
Automated Bug Detection for Pointers and Memory
Accesses in High-Level Synthesis Compilers

Pietro Fezzardi
Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano
Milano, Italy

email: pietro.fezzardi@polimi.it

Fabrizio Ferrandi
Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano
Milano, Italy

email: fabrizio.ferrandi@polimi.it

Abstract—Modern High-Level Synthesis (HLS) compilers ag-
gressively optimize memory architectures. Bugs involving mem-
ory accesses are hard to detect, especially if they are inserted
in the compilation process. We present an approach to isolate
automatically memory bugs introduced by HLS tools, without
user interaction, using only the original high-level specification.
This is possible by tracing memory accesses in software (SW) and
hardware (HW) executions on a given input dataset. The execu-
tion traces are compared performing a context-aware HW/SW
address translation, leveraging alias-analysis, HLS memory al-
location information and SW memory debugging practices. No
restrictions are imposed on memory optimizations. We show
results on the relevance of the problem, the coverage, the detected
bugs. We also show that the approach can be adapted to different
commercial and academic HLS tools.

I. INTRODUCTION

The complexity of hardware designs is constantly increas-
ing. To manage this growth and shorten development cy-
cles, High-Level Synthesis (HLS) is steadily becoming more
popular. HLS tools are getting more sophisticated, as new
algorithms are developed for scheduling, module allocation,
resource sharing, memory allocation and other tasks. Often,
these algorithms consider more than one of these problems at
the same time. Equally often, the more complex and advanced
is the algorithm, the more dissimilar is the final HW from the
original high-level specification, and the harder to debug when
the HLS implementation is wrong. In this paper we focus on
memory allocation. In particular, we discuss a methodology
for debugging memory faults introduced by HLS tools.

Optimizing memory allocation is very important in HLS.
Several different results show that it leads to significant
improvements of the generated designs [1] [2] [3] [4] [5]
[6] [7]. Every technique has benefits and subtleties. Thus, a
flexible methodology for debugging memory allocation imple-
mentations in HLS tools must be kept independent from the
underlying memory technologies and allocation algorithms.

A consequence of having so many options for memory, is
that the resulting Hardware Description Language (HDL) can
be hard to trace back to the original high-level source code.
Synthesis tools usually rely on naming conventions to preserve
variable names across abstraction levels, to simplify design
verification. Beside that, in HLS it is necessary to correlate
runtime assignments of variables in SW with signal variation

happening in HW. Things get more complicated when the
starting language for HLS is C. Pointers, access-by-address,
and dynamic allocation (with malloc/free) complicates
memory synthesis. Despite these obstacles, the large majority
of academic and commercial HLS compilers are based on C.
In fact, a number of improvements have been made and are
currently ongoing to overcome the troubles with the mentioned
features of the language [8]. For this reason, a debugging
technique for HLS of memory subsystems must be able to
handle the quirks of C to be both effective and useful.

Recently, there have been efforts to endow HLS frameworks
with tools for automated analysis of the discrepancies between
the executions of high-level source code and generated HW.
The one described in [9] relies on compiler information gener-
ated by the LegUp HLS compiler [10]. Another work [11] ex-
tends the idea to support compiler optimizations and temporary
variables, giving also a formal description of the algorithm.
However, none of the approaches described in these works can
be applied to debug memory allocation and pointer arithmetic.
In [11], the impossibility to compare SW pointers and HW
addresses is explicitly mentioned as the primary cause of the
limited coverage of the method.

Finding bugs in how HLS tools handle memory is an
important problem if HLS is going to achieve more widespread
adoption. Methodologies and utilities to find corner cases
where HLS tools do not work correctly are essential to
debugging them and to making them more stable, reliable,
and robust for production use.

In this paper we specifically address this problem. In
particular, we describe how to use HLS information to create
a HW/SW Address Space Translation Scheme (ASTS). Its
definition is kept as general as possible, to support the widest
variety of memory architectures and optimizations. The ASTS
enables the discrepancy analysis of pointer operations, map-
ping SW pointers onto HW memory locations. As with normal
discrepancy analysis, the approach detects bugs as soon as they
originate. This is useful, because it makes possible to isolate
the failing operation and the transformation that introduces it,
along with a number of information to back-track the bug to
the high-level source code.

The remainder of this work is structured as follows: in
section II we describe some preliminary concepts and assump-

tions necessary for the description of the ASTS; in section III
we formally introduce the ASTS; in section IV we show how
the ASTS works in practice and how it can be used for address
discrepancy analysis; in section V we report data collected on
different sets of benchmarks, to demonstrate the big impact
that memory and pointer operations have on memory intensive
applications, and to show that other tools can benefit from the
approach; finally, in section VI, we summarize the results,
outlining possible future research.

II. BACKGROUND AND ASSUMPTIONS

HLS tools use different techniques to synthesize pointers
in HW. For our analysis we evaluated three different HLS
compilers, with support for C pointers: 1) LegUp [10], based
on LLVM [12] and developed at the University of Toronto;
2) bambu, based on GCC [13] and developed at Politecnico
di Milano [14]; 3) a recent version of a production-ready
commercial HLS tool targeting Xilinx FPGAs, referred in the
following as CTool (the license does not allow to disclose
the name). All of them are able to synthesize pointers, with
different memory partitioning and allocation schemes. LegUp
and CTool do not support dynamic memory allocation, while
bambu does, through the synthesis of malloc and free.
To understand the design of the Address Space Translation
Scheme (ASTS), it is necessary to dig deeper in how pointers
and memory accesses are mapped to HW. Obviously, every
single HLS tool has its own Intermediate Representation
(IR), and performs different analyses and optimizations. The
evaluation of the three tools was necessary to find a general
model able to describe their operation at a higher level.
The methodology we introduce should be flexible enough for
different HLS frameworks.

A. Alias-Analysis and Pointer Synthesis

In general, for memory allocation, HLS tools take two de-
cisions: 1) which variables have to be stored in memory (usu-
ally global, static, volatile, arrays, and structs, but
possibly others); 2) the location where every memory-mapped
variable is stored (with different partitioning schemes). The
first point is usually inferred using alias-analysis (or points-
to analysis [15]) and/or decided with explicit directives. The
process is described in [8], which also outlines some optimiza-
tions to save resources and superfluous accesses. The second
option is tightly bound to the HLS implementation, to the
specific memory architecture of the generated design, and to
the set of performed memory optimizations.

