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Abstract—Video content is routinely acquired and distributed
in digital compressed format. In many cases, the same video
content is encoded multiple times. This is the typical scenario
that arises when a video, originally encoded directly by the
acquisition device, is then re-encoded, either after an editing
operation, or when uploaded to a sharing website. The analysis
of the bitstream reveals details of the last compression step (i.e.,
the codec adopted and the corresponding encoding parameters),
while masking the previous compression history. Therefore, in
this paper we consider a processing chain of two coding steps,
and we propose a method that exploits coding-based footprints
to identify both the codec and the size of the Group Of Pictures
(GOP) used in the first coding step. This sort of analysis is useful
in video forensics, when the analyst is interested in determining
the characteristics of the originating source device, and in video
quality assessment, since quality is determined by the whole
compression history. The proposed method relies on the fact
that lossy coding is an (almost) idempotent operation. That is,
re-encoding a video sequence with the same codec and coding
parameters produces a sequence that is similar to the former.
As a consequence, if the second codec in the chain does not
significantly alter the sequence, it is possible to analyze this sort
of similarity to identify the first codec and the adopted GOP size.
The method was extensively validated on a very large dataset of
video sequences generated by encoding content with a diversity
of codecs (MPEG-2, MPEG-4, H.264/AVC, DIRAC) and different
encoding parameters. In addition, a proof of concept showing that
the proposed method can be used also on videos downloaded from
YouTube is reported.

Index Terms—Video forensics, video codec, coding-based foot-
prints, GOP identification

I. INTRODUCTION

Due to the increasing availability of inexpensive digital
devices, camcorders are becoming widespread on the market,
being embedded in virtually all smartphones. Moreover, thanks
to the ubiquitous availability of high-speed Internet connection
and the increasing use of video sharing web sites (e.g.,
YouTube, Vimeo, etc.), many users upload video sequences
on the web. At the same time, digital videos might undergo
several editing steps during their lifetime. For example, after
acquiring a sequence, a user might manipulate it to enhance
its quality. Alternatively, after having downloaded a sequence
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from a website, a user might apply different kinds of transfor-
mations, including, e.g., cropping, scaling, color adjustment,
text/logo insertion, etc. After any editing operation, video se-
quences are usually encoded, since uncompressed video would
lead to a huge amount of data to be stored or transmitted.
Therefore, it is very likely that a video sequence available
online has been compressed multiple times.

When a sequence is decoded to the pixel domain and then
re-encoded, any information regarding the previous coding
step is apparently lost, since the previous compression history
cannot be simply obtained by parsing the bitstream of the
last coding step. However, video coding is lossy in most
cases, since it encompasses the use of quantization, which
is a non-invertible operation. Thus, each coding step is bound
to leave characteristic traces, or footprints, on the compressed
video, which can be leveraged as an asset to reconstruct its
compression history. This sort of information is very useful in
video forensics [3], since an analyst might be able to estimate
the characteristics of the previous coding steps (e.g., the codec
adopted and the corresponding encoding parameters, namely,
GOP structure, quantization parameters, coding modes, etc.).
A forensic analyst can successfully exploit the knowledge of
the compression history in many ways: i) it might serve as a
potential clue for source device identification, as it might, or
might not, be compatible with some acquisition device models;
ii) it might be used for video splicing detection, in those cases
in which sequences originally encoded separately, are then
spliced together (and re-encoded) into the same sequence; iii)
it might be adopted to detect removed/inserted frames, since
this might alter the original GOP structure. In addition, there
are other fields besides video forensics in which the knowledge
of the compression history is highly valuable. For example,
in video quality assessment, it is interesting to automatically
estimate the quality of a sequence in a no-reference set-up,
i.e., without the availability of the original sequence. Although
many no-reference video quality metrics do exploit directly the
information contained in the bitstream of the last coding step,
this might not be representative of the actual visual quality,
e.g., when a content is first compressed at low rate, and then
re-compressed at a higher rate [4].

In this paper we address the problem of reconstructing the
compression history of video sequences. We consider the case
of double compressed video sequences, and we focus on the
identification of the coding-based footprints left by the first
encoder. Specifically, we aim at determining the codec adopted
by the first step, namely the coding standard, and the cor-
responding GOP size. Although multiple video compression
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can be encountered in some situations, double compression is
arguably the most common use case, which arises any time
user generated content is acquired (and compressed) by a
device and subsequently uploaded to a video sharing web site.

Unlike double image compression, in which the same codec
(namely JPEG) is typically assumed to be used in both coding
steps, video compression is often performed with codecs
defined by different standards, thus complicating the analysis.
In our study, we considered widely adopted video coding
standards that follow the conventional hybrid DCT/DPCM
architecture, namely MPEG-2 [5], MPEG-4 part 4 (MPEG-
4) [6] and MPEG-4 part 10 - H.264/AVC (AVC) [7]. In
addition, we extended the analysis to include a wavelet-based
codec, DIRAC [8].

The proposed method is based on the idea that quantization
is an idempotent operation. Indeed, re-quantizing a scalar value
with the same quantizer produces exactly the same value.
Somewhat similarly, in the specific case of video coding, re-
encoding a previously compressed video sequence adopting
the same codec and coding parameters produces as output a
sequence that is similar to the former. Therefore, our idea
is that, in principle, it is possible to re-encode the available
(double compressed) video sequence with different codecs,
testing for each of them different encoding parameters, and
looking for the configuration of codecs/parameters which min-
imizes the distortion introduced in the re-encoded sequence.
As a matter of fact, instead of performing a full search of
all coding parameters (i.e., GOP, use of filters, macro-block
structure, etc.), we propose an algorithm that is able to loop
over just two of them (i.e., the codec and the quantization
step). The same method is also used for determine the GOP
size of the first coding step, by looking for those frames which
were originally encoded using intra-frame coding (I-frames).

As the proposed method is based on re-encoding the video
sequence under analysis, the computational time strongly
depends on the size of the search space of the re-encoding pa-
rameters (i.e., number of tested codec and quantization steps).
However, this is not considered to be an issue in most forensic
applications where the amount of videos to analyze is limited
(e.g., even just one suspect video). Anyway, in this manuscript
we also show that it is possible to significantly decrease the
size of the parameters’ search space strongly reducing the
computational complexity of the proposed algorithm without
impairing its accuracy. The possibility of reducing the com-
putational complexity of the proposed algorithm enables it to
be used also for different applications, where efficiency is a
compelling requirement.

