engineering classes
have on average (i) a lower occupancy (0.6 vs 0.8), (ii) a
higher sparsity of the connection distribution (2.9 vs 1.9) and
(iii) a higher normalised duration with respect to architecture
students (0.35 vs 0.2). We do not have access to the exact
number of enrolled students per class: assuming that such
a number is proportional to the room capacity, our results
seem to indicate that engineering students attend classes less
frequently, but with more attention than architecture students.
As a final remark, note that the methodology used in this work
can be applied also in all those scenarios following some kind
of schedule e.g. meeting rooms, conferences, train stations etc.,
not just university classes.
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distribution.

TABLE II
ARCHITECTURE VS ENGINEERING LECTURES CLASSIFICATION

Predicted:
Architecture

Predicted:
Engineering

Actual:
Architecture 97.44% 2.56%

Actual:
Engineering 14.04% 85.96%

V. CONCLUSIONS

The analysis of WiFi traffic can give fundamental insights
on how to optimize and manage the network andit can also
reveal patterns on how the end users behave. This high-level
semantic information may be used as a basis for implementing
future services, especially in the context of smart cities. In
this work, we have analyzed traffic logs from a campus
WiFi network. First, we have presented a spatio-temporal
correlation analysis of the network under consideration. Then,
we have proposed a supervised learning approach based on
QDA to classify WiFi traffic coming from empty or occupied
classrooms and from engineering or architecture lectures. The
proposed approach has been tested on a three-weeks WiFi data
log with promising classification performance. Future works
will address the exploitation of such results to implement high
level services.
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