For every given combination of these things, we can make a
general assumption: every variable must be mapped to a spe-
cific memory location. A memory location is an unambiguous
position in the generated HW. It can be described with a unique
identifier for the memory module, a position in that memory
module and the size of the object stored in that position. This
holds for any underlying memory technology, being it a ROM,
a BRAM, or an external DDR. With this assumption we can
state that every memory-mapped variable i is associated to a
memory location. We define a memory location as a triplet

〈Mi, Bi, Si〉, where Mi is a unique identifier for a memory
module (independent of the memory technology), Bi is an
offset in bytes in that memory module, and Si is a size.
In general, the size Si must be expressed in multiples of
the memory alignment. In the following, we assume byte
alignment, but any other alignment can be used without loss
of generality. This concept of memory location is similar to
the location sets introduced by Wilson and Lam [16] and
also used by Séméria and De Micheli [8]. In compilers, alias-
analysis works on pointers, trying to recover the set of memory
locations where they can point to: the points-to set, or location
set. The results of the analysis can be used to tune the HW
memory partitioning. Notice that the points-to sets, like our
memory locations, are abstract concepts, independent of the
target architecture. The authors of [8] describe how to use
them to enhance the address decoding circuits. They use tags
and indexes as internal encoding to optimize pointer operations
in HW, getting rid of tags or indexes when possible. In this
respect, the HLS compilers we evaluated adopt different IRs
and map addresses to HW with their own conventions, but their
address encoding is equivalent to [8]. The only thing necessary
for the implementation of the address discrepancy analysis is
that, using HLS information, it has to be possible to identify
the signals representing the addresses in HW. The values of
those signals will be used by the address discrepancy analysis
algorithm. Like in [8], Mi is an abstract identifier, that may
actually not be translated in HW, depending on optimizations
and static analysis. In particular, when a memory operation
can be attributed to a single local/private memory module,
Mi can be completely optimized away. In cases where Mi

is not translated to HW, only Bi and Si can be used for the
discrepancy analysis. When Bi and Si are optimized away,
Mi is sufficient to retrieve the memory location.

The proposed approach aims at handling complex memory
allocation patterns. To support array partitioning, the assump-
tion must be slightly restricted. Requiring a variable to be
mapped on a single memory location is clearly not enough.
Instead, we require that every element of the array itself
(or field in a struct) is associated with a single memory
location. To summarize, this means to be able to compute
the inverse function of the mapping of high-level variables
onto HW memory locations. In case of arrays and structs
this inverse function needs to have per-element granularity. To
avoid to weigh down the terminology, in the following the
term ‘variable’ is used loosely, with the meaning of ‘scalar
variable or field in a struct or element of an array’. In this
way we can keep the discussion general while sketching the
approach, but treating all the data types in the same way.

B. Additional Assumptions

Before diving into the description of how address and
pointer operations can be automatically checked for discrep-
ancies, it is necessary to describe the kind of debugging flow
where this technique can be employed. Fig. 1 depicts a general
discrepancy analysis debugging flow, very much akin to what
is described in [11]. We are now interested only in the parts

with blue background, representing the standard discrepancy
analysis debug flow. The parts with green background are
necessary for the analysis of pointers. They are introduced
by this work and described in detail in sections III and IV.

The top section of the figure is the classic HLS flow. The
portion marked “EXTRACTED INFORMATION” shows the
data extracted from HLS that are necessary for automated
debugging with discrepancy analysis. Some of this information
is also fed back into the HLS process itself. The area marked
“DEBUGGING STEPS” contains the data and the operations
directly involved in the analysis of the discrepancies. On the
left, the instrumented high-level source code in Static Single
Assignment form (SSA) is compiled and executed to generate
the SW traces. On the right, the generated HDL is simulated
with cycle accuracy, to produce the HW traces. In the middle,
the proper analysis of the discrepancies takes place, using HW
and SW traces. The analysis produces a number of useful
results, shown on the bottom of the figure.

This kind of analysis is not in the family of equivalence
checking, because it cannot guarantee formal equivalence
between the high-level source code and the generated HW.
Rather, for a given input set, it extends the granularity of
functional verification to find bugs at every level in the HW
hierarchy. The discrepancy analysis works on predetermined
input data sets and uses them to automatically generate a
rich and fine-grained set of runtime assertions, to detect the
first place where HW and SW execution mismatch. However
there are two big differences between discrepancy analysis and
traditional assertion-based verification [17] [18] [19]. The first
is that with discrepancy analysis the assertions are generated
automatically from the high level source code and the input
dataset, without user action. The second is that they are not
translated into assertion checker circuits to be embedded in the
design. Instead, they are translated into informations to build
HW and SW execution traces, that are collected and analyzed
off line to detect mismatches.

The discrepancy analysis flow depicted in blue in Fig. 1
is known not to be able to handle discrepancies on addresses
and pointers. Thus, it is necessary to find a way to map SW
addresses to HW addresses: the Address Space Translation
Scheme (ASTS). The approach described in this work builds
on top of the flow depicted in the picture, slightly altering
some of the involved steps to produce the data necessary for
the correct handling of addresses and pointers. Extending this
flow to support pointers allows us to keep all the benefits of
the approach. First of all, it is possible to maintain informa-
tion on the relationships between original source code and
generated HDL [9]. The same holds for signals and registers
representing temporary variables inserted by the compiler for
optimizations [11] [20]. Using similar techniques, we are
able to select the HW signals necessary to track operations
involving C pointers and address arithmetic. The result of
every one of such operations is an address, which represents
a HW memory location, as described above. The selection
is completely machine-driven, without user intervention. In
the same way, using scheduling information, it is possible

ORIGINAL
SOURCE

CODE
(C)

FRONTEND

CONTROL
DATA
FLOW

GRAPH
(CDFG)

HLS

FINITE
STATE

MACHINE
(FSM)

DATA
PATH
(DP)