Our method was validated on a very large dataset of double
compressed sequences, which was generated with a wide range
of codecs and encoding parameters. The results reveal the
possibility of identifying the coding standard and the GOP size
of the first coding step, depending on the strength of the second
coding step. Specifically, when the distortion introduced by the
second coding step is not significantly stronger than the dis-
tortion introduced by the first codec, both the coding standard
and the GOP size can be reliably estimated. Moreover, in order
to show that the proposed method can be applied in a typical
real-world scenario, we tested it on a set of video sequences

uploaded and downloaded from YouTube. Also in this case the
codec of the first compression step was correctly identified.

The rest of this paper is organized as follows. Section II
discusses the related work, focusing on similar ideas recently
applied to the case of still images. Section III introduces the
problem addressed in this paper and Section IV the idea of
exploiting the idempotent property of quantization. Section V
illustrates in details the proposed method to identify both the
coding standard and the GOP size. A thorough experimental
validation is presented in Section VI, and Section VII con-
cludes the paper, providing insights on open problems and
future challenges.

II. RELATED WORK

The study of the compression history has been widely
addressed in the past literature for the case of still im-
ages [9]. The problem of determining whether an image was
compressed with JPEG was originally studied in [10] and
further explored in [11], proposing a method to estimate the
quantization matrix by looking at the periodicities in the
distribution of the DCT coefficients. In the case of forgeries,
the image is often compressed twice, thus stimulating work
aimed at determining whether an image (or part of it) is single
vs. double compressed [12]. The solution to this problem was
recently extended to the challenging case in which the image is
cropped [13], resized [14], or contrast enhanced [15] between
the first and second compression. Although most of the images
are compressed using JPEG, in [16] the authors show how
to discriminate between different block-wise transform image
codecs (e.g., DCT-based, or DWT-based). A theoretical anal-
ysis of the footprint left by transform coding, a key element
in most image coding architectures, was presented in [17] and
later extended in [18] for the case of double compression.

The study of the compression history of video sequences
has been explored only more recently [3]. This has to do with
the intrinsic difficulty in dealing with video sequences rather
than still images. First, in the case of video, there is no single
coding standard that is universally used. Conversely, different
standards are being adopted depending on the scenario, so
that sequences might be encoded with legacy MPEG-2 and
MPEG-4 encoders, as well as with the more recent AVC
and HEVC [19] standards. Second, the number of degrees
of freedom when configuring a video encoder is significantly
larger than in JPEG. These include, for example, the choice
of the GOP structure, the coding mode decision rules, the
motion estimation algorithm, the rate control algorithm, etc.
Third, complex statistical dependencies are created between
the quantized coefficient values in different frames, due to the
adoption of motion-compensated prediction. For these reasons,
early work addressing video compression focused on the
analysis of MPEG-2 encoded sequences, and more specifically
on I-frames, to detect the quantization parameter [20] or
double compression [21], being a straightforward extension
of the methods applicable to still images. Conversely, the
early works addressing the specific challenges posed by the
analysis of compressed video focused on the estimation of the
quantization parameter (QP), which determines the distortion
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introduced in each frame (and, in some standards, in each
coding unit). In [22] and [23], the authors propose a method
to estimate the QP parameter in both I- and P-frames for
the case of, respectively, MPEG-2 and AVC coded video, by
analyzing the histograms computed from DCT coefficients of
prediction residuals. The estimation of the GOP structure (i.e.,
how I- , P- and B-frames alternate in a sequence), or, more
simply, the GOP size (i.e., the distance between consecutive
I-frames) was addressed in [24] for single-compressed video
based on the strength of spatial blocking artifacts. A method
suitable for the case of double-compression was proposed
in [25], by exploiting the footprints left by the skip coding
mode. Anyway, in this manuscript we propose a more general
method that works also with codecs based on different kinds
of transforms (i.e., DCT and DWT) not exploiting macro-
blocks size. A more recent work targeting double-compressed
video is [4], where the authors estimate the bitrate adopted in
the first compression step. In this case, the first and second
codecs are considered to be the same, thus known. Other
works address the analysis of motion vectors. In [26], it is
shown how to reconstruct motion vectors in AVC-encoded
video from decoded pixels, whereas the identification of the
motion estimation strategy is proposed in [27]. In case of
multiple video compression, a method to estimate the number
of compression steps is described in [28], which is based
on the analysis of the distribution of the first digits of DCT
coefficients, thus extending the previous work that covered the
case of JPEG compression [29].

This paper goes beyond the previous literature by addressing
for the first time the problem of estimating the video coding
standard adopted in the first coding step in the case of
double video compression. The proposed method is based
on a recompress-and-observe paradigm, inspired by similar
methods presented in the literature, which exploit the idem-
potency property of quantization in order to, e.g., estimate
the quality factor in JPEG compressed images [30], exposing
forgeries in compressed images [31] and to detect JPEG anti-
forensics [32]. However, to the best of the authors’ knowledge,
it has never been applied to the problem of identifying the
video codec.

With respect to our previous conference publications [1],
[2], several improvements have been made:
• We present an analytical explanation of the idempotency

property of quantizers (i.e., Section IV), which explains
the rationale behind the proposed algorithm.

• We address for the first time the problem of the estima-
tion of the GOP size, which was assumed to be given
in [1], [2]. To this purpose, we also provide a thorough
validation of the proposed GOP estimation algorithm (see
Section VI).

• The codec identification algorithm has been modified to
increase its robustness to the masking introduced by the
second coding step. The new algorithm does not require a
linear behavior between the Quantization Parameter (QP)
(or its logarithm) and Peak Signal to Noise Ratio (PSNR),
which was assumed in [1], [2].

• The dataset used for testing has been widely expanded.
We are now considering more videos (also at different

resolutions) and more codecs (both DCT- and DWT-
based). Moreover we tested the effect of using different
implementations of the same codec (for both MPEG4 and
H.264). Additionally, we tested the proposed methods on
videos downloaded from YouTube to prove the effective-
ness of the new algorithm also in a real-world scenario.

• We investigated the possibility of reducing the computa-
tional complexity of the presented algorithm, demonstrat-
ing the trade-off between accuracy and complexity in our
experimental results.