BACKEND

HARDWARE
DESCRIPTION

LANGUAGE
(HDL)

E
X

TR
A

C
TE

D
IN

FO
R

M
A

TI
O

N

source level
information

instrumented
C code in SSA
after frontend
optimizations

memory layout
memory allocation

memory partitioning

FSM optimizations
chaining
pipelining

resource sharing

scheduling
binding

allocation

list of signals
to collect

HW traces

D
E

B
U

G
G

IN
G

S
TE

P
S

compilation
+

execution

cycle accurate
RTL simulation

HW Traces (VCD)

SW Traces of
address operations

SW Traces

SW memory locations
SW call contexts

ASTS

DISCREPANCY ANALYSIS

D
E

B
U

G
IN

FO
R

M
A

TI
O

N

first mismatch between
HW and SW executions

faulty module
in HW design state of FSM

wrong variable
is pointer or address

hierachical path and
name of the wrong signal

value of the
wrong signal failed operation in C

SW memory location
of the wrong pointer

start and end time
of the failed operation

value of the
related C variable SW call stack trace

HW memory location
addressed by wrong signal

Fig. 1: Representation of the debugging flow based on automated discrepancy
analysis. The top section of the picture is the typical HLS flow. Everything be-
low it represents data and execution steps necessary for discrepancy analysis.
Plain boxes are the data, while boxes with gears are execution steps. Steps and
data with blue background are part of the standard discrepancy analysis flow.
Parts with green background are necessary for address discrepancy analysis,
and are introduced in this work. Parts with mixed blue-and-green background
are present in the normal flow, but they must be extended and modified to
enable address discrepancy analysis.

to detect the states of the HW Finite State Machine (FSM)
when these signals are written. After the signal selection, it is
possible to retrieve the traces of their variations during HW
execution. This can be done on chip [9] [20] or relying on
simulation [9] [11]. In this work, simulation is used to obtain
complete visibility of the signals, independently of the memory
architecture and the underlying technology. If the observability
of the signals can be achieved on-chip without altering the
memory architecture, it should be possible to use our approach
also for in-system debug. On the other hand, the execution
traces of the software can be obtained adding instrumentations
to the original C source code. Then the code is compiled and
executed with the additional instrumentations, the traces are
dumped to file and they can be easily collected and analyzed
with the approach described in [11]. Clearly the SW traces
described there are not enough to compare addresses. Hence
they must be enriched with some information, necessary for
the construction of the ASTS. However, the approach for their
generation remains the same. Section III describes what is
necessary to build the ASTS.

These assumptions give us all what we need to proceed.
We have a way to retrieve execution traces from HW and
SW. We also have a way to relate pointer operations in C to
HW addresses. However, even if in our model HW memory
locations are easy to transform in addresses, HW traces are not
easy to compare directly with the corresponding SW traces.
The reason is the big difference between HW and SW address
spaces. In SW we have a single contiguous memory. Even if it
is actually divided in different segments (stack, heap, static),

the raw binary values of a pointers are always directly compa-
rable and it is easy to see if they are equal. If two pointers are
equal in SW they must point to the same memory location. On
the other hand, in HW, the thing more similar to pointers are
signals representing addresses in memory modules. However,
memory in HW can be fragmented, spread across different
memory modules, possibly mapped on different technologies.
Hence it is totally possible to have two different signals, both
used for addressing memory modules, that have at the same
time the same value but are actually used to access different
memory locations. This happens when they are bitwise equal,
but they are used for addressing different memory modules.
This poses a major challenge to the verification of memory
subsystems generated with HLS, in particular when aggressive
optimizations of the address decoding logic are performed.

C. HLS Flow Error Coverage Metric

We define a static coverage metric, to measure the effective-
ness of the address discrepancy analysis. The metric is called
instruction coverage and it has some analogies with statement
coverage for a C program. It is denoted with icov:

icov =
of checked static operations

of static operations

It measures the percentage of static operations in the
elaborated C program that can be checked with the address
discrepancy analysis. At first sight it may resemble statement
coverage, which in general is defined as follows:

scov =
of statements executed at least once at runtime

of static statements
.

In the remainder of the paper we will use the notation ccov for
C statement coverage and vcov for Verilog statement coverage.

Despite the similarities, instruction coverage is not equiv-
alent to the statement coverage in the original C code nor
in the generated HDL. First of all icov is a static metric. In
general, statement coverage is dynamic, because it measures
the number of statement that are actually executed at runtime.
Instead, icov measures at compile time the number of instruc-
tions that can be checked, even if at runtime such instruction
are not executed, depending on the test input. Secondly, icov
has a finer granularity, because it considers the values of the
intermediate subexpressions in statements separately. In this
way, it is possible to check variable assignments, but also
intermediate values assigned in composite statements. This
metric measures the granularity of the checks. The goal is to
show that a large part of the operations are directly checked
for discrepancies, even if some cases are inevitably lost.

Clearly the instruction coverage cannot be full if there are
some control flow instructions. Branch statements, function
calls and return statements, cannot be checked directly by the
discrepancy analysis, because they do not assign variables.
However, they can be checked indirectly by the discrepancy
analysis. In fact, function calls are not directly checked,
but the instructions in the body of the called functions are.
Return statements are not directly checked inside the body
of the returning function, but the returned values are checked

right after their evaluation, before the return. Finally, branch
instructions are not directly checked, but the branch condition
is checked at its evaluation, before the jump. The key is
that the checks enabled with discrepancy analysis are on the
assigned values. While calls, returns and branches do not
assign variables, they alter the control flow. Control flow
mismatch can be detected with the approach described in [11].
Results reported in section V-D show a good coverage even
excluding the mentioned cases.

III. DEFINITION OF THE ASTS

In the HLS process, memory allocation has to decide for
every variable i a HW memory location 〈Mi, Bi, Si〉 and to
instantiate the necessary memory modules. The notation is the
same used in section II-A. In software, the same variable i
will be allocated at runtime at a certain memory location, not
known at compile time. This memory location can be represent
in a shorter form for SW: 〈CBi, CSi〉. Here CBi is simply the
address of the variable and CSi its size. However, in software,
the memory location where a variable is allocated at runtime,
does not depend only from the identifier i alone. Consider
a program where the main() calls another function fun()
multiple times, and fun() has a local stack-allocated variable
accessed by address. In this case, at every call to fun(),
the SW memory location for the variable will be different.
On the other hand, multiple strategies can be adopted from
the HLS engine for the synthesis: fun() could be inlined; a
separate module for fun() could be generated; the module
used for the implementation of fun() could be duplicated and
instantiated once for every different call site. Depending on
this decision the HW memory location for the local variables
of fun() may vary. However, this decision must be taken
during the HLS allocation step, and it is fixed at the end of
the HLS flow itself. In SW, instead, information on the call
context is necessary to handle this case, because SW memory
locations are dynamically determined at runtime and depend
on the call context. To extract runtime information from SW,
we insert additional memory profiling instrumentation in the C
code, before it is compiled for trace generation. In this way it
is possible to dump the SW memory mapping at runtime and
to extract the data necessary to build the ASTS. In particular,
for every function call we generate and collect the unique
context id j. For every memory-mapped variable we dump
the identifier i and its SW memory location, composed by its
base address CBi and size CSi. To support array partitioning
across memory modules, this must be refined. In particular,
i must be a unique identifier for an element in the array (or
field in a struct).

Starting from this information, it is possible to define the
Address Space Translation Scheme. The ASTS, is subdivided
in two tables, which can be implemented efficiently as hash
tables. The first is called Software Address Table (SAT) and
contains data on SW memory locations. One row is in the form
[j, 〈CBi, CSi〉, i]. Here j is the primary key and 〈CBi, CSi〉
is the secondary key. They allow, for any given call context, to
retrieve efficiently the mapping of SW addresses on variables.

Algorithm 1: Address Discrepancy Analysis Routine
Shared Data: ASTS = (SAT, HAT)

1 bool discrepancy (j, s, h)
Input : j: context identifier

s: SW address assigned to a pointer p in j
h: value of the signal related to p in HW

Result : true if s and h mismatch, false otherwise

2 i = search (j, s) in SAT;
3 if (i is found) then
4 〈Mi, Bi, Si〉 = search(i) in HAT;
5 if (〈Mi, Bi, Si〉 is found) then
6 h’ = decodeHW (〈Mi, Bi, Si〉);
7 if h 6= h’ then
8 return true;
9 else

10 return false;

11 else
12 // i is not allocated in memory in HW
13 return true;

14 else
15 // s is not in range for any variable
16 return false;

17 decodeHW (〈M,B, S〉)
Input : An HW memory location
Output : Value in HW associated to the base address

of the input memory location

This means that for every given call context j and for every
pointer p in that context, a fast lookup in the SAT is enough
to determine the variable i where p points. The second table
is the Hardware Address Table (HAT). It is composed by the
fields [i, 〈Mi, Bi, Si〉]. The HAT is build during the memory
allocation step of the HLS process. It maps every variable i
to a HW memory location 〈Mi, Bi, Si〉.

An important thing for both HW and SW memory locations
is that even if they are expressed in this formal notation, they
are easily convertible to bit sequences and back to memory
locations. For SW this is trivial, given that CBi is actually
an address. For HW, the mechanism strictly depends on the
implementation, but it is necessarily computed during HLS for
memory allocation and to build the address decoding logic.

Another important consideration is that the construction of
these tables happens after HLS, so that all the compiler opti-
mizations have already finished. This is particularly important
for memory to register and register to memory transformation
passes that could alter the construction of the ASTS. Building
the tables after HLS allows to treat also variables that have
been moved from memory to registers and vice versa.

IV. DEBUGGING MEMORY ALLOCATION

A. Address Discrepancy Algorithm

At this point, HW traces, SW traces and the ASTS are glued
together with an algorithm for automated discrepancy detec-
tion for pointer operations. The HW traces consist of Value
Change Dump (VCD) files [21]. The SW traces represents the
values of every assignment of a variable during SW execution.
For normal variables, the discrepancy analysis works just like

in [9] and [11], with bit-per-bit comparison. For pointers, bit-
per-bit comparison would obviously lead to a mismatch, even
if the synthesized address decoding logic is correct, because
of the different address spaces. For this reason the match is
evaluated with Algorithm 1.

The function discrepancy describes the algorithm at a
high-level. It takes 3 arguments: j is the SW context identifier;
s is an integer representing a SW address assigned to a pointer
variable p in context j; h is the value of the signal representing
in HW the pointer p. The function initially performs a lookup
in the SAT to compute the variable i pointed to by the address
s (line 2). If the lookup fails, it means that the address is not
in range for any variable in SW. This means that s does not
point to any valid SW memory location. Hence the discrepancy
analysis cannot give conclusive results because there is no SW
memory location to compare with HW (lines 14-16). If the
lookup in the SAT succeeds, then the variable i is used as key
for a second lookup, this time in the HAT (line 3-4). If this
second lookup fails, it means that there is a variable i in SW
whose address is taken but that is not mapped to memory in
HW. In this case the function returns an error (lines 11-13).
Instead, if also this second lookup succeeds, the computed
HW memory location 〈Mi, Bi, Si〉 is converted to an integer
with the decodeHW function (line 5-6). The decoded value h’
represents the HW address expected to match the SW address
s computed in SW. Thus, if h 6=h’, a mismatch is detected
otherwise discrepancy returns false.

The decodeHW is strictly dependent on the implementa-
tion. Hence it is different for every HLS tool, since it uses
a lot of HLS information on memory allocation, and on how
HW addresses are actually mapped to HW. Some insight will
be given in section V-B, where we will describe briefly how
the decodeHW can be constructed for the tools we evaluated.

B. Refining Address Discrepancy Analysis

The presented approach has to be refined to avoid false
positives. The first class of such false positives happens when
the synthesized HW performs a speculated READ. This is
perfectly possible in HW, but in SW it may access an invalid
address, causing segmentation fault. Hence we must ensure to
avoid READ speculation. This is not really a problem, since
none of the evaluated HLS tools is able to perform it.