III. PROBLEM FORMULATION

Conventional video coding is implemented according to
an architecture that can be described with a chain of basic
processing operators, which is illustrated in Figure 1. The
encoder processes a video sequence X frame-by-frame. Each
frame is divided into blocks x, which are then coded according
to two main coding modes (note that in some cases, the frame
includes a single block, which is as large as the whole frame).
In intra-frame coding, each I-frame is considered as a stand-
alone image, and inter-pixel correlation within the same block
is exploited by means of transform coding. To increase the
coding efficiency, in the more recent standards (e.g., AVC and
HEVC) intra prediction can be enabled by using a prediction
algorithm P , which computes a predictor from the pixels
of neighboring blocks and subtracts it to the current block
before applying transform coding. In inter-frame coding, for
each block of a P- or B-frame, a predictor is computed
exploiting the pixels in one (or more) reference frame, by
means of Motion Estimation ME and Motion Compensation
MC. Specifically, ME looks for the best predictor in the
reference frame, which is identified by means of a motion
vector (MV). MC subtracts the predictor to the current block
to obtain the prediction residual, which is then processed with
transform coding.

Regardless of the coding mode, transform coding plays
a central role in any video coding architecture. The input
block, or the corresponding prediction residual, is transformed
(typically using an orthonormal transform) and the transform
coefficients y are quantized with Q to obtain ŷ. The encoded
bitstream is generated by entropy coding the quantized trans-
form coefficients. Since entropy coding is perfectly lossless, it
does not leave any footprint, and therefore it is omitted from
the scheme in Figure 1.

To avoid drift, the encoder embeds the decoder, which
reconstructs video frames in the pixel domain, so that they can
be used as reference in inter-frame coding and intra prediction.
Decoded blocks x̂ are obtained applying the inverse transform
T−1 to ŷ, and adding back the predictor (if needed). Finally,
pixel values are rounded to unsigned integers. Rounding can
be considered as a second quantization step, applied in the
pixel domain. However, since the distortion introduced in this
case is far less pronounced than the one due to the quantizer Q
applied in the transform domain, it is omitted from the scheme
in Figure 1.

A decoder is able to reconstruct a video sequence in the
pixel domain from the received compressed bitstream. In
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Fig. 1: Simplified block diagram of a conventional video encoder. T
is an orthonormal transform, Q is a quantizer, ME and MC perform,
respectively, motion estimation and compensation, and P computes
the spatial prediction in intra-coded frames.

addition, the decoder can read from the bitstream some of
the configuration parameters adopted by the encoder. In some
cases these parameters can be obtained directly from parsing
the bitstream. This is the case, for example, of the GOP
structure, the quantization parameters, the coding modes, the
motion vectors, etc. Instead, in other cases, the configuration
of the encoder can only be determined in an indirect way. For
example, it might be possible to infer the adopted motion esti-
mation algorithms from the analysis of the motion vectors [27],
or the rate control algorithm from the analysis of the temporal
variation of the quantization parameter [23]. However, when
the decoded video sequence is re-compressed, most of the
information related to the first coding step is seemingly lost,
since the analysis of the bitstream reveals details of the second
coding step only.

In this paper we consider the set-up illustrated in Figure 2,
in which a video sequence X is encoded twice, namely by
codec c1, obtaining X̂1, followed by c2, obtaining X̂2. As
argued in Section I, the first coding step is often performed
at the time the sequence X is acquired. Instead, the second
coding step might be applied after manipulating the sequence
X̂1, or when uploading X̂1 to a video sharing web site. In
this paper, we aim at determining the characteristics of the
first codec, c1, given that we observe only the bitstream at
the output of the second encoder. Specifically, we assume that
c1 belongs to a group of candidate coding architectures, in
which each architecture is the archetypal for a specific video
coding standard. In addition, we are particularly interested in
determining the GOP size, i.e., the number of frames between
two consecutive I-frames, adopted by c1.

In general, c1 and c2 need not to be the same. Indeed:
i) they might belong to two different coding architectures;
ii) they might follow the same architecture, but represent
two different implementations of the same standard; iii) they
might be the very same codec, but configured using different
encoding parameters, e.g., adopt two different GOP structures,
target distortions, etc. In all cases, c2 acts as a sort of noise
source, by masking the footprints left by c1. The amount of
distortion introduced by the second coding step determines to
what extent we are able to reveal the traces of c1. In particular,
when the distortion is strong enough, e.g., when the second
codec operates at low bitrates, the footprints left by c1 might
not be identified. This will be thoroughly discussed in the
experiments presented in Section VI. In the next section, we
present an analysis of the footprint left by quantization, which
provides the basis for the video coding identification algorithm
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Fig. 2: Simplified block diagram representing a processing chain with
two codecs, c1 and c2. A video sequence X is encoded and decoded
to X̂1, then re-encoded and decoded to X̂2. Each codec (i.e., c1 and
c2) is represented by a simplified block diagram as in Figure 1.

described in Section V.

IV. ANALYSIS OF QUANTIZATION FOOTPRINTS

The proposed method is based on the analysis of coding
footprints left by c1. To this end, we exploit the idempotency
property of scalar quantization, and show how this can be
somewhat extended to video coding. Scalar quantization is,
by construction, an idempotent operator. This means that it is
possible to re-iterate quantization multiple times on the same
scalar value, and the result will always be the same as the one
obtained by applying quantization only once.

More formally, let us consider a scalar value x ∈ R, which
is quantized to x̂q1 :

x̂q1 = Q∆1
(x) = ∆1

⌊
x

∆1

⌋
, (1)

where ∆1 denotes the quantization step size used, and the
subscript qi denotes a signal quantized i times. If we re-
quantize x̂q1 , we obtain

x̂q2 = Q∆2
(x̂q1) = ∆2

∆1

⌊
x

∆1

⌋
∆2

 . (2)

When we use the same quantizer and the same step size, i.e.,
∆1 = ∆2, then x̂q2 = x̂q1 . Hence, we can re-iterate quantiza-
tion, without affecting the signal after the first quantization.