Other problems arise when the points-to set for a given
address contains two arrays contiguously allocated in memory
by the C code. An example is the code in Fig. 2, where a and
b are contiguous. After the last iteration of the first loop, p
points to b[0], thus it is in-range for b. The reason is that,
after the last iteration of the first loop, p is set to &a[32],
which causes the loop to end. This assignment is actually
performed before entering in the second loop and setting p
to b. This means that there is a time when p evaluates to
&a[32], which in C overlaps with &b[0] but in HW it may
not. This is not a problem in C, but in HW a and b could even
be mapped on different memory modules. At this point, if the
value of p in SW is compared with HW, it is likely to generate
a false positive. A possible solution is to insert poisoned

extern int something(int *p);
int main() {

int *p, a[32], b[32], res = 0;
for (p = a; p < a + 32; p++)

res += something(p);
for (p = b; p < a + 32; p++)

res += something(p);
return res;

}

Fig. 2: A C program causing a false positive

int w(struct sockq *q, void *src, int len) {
char *sptr = src;
while (len--) {

q->buf[q->head++] = *src++;
if (q->head == NET_SKBUF_SIZE)

q->head = 0;
}
return len;

}

Fig. 3: A C function with pointer operations not supported by CTool.

redzones between different memory-allocated areas in C, using
the AddressSanitizer (ASAN) memory error detector [22],
deployed in both GCC and LLVM. The C code used for the
discrepancy analysis is compiled using ASAN. ASAN consists
of a compiler instrumentation pass and a run-time library
which replaces the malloc function. Using ASAN results in
two advantages: it avoids memory bugs in the original high-
level code used to generate the traces; it avoids false positives
cause by contiguously allocated data. Algorithm 1 cannot
really say anything about out-of-range addresses, because
only in-range addresses are actually used for lookups in the
HAT. ASAN is a complementary solution to this problem:
mismatches for out-of-range addresses are not reported, but
ASAN ensures that there are no dereferences. Another option
would be to perform static range checking directly in the
HLS tool, which is partially done by most compilers with the
correct flags. However, static range checking is not always
exhaustive in all the cases. Hence, the instrumented code
for trace generation would still need to be compiled with a
dynamic range-checking library. ASAN solves all these issues
at once and it is guaranteed to improve with time, following
the development of mainstream compilers.

V. EXPERIMENTAL RESULTS

A. Experimental setup

The approach have proved to be versatile and effective in
automatic bug detection on different designs, synthesized with
different HLS tools. We used two groups of benchmarks:
the CHStone HLS benchmark suite [23] and the GCC C-
torture test suite [24]. The first establishes a common baseline
for all the tools, but it has a big drawback for the scope
of the research: it has no complex pointer operations. They
are complicated enough to make alias-analysis non trivial,
but they really don’t try to push the limits of what can be
done with pointers in valid C code. This is not useful when
testing the address discrepancy analysis, because the focus is
on seeing how it behaves with exotic pointers manipulation

in C. This is the main reason behind the decision to use
also the GCC C-torture tests. These are a large set of self-
contained C programs, specifically designed to exercise corner
cases of a standard-compliant C compiler, including a number
of uncommon things with pointers. From preliminary trials, it
turned out that only 216 of such tests were involving pointer
operations. The analysis is restricted to this subset. On 56 of
them, CTool failed to complete the HLS process. An example
of a C code snippet that could not be handled is shown in
Fig. 3. Notice that from the programmer standpoint the use of
pointers in this function it is not particularly strange. This
kind of syntax is common practice in embedded C code,
but still many commercial tools have problems in handling
pointer casts and other similar operations. For this reason,
for the implementation of a proof-of-concept debugger with
automated discrepancy analysis, we choose bambu, which also
has an advanced approach to memory allocation [2] and it
implements fairly complex frontend optimizations [14]. Fig. 1
depicts the discrepancy analysis flow augmented with the
steps necessary for the creation and use of the ASTS. For
the experiments we used GCC 5 with ASAN to compile the
sources to obtain SW traces. The simulation used to generate
HW traces is cycle-accurate and it has been performed with
ModelSim SE-64 10.3 from Mentor Graphics.

B. Applicability to Other Tools

In an effort to remain as general as possible, despite our
choice of bambu for the actual implementation, we tried
to evaluate the method we propose with all the tools we
considered for this study. The main obstacle to this evaluation
is that, as described in section III, some of the information
for the construction of the ASTS must be extracted from
the HLS compiler. This is also necessary to understand how
to design the implementation-dependent decodeHW function.
For bambu and LegUp this is not a real problem because
of their open source licenses. This allows to modify the
memory allocation pass of these compilers to obtain the data.
A preliminary feasibility study on both these open source
tools showed that this was possible for both, with the same
fundamental approach. We decided to implement the full
fledged version of the debugger only for bambu, because it
has a very complex memory model, allowing tests in more
challenging cases. For this reason the results on coverage and
bug finding in the following sections are strictly related to
bambu. For LegUp, we applied the algorithm manually on
the CHStone benchmarks, to check that the methodology was
actually portable even if we did not deploy the full-fledged
automated flow.

For CTool some additional work was necessary to build
the ASTS and the decodeHW function, because the HLS
flow could not be altered. We compiled some of the CHStone
benchmarks that the tool was able to synthesize, using memory
partitioning directives. We had to chose a design for which
CTool generate correct address decoding, because if we were
to infer the ASTS and the decodeHW function from the HDL,
we had to be sure that they were correct before injecting

the bug. For this reason, we had to restrict the analysis of
CTool to examples where the generated designs were correct
and passing all the functional tests. This allowed manual
analysis of the generated HDL to build the correct ASTS and
the decodeHW function. After building them, the HDL of
the address decoding logic generated by CTool was altered
manually to introduce bugs. This operation showed that it
is possible to use the correct ASTS and decodeHW, built
in advance, to spot a hypothetical bug inserted by the tool,
manually applying our algorithm to the fault-injected design.
Obviously, the problems analyzed in this way are a subset of
all the possible cases. Nevertheless, the results are encouraging
because they show that the method is successfully applicable
even to commercial HLS flows. In our experiments with CTool
we had to resort to manual methods, but with the access to the
source code it should be easy to adapt the tool to implement an
automated debug flow as described for bambu. This has been
valuable to show that the methodology can target commercial
HLS tools and that it can handle memory options not available
in bambu, like array partitioning.