The idempotent property can be conveniently exploited to
identify the quantizer used to produce a set of observed scalar
values, when one is given a finite set of candidate quantizers,
each one of the form in (1), but characterized by a different
step size ∆ ∈ S. Specifically, let {x1, . . . , xP } denote a set
of (unobserved) scalar values and {x̂1

q1 , . . . , x̂
P
q1} denote a set

of (observed) quantized values according to (1). Then, the
quantization footprints can reveal the quantization step size

∆̂1 = max

argmin
∆∈S

P∑
j=1

|x̂jq1 −Q∆(x̂jq1)|

 , (3)
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Fig. 3: Block diagram of double DPCM/PCM compression.

where ∆̄ = argmin
∆

f(∆) returns the argument ∆̄ such that

f(∆̄) is the minimum of function f(∆). The max{·} operator
is needed since its argument might contain more than one
quantizer compatible with the observed values. This might
be the case, e.g., when S contains integer multiples or sub-
multiples of ∆1. However, as proved in [17], ∆̂1 = ∆1,
provided that we observe a large enough number of values.

In case of double compression, it is not possible to observe
the output of the first quantizer, {x̂1

q1 , . . . , x̂
P
q1}. However,

when ∆2 < ∆1, it is still possible to reveal the first quantiza-
tion step size. Let us consider a slightly more elaborate model
illustrated in Figure 3, which represents a simplified version of
double video compression. Let X = {x1, x2, . . . , xP }, xj ∈
R, denote a 1-dimensional sequence of samples. Differential
Pulse Code Modulation (DPCM) is an efficient lossy coding
technique that is used to exploit the inter-sample statistical
dependency. Instead of quantizing the samples directly as in
the case of scalar quantization described in (1) (a.k.a. Pulse
Code Modulation (PCM)), the prediction residual is quantized:

êjq1 = Q∆1
(ej) = Q∆1

(xj − P(xj)), (4)

where P(xj) denotes a predictor of the sample xj . In the
simplest case, the previously decoded sample is used as pre-
dictor, i.e., P(xj) = x̂j−1

q1 . The sample is then reconstructed
by adding back the quantized residual to the predictor:

x̂jq1 = P(xj) + êjq1 . (5)

When using DPCM, it is customary to periodically insert
samples which are PCM coded. Let G1 denote the number
of samples between two consecutive PCM-coded samples and
X̂1 = {x̂1

q1 , . . . , x̂
P
q1} the sequence reconstructed after the first

coding step. X̂1 is then re-encoded with DPCM to obtain X̂2,
with quantization step size ∆2 and a period of G2 between
PCM-coded samples.

If G1 is known, it is possible to focus on those samples
which were originally PCM-coded in the first coding step, i.e.,
x̂jq2 , j ∈ J , J = {mod(j−1, G1) = 0}. In this case, although
the samples produced by the first coding step are not directly
observed, it is still possible to estimate the quantization step
size. Indeed, the decoded samples after the second coding step
can be written as

x̂jq2 = P(x̂jq1) + êjq2 = P(x̂jq1) +Q∆2
(x̂jq1 − P(x̂jq1)) (6)

Equation (6) states that x̂jq2 is obtained by shifting x̂jq1 by
an amount equal to the predictor P(x̂jq1), quantizing the result
according to Q∆2

(·), and shifting back the result by P(x̂jq1).
For any possible input x̂jq1 to the second coding step, the output
x̂jq2 is equal to the input, plus an offset that depends on the
quantization error introduced on the residual. More formally,

-100 -80 -60 -40 -20 0 20 40 60 80 100

x

P
r x̂

j q 2
(x

)

Fig. 4: Histogram of the samples x̂j
q2 , j ∈ J , when ∆1 = 10 and

∆2 = 4.

by adding and removing the term x̂jq1−P(x̂jq1) to equation (6),
it simplifies to

x̂jq2 = P(x̂jq1) +Q∆2(x̂jq1 − P(x̂jq1)) + (x̂jq1 − P(x̂jq1))

−(x̂jq1 − P(x̂jq1))

= x̂jq1 +Q∆2(x̂jq1 − P(x̂jq1))− (x̂jq1 − P(x̂jq1))

= x̂jq1 + (Q∆2(ejq1)− ejq1)

= x̂jq1 + ηj ,
(7)

where ηj is the quantization error introduced on the residual
ejq1 = x̂jq1 − P(x̂jq1).

It is interesting to determine the statistical distribution of
x̂jq2 , which depends on both the distribution of x̂jq1 and ηj .
The form of the probability density function (p.d.f.) of x̂jq1 ,
j ∈ J , is determined by the first quantizer:

Prx̂j
q1

(x) ∝
∑
k

wkδ(x− k∆1), (8)

where δ(x) = 1 if x = 0, and equal to zero otherwise. The
values wk ∈ R depend on the p.d.f. of the original sequence,
and they are not relevant to the present discussion. The residual
is represented as a random variable, whose p.d.f. is Prejq1 (x).
If Prejq1 (x) is smooth and its spread (e.g., measured by its
standard deviation) is large when compared to ∆2, then the
p.d.f. of the quantization error on the residual is uniform in
the interval [−∆2/2,∆2/2]:

Prηj (x) ∝ rect

(
x

∆2

)
, (9)

where rect(x) = 1 if x ∈ [−1/2,+1/2] and zero otherwise.
Assuming statistical independence between x̂jq1 and ηj , the
p.d.f. of the output of the second coding step can be written
as

Prx̂j
q2

(x) ∝
∑
k

wkrect

(
x− k∆1

∆2

)
. (10)

As an example, Figure 4 shows the empirical distribution
Prx̂j

q2
(x) obtained by applying double DPCM coding to a 1-

dimensional source and setting ∆1 = 10 and ∆2 = 4.
Similarly to the case of scalar quantization in (3), when

∆2 < ∆1, it is possible to estimate the quantization step size
of the first coding step by re-quantizing the observed samples
by varying ∆, and observing the behavior of the cost function

E(∆,J ) =
∑
j∈J
|x̂jq2 −Q∆(x̂jq2)|. (11)
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Fig. 5: Behavior of E(∆,Jg1), when ∆1 = 10. When g1 = G1 (a)
strong traces revealing ∆1 = 10 are present, while when g1 6= G1

(b) these traces are not so evident (best seen in colours).

Figure 5a shows the cost function in (11), when varying ∆,
for the case ∆1 = 10. It is possible to clearly observe the
footprints left by the first coding step, as local minima when
∆ = ∆1 and its sub-multiples.

So far, we have assumed that G1 is known. In practice, this
is not the case, since only the output of the second coding
step is observed. However, it is possible to compute E(∆,Jg1)
for different hypotheses of the distance between consecutive
PCM-coded samples, where Jg1 = {mod(j − 1, g1) = 0 ∧
mod(j − 1, G2) 6= 0}, g1 = 2, 3, . . ., and select the smallest
value of g1 for which E(∆,Jg1) exhibits the characteristic
shape shown in Figure 5a. Indeed, when g1 6= G1, the cost
function is of the form shown in Figure 5b.

In the next section we show that similar principles can be
followed to identify both the video codec and the GOP size
used by the first coding step.

V. VIDEO CODEC AND GOP SIZE IDENTIFICATION

The proposed method for the identification of the video
codec and of the GOP size follows a recompress-and-observe
paradigm, i.e., re-encoding the video under analysis so as to
find a coding configuration that matches the one used in the
first coding step. More precisely, let us consider a double-
compression chain such as the one illustrated in Figure 2.
A video sequence X is encoded by c1 and decoded in the
pixel domain to produce X̂1. Then, X̂1 is re-encoded with c2

and decoded to X̂2. In the case of DPCM/PCM coding, we
showed in Section IV that the quantization footprints left by
the first coding step were clearly identifiable when ∆2 < ∆1.
Similarly, in the case of video coding, we assume that c2

is configured to operate in such a way that the distortion
introduced in X̂2 is less than, or equal to, the one introduced
by c1, so as to avoid masking completely the traces left by
c1. This situation commonly arises in real-world scenarios. For
example, this is the case of a video that is edited, and then
recompressed using coding parameters that retain the same
visual quality as the input. For example, when the same codec
is used for both the first and the second compression, the target
bitrate of the latter step is chosen to be at least as large as the
bitrate of the former. This implies the use of a finer quantizer
in the second coding step.

The proposed method receives as input the bitstream after
the second encoder c2, decodes it to X̂2 and re-encodes this
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Fig. 6: Example of matrices Pc3(q, j) obtained for the sequence
NEWS originally encoded with MPEG-2 (GOP size: 14) and re-
encoded with MPEG-4 (GOP size: 12). (a) c3 = MPEG-2; (b) c3 =
MPEG-4; (c) c3 = AVC.

sequence using a third codec, c3, obtaining X̂3. When c3

matches the same codec and configuration parameters as c1,
we expect that X̂3 ' X̂2, i.e., the output of the third coding
step is similar to its input, due to the idempotent property.
In the case of video, the similarity between sequences is
computed by means of the Peak Signal to Noise Ratio (PSNR).
We enumerate different codecs c3 ∈ C, each with different
encoding parameters, and we look for the one that leads to
the highest similarity. Concretely, since the GOP size of the
first coding step is unknown, we configure c3 to operate using
intra-frame coding only (I-frames), and repeat the encoding
using different quantization parameters (QP) q ∈ QP . As
such, we only need to loop over two parameters (i.e., codec
and QP), repeating the encoding |C| × |QP| times and, for
each (c3, q) pair, we compute the PSNR between X̂2 and X̂3

on a frame-by-frame basis. As an example, Figure 6 shows
three matrices containing the values of PSNR obtained when
analyzing a double-compressed video sequence, which was
compressed with MPEG-2 (GOP size 14) and MPEG-4 (GOP
size 12) in the first and second coding step, respectively. Each
matrix corresponds to a different codec, namely MPEG-2,
MPEG-4 and AVC. By inspecting these matrices, we observe
the following:
• I-frames in X̂1 re-encoded as I-frames in X̂3 result in

higher PSNR values with respect to those obtained for
P-frames re-encoded as I-frames. As a consequence, a
periodic pattern arises, whose period is equal to the GOP
size of the first coding step.

• When codec c3 matches codec c1, we can analyze how
the PSNR varies when changing the QP for those frames
which were originally encoded as I-frames in the first
coding step. This is equivalent to looking at the columns
of the matrix for which c3 = c1 corresponding to the
I-frames. This is better illustrated in Figure 7a, in which
it is possible to observe that the PSNR vs. QP curve
exhibits a local maximum corresponding to the QP value
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Fig. 7: PSNR vs. q curves for different I-frames of the first GOP. (a)
c3 (MPEG-2) matches c1; (b) c3 (MPEG-4) does not match c1; (c)
c3 (AVC) does not match c1. Note that the q scale is logarithmic in
the top and middle figures to take into account the different mapping
between the quantization parameter and the quantization step size in
MPEG-2, MPEG-4 and AVC.

originally used by c1 to encode the frame. Conversely,
when codec c3 does not match codec c1, the PSNR vs.
QP function is smooth, as illustrated in Figure 7b and
Figure 7c.

Starting from the above observations, we propose the follow-
ing identification algorithm in order to detect the codec used
by c1 and its GOP size:

1) Initialization: Select the set of candidate codecs
C and the set of quantization parameters QP =
[QPmin, QPmax]. QPmin is set equal to the minimum
value accepted by the codec that gives the highest
quality, while QPmax is set to a value that is not greater
than the QP value used by c2 (i.e., the maximum QP
value we are able to detect).

2) Recompress: For each c3 ∈ C,

a) Encode X̂2 with c3 using all QP values and intra-
frame coding mode only. Let X̂q

3, q ∈ QP denote
the output of c3 decoded in the pixel domain.

b) Compute the matrix Pc3
, whose entries are given

by

Pc3
(q, j) = PSNR(X̂2(j), X̂q

3(j)), (12)

i.e., the PSNR value computed comparing the j-th
frame of X̂2 and of X̂q

3.
c) Since the bitstream used to decode X̂2 with c2

is assumed to be available, the matrix Pc3 is
processed column-wise to remove the traces left by
c2, for which the quantization parameter is known.

To this end we compute

P′c3
(q, j) =

{
Pc3 (q−1,j)+Pc3 (q+1,i)

2 q = QPc2

Pc3(q, j) otherwise,
(13)

In doing so, it is possible to remove potential local
maxima obtained if the quantization parameter of
c3 matches the one of c2 instead of the one of c1.

d) To enhance the local maxima due to matching
parameters between c3 and c1, we compute the
matrix

P′′c3
= P′c3

−medfilt(P′c3
), (14)

where medfilt(·) is a median filter applied row-by-
row to enhance peaks due to I-frames in X̂1. An
example is shown in Figure 8, which illustrates
P′′c3

and P′c3
for comparison.