C. Detected Bugs

Applying extensively the described approach to bambu we
were able find several bugs involving pointer operations. In-
terestingly, the bugs detected with this method are not always
strictly caused by errors in memory allocation. Instead they
can be generated by problems in other steps of HLS. The one
thing they have in common is that they affect in some way
the address decoding logic of the generated circuit, causing
a wrong address to be computed at some point. Here is an
exemplifying but not exhaustive list of the affected steps in
HLS, with some of the found bugs.

1) Compiler Frontend: bugs due to wrong static analysis
or manipulations of the IR, before the actual HLS takes place.
Among them, a compiler pass in bambu performs bit-width
static analysis to reduce the bits necessary for addressing
memories. This step was buggy and sometimes the number
of bits that the tool required to be necessary to represent
addresses was too high or too low. In both cases the effect was
that wrong values were used to address the memory, causing
bugs that propagated to the rest of the design.

2) Scheduling: problems due to wrong scheduling of opera-
tions in the FSM. They include wrong reordering of operations
due to missing dependencies, bad scheduling due to wrong
computations of operations’ execution times and others. In
some cases bambu’s frontend lost information about data de-
pendencies among operations. As a consequence, the schedul-
ing step in HLS decided that an address could be computed in
advance, but the data used for the computation was actually
not ready to use, again generating wrong addresses.

3) Memory allocation: instantiation of memory modules
with wrong characteristics, size or latency. This happened with
bambu and it caused different kind of problems. When the
memory was too small, some data could be lost writing it to
an out-of-bound address. It also happened that the HW tried to
read data from an out-of-bound address, causing the design to

hang, waiting for a reply from memory that never happened.
When the memory was too large, the offset calculation in
address decoding was wrong. This caused memory accesses
at wrong locations, reading wrong data or writing them in the
wrong place. Finally, when the expected latency was wrong,
the HW was using data before the memory replied.

4) Interconnection: wrong connection of wirings, causing
malfunctions. For instance, the same bug described at point
(1) affected the generation of the interconnection. Thus, the
address bus had the wrong width, causing wrong addressing.

All these bugs were properly detected and isolated in
bambu by the approach, without human intervention. The
data provided by the discrepancy analysis engine allowed to
identify the cause and to fix the HLS compiler. Positively, the
approach was able to treat bugs causing the designs to hang
or loop forever, because the simulation could be interrupted to
perform the discrepancy analysis up to a certain point in the
execution. Another important thing to stress is that most of the
memory bugs detected with the discrepancy analysis were also
causing errors in variables that did not represent addresses.
Clearly if a READ loads data from the wrong location, it is
likely to get them wrong. Without the address discrepancy
analysis it would not be possible to know if the problem was
the address or the data in the memory itself. The GCC C-
torture tests were very valuable in this phase, because the
CHStone benchmarks did not trigger any of these bugs.

D. Coverage and Performance

The results shown in Table I have been collected with bambu
on both CHStone and GCC C-torture tests. For the CHStone
the benchmark names are reported with the used optimization
flags. For GCC C-torture we report aggregated data, because
the benchmark set is too big to fit entirely here. The results
are measured with respect to the instruction coverage icov
described in section II-C. For the sake of completeness, in the
first two columns of Table I we report the dynamic statement
coverage for C (‘ccov’) and Verilog (‘vcov’). For C, ccov was
computed with gcov, the coverage tool included in GCC-
4.9. For Verilog, vcov was evaluated with simulation, using
ModelSim. The data show that the tests are not covering the
whole design, nor the original program. This is expected,
since the data set on which the CHStone operate is fixed
and it was not designed with coverage in mind. Currently,
the discrepancy analysis does not consider how the inputs for
the design under test are generated. For the experiments the
default was used. Despite this, the address discrepancy analysis
was able to find several bugs, because of its per-operation
granularity. However, the problem of how to tune the input test
is interesting, especially because there is no straightforward
relationship between coverage in C and in Verilog. The topic
is orthogonal to what is described here. It is very vast and it
deserves a separate analysis.

The interesting columns are ‘icov’ and ‘res’. Column ‘icov’
reports the static instruction coverage. For the CHStone it is
always higher than 70%, with a peak of 97%. As explained
in section II-C, this includes only data operations that are

benchmark ccov vcov icov res addr perf
adpcm-O0 100% 73.7% 70.7% 78.4% 22.5% 10.3%
adpcm-O3 99.68% 72.6% 86.6% 100% 5.6% 5.1%

aes-O0 69.53% 62.5% 77.6% 89.7% 42.0% 1.9%
aes-O3 72.46% 64.0% 81.2% 99.3% 20.8% 0.7%
bf-O0 67.95% 61.4% 95.2% 61.7% 26.4% 189.5%
bf-O3 100% 75.9% 92.0% 65.2% 20.1% 38.7%

dfadd-O0 78.44% 76.7% 74.8% 15.0% 1.8% 0.7%
dfadd-O3 88.39% 64.7% 96.9% 100% 0.9% 0.7%
dfmul-O0 83.27% 71.9% 90.5% 100% 1.4% 0.1%
dfmul-O3 78.84% 65.3% 96.3% 100% 1.1% 0.5%
dfdiv-O0 76.00% 66.1% 90.0% 100% 2.1% 0.1%
dfdiv-O3 86.67% 69.0% 97.2% 100% 1.3% 0.1%
dfsin-O0 74.36% 53.1% 78.3% 10.5% 0.4% 6.3%
dfsin-O3 80.12% 48.0% 89.2% 100% 0.2% 27.0%
gsm-O0 96.41% 73.8% 87.2% 94.0% 22.3% 4.2%
gsm-O3 91.07% 70.1% 89.1% 95.0% 25.5% 1.9%
jpeg-O0 89.40% 89.4% 77.4% 91.2% 19.9% 87.6%
jpeg-O3 85.40% 88.0% 83.6% 88.9% 22.4% 124.0%
mips-O0 74.85% 51.9% 75.6% 100% 0.3% 3.5%
mips-O3 73.41% 50.0% 76.2% 100% 0.2% 4.7%

mpeg2-O0 88.67% 79.6% 80.5% 54.5% 32.8% 1.1%
mpeg2-O3 85.17% 78.6% 78.8% 70.0% 28.3% 0.4%

sha-O0 98.81% 75.3% 81.4% 100% 43.8% 92.6%
sha-O3 87.15% 64.5% 77.3% 93.6% 33.6% 71.3%