3) Estimate the GOP size: Many methods for estimating
the periodicity of a signal have been proposed in the
literature. These range from historical frequency esti-
mation algorithms [33], [34] to more modern methods
for tempo estimation [35]. However, due to the nature
of the analyzed signals, in the following we propose a
simple yet effective method for periodicity estimation
that enables GOP detection at reduced complexity.

a) For each c3 ∈ C,
i) Compute the absolute value of Fourier trans-

form of each row of P′′c3
. Then, average the

result along each column to obtain

gc3 =
1

|QP|
∑
q∈QP

|F{P′′c3
(q, ·)}|, (15)

where F(·) denotes the Fourier transform and
gc3

is a row vector whose number of elements
is equal to the number of frames.

ii) Use a filterbank to evaluate the periodicity of
the peaks in gc3 , which is an estimate of the
GOP size. More specifically we compute the
average energy obtained filtering gc3

with dif-
ferent filters tuned to different candidate GOP
sizes:

Ĝ1,c3 = argmax
G

N∑
j=1

|(gc3 ∗ hG)(i)|2, (16)

where Ḡ = argmax
G

f(G) returns the argument

Ḡ such that f(Ḡ) is the maximum of function
f(G) and hG is a comb-filter whose distance
between consecutive peaks is equal to G . That
is

hG(j) =
∑
k

δ(j − kG) (17)

iii) Compute as quality metric of gc3
its peakness

value defined as

pc3 =
max(gc3)

mean(gc3
)
, (18)
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Fig. 8: Effect of median filtering on P′c3 realization from Figure 6.
(a) P′c3 ; (b) P′′c3 .

where max(.) computes the maximum value
and mean(.) computes the average value.

b) Estimate the GOP size Ĝ1 as the Ĝ1,c3
with the

highest associated pc3
. More formally,

Ĝ1 = Ĝ1,c̄3 , (19)

where c̄3 = argmax
c3

(pc3
). Notice that pc̄3

can be

used as a confidence value of the GOP estimation.
Indeed, high pc̄3

values are associated to GOPs
estimated from very peaky (thus reliable and easier
to analyze) gc̄3

. GOP estimation associated to
pc̄3

values below a confidence threshold can be
discarded (as shown in Section VI).

4) Identify the codec:
a) For each c3 ∈ C, compute the cost function

Jc3 =
∑
j∈J

∑
q∈QP

P′′c3
(q, j), (20)

where J = {j|mod(j−1, Ĝ1) = 0}. Equation (20)
computes the sum of median-filtered PSNR values
for those frames corresponding to the original I-
frames.

b) Identify the codec as follows:

ĉ1 = argmax
c3∈C

Jc3 . (21)

Notice that the knowledge of the bitstream after c2 is used
only to extract the GOP and QP values of X̂2. However, the
knowledge of the bitstream is not such a strict hypothesis,
since videos are usually distributed in compressed format
and not already decoded (especially when dealing with user-
generated content). Nonetheless, if X̂2 is available only in the
pixel domain, it is still possible to apply the algorithm skipping
step 2c with reduced accuracy.

VI. EXPERIMENTAL RESULTS

In order to validate the proposed method, in this Section we
present a set of results obtained using a dataset composed of
a wide set of video sequences encoded with different param-
eters. More specifically we focus on studying the accuracy
of the GOP estimation and the codec detection algorithms
for different sequences (seq), coding standards applied during

TABLE I: List of parameters names and values used to build the
dataset. Number of configurations for each parameter is also provided.

Name Value N. conf.

seq CIF Foreman, Mobile, Paris, News
4CIF Ice, Harbour 6

c1

MPEG-2 (libavcodec1) MPEG-2
MPEG-4 Part 4 (libavcodec) MPEG-4(a)
MPEG-4 Part 4 (Microsoft variant2) MPEG-4(b)
H.264/AVC (libavcodec) w/o deblock AVC(a)
H.264/AVC (libavcodec) with deblock AVC(b)
H.264/AVC 10 (JM3) w/o deblock AVC(c)
DIRAC (libschrodinger4) DIRAC

7

R1

RL RM RH

CIF 30 dB 33 dB 36 dB
4CIF 34 dB 37 dB 40 dB

3

G1 5, 7, 9, 11, 13, 14, 15, 17, 19, 21, 23 11

c2

MPEG-2 (libavcodec) MPEG-2
MPEG-4 Part 4 (libavcodec) MPEG-4(a)
H.264/AVC (libavcodec) AVC(a)

3

QP2

a b c d e f
MPEG-2/4 1 2 4 5 7 10
AVC 10 20 23 36 29 32

6

G2 12 1

the first coding step (c1), bitrates of c1 (R1), GOP sizes of
c1 (G1), coding standards applied during the second coding
step (c2), QPs of c2 (QP2), and GOP sizes of c2 (G2).
Notice that, to test the effect of all these parameters on the
presented algorithm, we need a complete knowledge of the
coding history of each tested sequence. For this reason we
performed this validation step on a controlled set of videos we
encoded on purpose starting from raw material, rather than on
random videos downloaded from the web.

Table I reports all the used parameters values. We started
from six well known uncompressed video sequences of 10
seconds each (i.e., 300 frames approximately), with different
spatial and temporal information: four at CIF spatial resolution
(352 × 288), namely Foreman, Mobile, Paris, News; two at
4CIF spatial resolution (704× 576), namely Ice and Harbour.
For the first coding step we used MPEG-2, MPEG-4 part 4
(MPEG-4), MPEG-4 part 10 H.264/AVC (AVC), and DIRAC.
As it regards MPEG-4, we tested two different implementa-
tions (MPEG-4(a) and MPEG-4(b)), while for AVC we used
two different implementations (AVC(a) and AVC(c)), one of
which was tested with the in-loop filter enabled too (AVC(b)).
For each codec, we selected three different target bitrates by
enabling rate control in order to obtain three sequences at low,
medium and high quality, respectively. The mapping between
bitrates and the obtained PRNUs is reported in Table I. As
for the second coding step, we re-encoded all sequences
with either MPEG-2, MPEG-4 or AVC, using a constant
QP (i.e., a constant quantization step). In order to unify the
notation, the set of possible QP values for c2 is identified
with {a, b, c, d, e, f}, which corresponds to {1, 2, 4, 5, 7, 10}
for MPEG-2/4 codecs and to {10, 20, 23, 26, 29, 32} for AVC
(equalizing the value of quantization steps among the codecs).
Concerning the GOP used for the first and second coding steps,
we used 10 different combinations reported in Table I. Notice
that the algorithm depends on the ratio between the used GOPs
(G1/G2), rather than on the exact GOP value. This justifies
the fact that we fixed G2 while changing G1 only. Concerning
the third coding step (i.e., the analysis one), we used as c3

MPEG-2, MPEG-4(a), AVC(a) and DIRAC.
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TABLE II: a1(QP2, G1/G2) fixing R1 = RM . Bold is used for accuracy values larger than 0.5.
G1/G2

5/12 7/12 9/12 11/12 13/12 15/12 17/12 19/12 21/12 23/12

Q
P
2

a 1.00 1.00 1.00 1.00 1.00 0.89 0.99 0.90 0.78 0.78
b 1.00 1.00 0.99 0.99 0.97 0.78 0.90 0.81 0.71 0.75
c 1.00 0.99 0.94 0.85 0.79 0.64 0.64 0.58 0.57 0.46
d 0.99 0.96 0.78 0.72 0.64 0.47 0.49 0.36 0.42 0.33
e 0.92 0.83 0.51 0.46 0.44 0.29 0.28 0.22 0.21 0.21
f 0.78 0.62 0.25 0.31 0.28 0.21 0.14 0.11 0.12 0.08

GOP Estimation
Let us consider a sequence (seq) double encoded with

the parameters c1, R1, G1,c2, QP2 and G2. We define the
detection function as

d(seq,c1, R1, G1,c2, QP2, G2) =

{
1, if Ĝ1 = G1,

0, otherwise,
(22)

whose value is 1 if the estimated GOP Ĝ1 is correct and 0
otherwise. To analyze the behavior of the GOP estimation
algorithm under different conditions and its robustness to
various coding parameters, we average the detection function
(22) along different dimensions, aggregating results obtained
on a subset of the dataset.

To highlight the effect of the distortion introduced by c2

quantization (QP2) and different GOP ratios (G1/G2) on GOP
estimation, we define the accuracy as

a1(QP2, G1/G2) = average
seq,c1,R1,c2

[d(seq,c1, R1, G1,c2, QP2, G2)] ,

(23)
where average

x
[d(x)] computes the average value of d

along the x direction and a1 ∈ [0, 1] (0 for GOP never
correctly detected, 1 for GOP always correctly detected).
Table II shows the behavior of a1(QP2, G1/G2) fixing
the average quality of c1 (R1 = RM ) with c1 ∈
{MPEG-2,MPEG-4(a), AVC(a), DIRAC}, c2 ∈ {MPEG-2,
MPEG-4(a),AVC(a)} and G2 ∈ {5, 7, 9, 11, 13, 15, 17, 19, 21,
23} (i.e., 6× 4× 1× 10× 3× 6× 1 = 4320 sequences). As
expected, when QP2 is low, the quantization noise introduced
by c2 does not mask the artifacts introduced by c1, thus
allowing an accurate GOP estimation. The same trend can
be observed for low values of G1/G2. Indeed, since all the
sequences share the same number of frames, a low G1 values
determines more peaks in gc3 (see (15)), thus making easier
to detect the periodicity of the peaks (i.e., G1). If the quality
of c1 is decreased (R1 = RL) or increased (R1 = RH ), the
artifacts introduced by c1 become stronger or weaker, respec-
tively. This effect determines an average accuracy increase of
5.8% for R1 = RL and an average accuracy decrease of 13.6%
for R1 = RH with respect to the case R1 = RM shown in
Table II.

In order to study the behavior of the GOP estimation
algorithm for each video sequence, we average the detection
function along c1, R1, c2, G1 and G2 defining the accuracy
as

a2(QP2, seq) = average
c1,R1,G1,c2,G2

[d(seq,c1, R1, G1,c2, QP2, G2)] ,

(24)

1https://libav.org/
2http://ffmpeg.org/∼michael/msmpeg4.txt
3http://iphome.hhi.de/suehring/tml
4http://diracvideo.org/

TABLE III: a2(QP2, seq). We use bold and italics for best and worst
results for each QP2, respectively.

seq
Foreman Mobile Paris News Ice Harbour

Q
P
2

a 0.95 1.00 0.89 0.93 0.96 0.87
b 0.92 0.97 0.88 0.86 0.96 0.87
c 0.77 0.88 0.81 0.69 0.96 0.75
d 0.62 0.75 0.68 0.55 0.78 0.31
e 0.42 0.63 0.47 0.39 0.53 0.18
f 0.27 0.54 0.32 0.27 0.31 0.04

TABLE IV: a3(c1,c2) values. Bold and italics are used values over
0.8 and under 0.6, respectively.

c2
MPEG-2 MPEG-4(a) AVC(a)

c
1

MPEG-2 0.70 0.66 0.88
MPEG-4(a) 0.72 0.61 0.81

AVC(a) 0.56 0.51 0.66
DIRAC 0.54 0.53 0.66

whose values still ranges between 0 and 1. Table III reports
a2(QP2, seq) values obtained on the same 4320 sequences
dataset of the previous experiment. These results confirm that,
despite the accuracy values slightly differ for each sequence,
the general trend remains the same, i.e., the accuracy decreases
for increasing QP2 values as expected. It is worth noting that
the sequence providing the best results is Mobile. This is due
to the presence of complex textures with constant motion that
are prone to emphasize visual artifacts left by c1, thus making
GOP footprints stronger and easier to detect. On the other
hand, Harbour gives overall the worst results. This is due to
the lack of motion of textured blocks.

Another interesting aspect to investigate is the effect of
different codecs at the first and second coding steps (i.e., c1

and c2). To this purpose we define the accuracy as

a3(c1,c2) = average
seq,R1,G1,QP2,G2

[d(seq,c1, R1, G1,c2, QP2, G2)] .