C-torture 80.89% 74.7% 48.7% 28.5% 28.8% 0%
TABLE I: ccov and vcov: statement coverage for C and Verilog; icov:
instruction coverage; res: percentage of pointers for which alias-analysis is
fully resolved; addr: percentage of address operations; perf: execution time
overhead compared to simulation

directly checked by the discrepancy analysis, even if control
flow operations are checked indirectly by the methodology.
Column ‘res’ reports the percentage of pointers in the C code
for which the alias-analysis is fully resolved at compile time,
for which the discrepancy analysis is more effective. If a bug
affects one of them, the Algorithm 1 is always able to find
it by design. When the analysis is not fully resolved, the
address discrepancy analysis may have to give up in some
cases. If the analyzed pointer is not in range for any memory-
allocated variable (a so called wild pointer), Algorithm 1 never
returns a mismatch (lines 14-16). The reason is that only in-
range memory locations are mapped in HW, thus out-of-bound
addresses cannot be checked. ASAN is used to ensure that
there are no wild pointer dereferences, but it is interesting
to measure how many times the address discrepancy analysis
actually gives up on a comparison. From our inspection, this
never happens for the CHStone tests. This means that even
if the alias analysis is non-trivial the ASTS is able to check
all the addresses. Interestingly the percentage of give up is
very small (0.004%) also for the GCC C-torture, even if they
are precisely designed to stress-test the compiler on pointer
arithmetic. The good results on the CHStone benchmarks show
that the approach is perfectly suitable for real use cases. On
the other hand, the fact that even on the GCC C-torture test
there are so few give ups confirms that the ASTS can handle
a large variety of situations including several corner cases of
allowed operations with C pointers.

In column ‘addr’ we report the percentage of the operations
that assign addresses on the total operations executed at
runtime. For memory-intensive applications it can be higher
than 40%, so the address discrepancy is a non-trivial problem,

especially in large designs. Without the ASTS, the develop-
ers would need to reconstruct the address translation map
manually. This takes a long time and it requires memory
allocation information from the HLS tool, with details of
the addresses, the memory alignment and what are the bit
patterns used as addresses in HW. Also the SW memory
map with stack-allocated data should be retrieved. Finally, the
Algorithm 1 would have to be executed manually. In particular,
the user would need to decode manually the values of the
HW signals to retrieve the memory locations, which is an
operation that requires a good understanding of the internal
memory allocation used in HLS. All these operations could
be automated with the proposed approach.

The performance of the address discrepancy analysis is
measured in terms of execution time overhead compared to
simulation, that was executed with ModelSim SE-64 10.3. This
overhead is reported in the column ‘perf’. When the number
of address operation is negligible (dfadd, dfmul, dfdiv, dfsin,
mips) the execution time overhead is not significant This is
reasonable, because the discrepancy analysis is very fast on
integers and floating points, since there are no ASTS lookups.
For the GCC C-torture tests the overhead is also negligible,
because they are really small programs. On the other hand,
when the address operations are more than about 20%, it
is harder to find a straightforward relationship between the
coverage metrics and the performance overhead. The main
reason is to be attributed to the results of the alias analysis.
Indeed, even if the alias analysis is fully resolved it may
be possible that a single pointer variable points to different
memory location (if the location set for that pointer has more
than one element). Things are even worse if the alias-analysis
is not resolved. These situations can have a big impact on the
execution time of Algorithm 1, because several lookups in the
ASTS may be required. Even in the worst cases the overhead is
less than 200%, which is not a huge overhead if we consider
the complexity of the address discrepancy analysis and the
time we save avoiding user interaction.

VI. CONCLUSIONS AND FUTURE WORK

The focus of this work was to provide a methodology
for debugging circuits generated by HLS, able to handle
pointers and address comparisons and not tied to a specific
architecture or memory layout of the generated HW. The
described approach is able to isolate a bug at the operation
level, showing good coverage and a percentage of give up
close to zero even in corner cases. The described approach has
proved to be accurate and general enough to be adopted by
commercial HLS tools, while not imposing unrealistic bounds
to compiler optimizations for memory allocation. Given the
reduced interaction with the user, it is also an interesting option
for the development of environments relying on continuous
integration and regression testing to readily spot bugs. Further
research could try to extend the methodology to support
debugging of multi-threaded programs synthesized in HW or
READ speculation.

REFERENCES

[1] Y. Ben-Asher and N. Rotem, “Using memory profile analysis for
automatic synthesis of pointers code,” ACM Transactions on Embedded
Computing Systems, vol. 12, no. 3, p. 68, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2442116.2442118

[2] C. Pilato, F. Ferrandi, and D. Sciuto, “A design methodology
to implement memory accesses in high-level synthesis,” in
Proceedings of the 9th International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS 2011, part of
ESWeek ’11 Seventh Embedded Systems Week, Taipei, Taiwan,
9-14 October, 2011, 2011, pp. 49–58. [Online]. Available:
http://doi.acm.org/10.1145/2039370.2039381

[3] Y. Wang, P. Li, and J. Cong, “Theory and algorithm for generalized
memory partitioning in high-level synthesis,” in The 2014 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA
’14, Monterey, CA, USA - February 26 - 28, 2014, 2014, pp. 199–208.
[Online]. Available: http://doi.acm.org/10.1145/2554688.2554780

[4] P. Zhang, M. Huang, B. Xiao, H. Huang, and J. Cong, “CMOST:
a system-level FPGA compilation framework,” in Proceedings of the
52nd Annual Design Automation Conference, San Francisco, CA,
USA, June 7-11, 2015, 2015, pp. 158:1–158:6. [Online]. Available:
http://doi.acm.org/10.1145/2744769.2744807

[5] Y. Wang, P. Li, P. Zhang, C. Zhang, and J. Cong, “Memory partitioning
for multidimensional arrays in high-level synthesis,” in The 50th Annual
Design Automation Conference 2013, DAC ’13, Austin, TX, USA,
May 29 - June 07, 2013, 2013, pp. 12:1–12:8. [Online]. Available:
http://doi.acm.org/10.1145/2463209.2488748

[6] J. Seo, T. Kim, and P. R. Panda, “Memory allocation and mapping
in high-level synthesis - an integrated approach,” IEEE Trans.
VLSI Syst., vol. 11, no. 5, pp. 928–938, 2003. [Online]. Available:
http://dx.doi.org/10.1109/TVLSI.2003.817116

[7] C. Pilato, P. Mantovani, G. D. Guglielmo, and L. P. Carloni, “System-
level memory optimization for high-level synthesis of component-based
socs,” in 2014 International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS 2014, Uttar Pradesh,
India, October 12-17, 2014, 2014, pp. 18:1–18:10. [Online]. Available:
http://doi.acm.org/10.1145/2593069.2500071

[8] L. Séméria and G. D. Micheli, “Resolution, optimization, and encoding
of pointer variables for thebehavioral synthesis from C,” IEEE Trans.
on CAD of Integrated Circuits and Systems, vol. 20, no. 2, pp. 213–233,
2001. [Online]. Available: http://dx.doi.org/10.1109/43.908442

[9] N. Calagar, S. D. Brown, and J. H. Anderson, “Source-level debugging
for FPGA high-level synthesis,” in 24th International Conference
on Field Programmable Logic and Applications, FPL 2014, Munich,
Germany, 2-4 September, 2014, 2014, pp. 1–8. [Online]. Available:
http://dx.doi.org/10.1109/FPL.2014.6927496

[10] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona,
T. S. Czajkowski, S. D. Brown, and J. H. Anderson,
“Legup: An open-source high-level synthesis tool for FPGA-
based processor/accelerator systems,” ACM Transactions on Embedded
Computing Systems, vol. 13, no. 2, p. 24, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2514740

[11] P. Fezzardi, M. Castellana, and F. Ferrandi, “Trace-based automated
logical debugging for high-level synthesis generated circuits,” in 33rd
IEEE International Conference on Computer Design, ICCD 2015, New
York City, NY, USA, October 18-21, 2015, 2015, pp. 251–258. [Online].
Available: http://dx.doi.org/10.1109/ICCD.2015.7357111

[12] C. Lattner and V. S. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in 2nd IEEE / ACM
International Symposium on Code Generation and Optimization (CGO)
2004, 20-24 March 2004, San Jose, CA, USA, 2004, pp. 75–88.
[Online]. Available: http://dx.doi.org/10.1109/CGO.2004.1281665

[13] GNU GCC compiler. https://gcc.gnu.org.
[14] M. Lattuada and F. Ferrandi, “Code transformations based on

speculative SDC scheduling,” in Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 2015,
Austin, TX, USA, November 2-6, 2015, 2015, pp. 71–77. [Online].
Available: http://dx.doi.org/10.1109/ICCAD.2015.7372552

[15] B. Steensgaard, “Points-to analysis by type inference of programs with
structures and unions,” in Compiler Construction, 6th International
Conference, CC’96, Linköping, Sweden, April 24-26, 1996, Proceedings,
1996, pp. 136–150. [Online]. Available: http://dx.doi.org/10.1007/3-
540-61053-7 58

[16] R. P. Wilson and M. S. Lam, “Efficient context-sensitive pointer
analysis for C programs,” in Proceedings of the ACM SIGPLAN’95
Conference on Programming Language Design and Implementation
(PLDI), La Jolla, California, USA, June 18-21, 1995, 1995, p. 1.
[Online]. Available: http://doi.acm.org/10.1145/207110.207111

[17] A. Ribon, B. L. Gal, C. Jégo, and D. Dallet, “Assertion
support in high-level synthesis design flow,” in 2011 Forum
on Specification & Design Languages, FDL 2011, Oldenburg,
Germany, September 13-15, 2011, 2011, pp. 1–8. [Online]. Available:
http://ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=6069472

[18] J. Curreri, G. Stitt, and A. D. George, “High-level synthesis of
in-circuit assertions for verification, debugging, and timing analysis,”
Int. J. Reconfig. Comp., vol. 2011, pp. 406 857:1–406 857:17, 2011.
[Online]. Available: http://dx.doi.org/10.1155/2011/406857

[19] M. B. Hammouda, P. Coussy, and L. Lagadec, “A design
approach to automatically synthesize ANSI-C assertions during
high-level synthesis of hardware accelerators,” in IEEE International
Symposium on Circuits and Systemss, ISCAS 2014, Melbourne, Victoria,
Australia, June 1-5, 2014, 2014, pp. 165–168. [Online]. Available:
http://dx.doi.org/10.1109/ISCAS.2014.6865091

[20] J. B. Goeders and S. J. E. Wilton, “Using dynamic signal-
tracing to debug compiler-optimized HLS circuits on FPGAs,” in
23rd IEEE Annual International Symposium on Field-Programmable
Custom Computing Machines, FCCM 2015, Vancouver, BC,
Canada, May 2-6, 2015, 2015, pp. 127–134. [Online]. Available:
http://dx.doi.org/10.1109/FCCM.2015.25

[21] “IEEE Standard for Verilog Hardware Description Language,” IEEE Std
1364-2005, 2006.

[22] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker,” in 2012 USENIX Annual
Technical Conference, Boston, MA, USA, June 13-15, 2012, 2012, pp.
309–318.

[23] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii,
“Chstone: A benchmark program suite for practical c-based
high-level synthesis,” in International Symposium on Circuits and
Systems (ISCAS) 2008, 18-21 May 2008, Sheraton Seattle Hotel,
Seattle, Washington, USA, 2008, pp. 1192–1195. [Online]. Available:
http://dx.doi.org/10.1109/ISCAS.2008.4541637

[24] GCC C-torture tests.
https://gcc.gnu.org/onlinedocs/gccint/C-Tests.html.