(25)
Table IV reports a3(c1,c2) values computed on the same
dataset of the previous experiments, highlighting the highest
and lowest values using bold and italics, respectively. Notice
that, on average, the highest accuracy (over 80%) is obtained
for c1 ∈ {MPEG-2,MPEG-4(a)} and c2 = AVC(a), while the
lowest accuracy (under 60%) is for c1 ∈ {AVC(a),DIRAC}
and c2 ∈ {MPEG-2,MPEG-4(a)}. This is an expected behav-
ior, as MPEG-2 and MPEG-4 are older standards than AVC
and DIRAC. Hence, MPEG-2 and MPEG-4 leave stronger
coding artifacts that, on one hand, enable to easily detect their
presence, and, on the other hand, increase the masking power
over previous coding steps.

Finally, in order to understand whether it is possible to
discriminate between correct and wrong GOP estimations,
we studied the relationship between GOP estimation and the
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TABLE V: Confusion matrix for c1 identification with different masking c2. Bold is used to denote the elements on the diagonal, i.e.,
elements that should be equal to one in the best scenario.

ĉ1
MPEG-2 MPEG-4 AVC DIRAC

c
1

MPEG-2 0.94 0.96 0.96 0.05 0.04 0.03 0 0 0.01 0.01 0 0
MPEG-4 (a) 0 0 0.04 0.93 0.92 0.76 0.02 0.02 0.2 0.06 0.06 0
MPEG-4 (b) 0.02 0.02 0.06 0.87 0.87 0.69 0.06 0.05 0.25 0.06 0.06 0

AVC (a) 0.01 0 0 0.14 0.24 0.06 0.79 0.68 0.94 0.06 0.08 0
AVC (b) 0 0.01 0 0.13 0.2 0.05 0.81 0.69 0.94 0.06 0.09 0.01
AVC (c) 0.06 0.06 0.15 0 0.03 0 0.92 0.87 0.81 0.02 0.05 0.04
DIRAC 0 0.02 0 0.09 0.12 0.01 0.13 0.12 0.21 0.78 0.74 0.78

MPEG-2 MPEG-4 AVC MPEG-2 MPEG-4 AVC MPEG-2 MPEG-4 AVC MPEG-2 MPEG-4 AVC
c2
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Fig. 9: GOP detection ROC curves for different values of G1.

peakness value associated to an estimated GOP (18). In other
words, we computed the Receiver Operating Characteristic
(ROC) curve by thresholding peakness values associated to
estimated GOPs. We evaluate as True Positives (TP) the
correctly estimated GOPs whose associated peakness is above
the threshold, and False Positives (FP) the wrongly estimated
GOPs whose associated peakness is above the threshold.
Figure 9 shows the ROC curves computed on the same
dataset used for the previous experiments, analyzing separately
sequences with different G1 values. Also this experiment
confirms that the lower the G1 value, the easiest is to correctly
detect the GOP, as already shown in Table II. Moreover this
proves that we can detect with a given probability whether the
GOP estimate is to be considered valid or not.

Codec Identification

To analyze the performance of the codec identification
algorithm, we consider all the combinations of parameters
reported in Table I, fixing the GOP size G1 = 14. The dataset
is then composed by 2268 sequences (i.e., six sequences, seven
c1, three R1, one G1, three c2, six QP2 and one G2). Since
we focus on codec identification, we assume G1 to be known.

Table V shows the codec identification confusion matrix as
a function of the masking codec c2. The identification method
is operated at sequence level by aggregating the observations
extracted from all detected intra-coded frames as explained in
(21). These results are averaged across all tested sequences.
It is interesting to notice that, as highlighted also in the GOP
identification procedure, AVC and DIRAC are well masked
by MPEG-2 and MPEG-4. Instead, when the masking (c2)
and the masked (c1) codecs share the same architecture,
identification accuracy is increased.

TABLE VI: Codec identification accuracy for different sequences, c2

and QP2. Bold is used for values larger than 0.8

(a) c2 = MPEG-2

QP2

a b c d e f

se
q

Foreman 1.00 0.95 0.90 0.90 0.81 0.67
Mobile 1.00 1.00 0.81 0.71 0.57 0.62
News 1.00 1.00 0.90 0.90 0.86 0.76
Paris 1.00 1.00 1.00 0.90 0.86 0.76
Ice 0.90 0.90 0.90 0.90 0.86 0.67
Harbour 0.90 0.86 0.90 0.86 0.81 0.67

(b) c2 = MPEG-4

QP2

a b c d e f
se

q

Foreman 0.95 0.90 0.90 0.90 0.81 0.52
Mobile 1.00 0.90 0.62 0.57 0.71 0.62
News 1.00 0.95 0.90 0.86 0.76 0.62
Paris 1.00 1.00 0.95 0.90 0.90 0.71
Ice 0.90 0.90 0.86 0.81 0.76 0.52
Harbour 0.90 0.81 0.90 0.86 0.71 0.52

(c) c2 = AVC

QP2

a b c d e f

se
q

Foreman 1.00 1.00 1.00 0.95 0.90 0.81
Mobile 1.00 1.00 0.95 0.76 0.62 0.57
News 1.00 0.95 0.90 0.90 0.81 0.86
Paris 1.00 1.00 1.00 0.90 0.90 0.81
Ice 0.90 0.86 0.76 0.67 0.62 0.67
Harbour 0.90 0.86 0.86 0.67 0.48 0.43

In order to analyze the masking effect further, Table VI
shows the codec identification accuracy obtained for different
c2 and QP2 values. In nearly lossless conditions (low QP2)
the proposed method successfully identifies the first codec in
almost all cases. Notice that the influence of lossy compression
on the effectiveness of the proposed identification algorithm
is content-dependent. Indeed, for Foreman, News or Paris,
accuracy is large also for high QP2 values, whereas for
Harbour the method is prone to fail when QP2 is moderately
increased.

A further test that we performed was to study the codec
estimation accuracy for different values of R. To this pur-
pose, Table VII shows the accuracy for different c2 and R,
averaging results over the other parameters. Unlike in the
GOP estimation case, codec estimation accuracy increases
when the original sequence is encoded at medium quality (i.e.,
R = RM ). This is due to the fact that, at medium quality, traces
left by c1 are stronger than for R = RH and the sequence
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TABLE VII: Codec identification accuracy for different c2 and R
values. Bold is used for best result for each c2.

R
RL RM RH

c
2

MPEG-2 0.86 0.90 0.82
MPEG-4 0.83 0.85 0.78
AVC 0.83 0.88 0.82
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Fig. 10: Detection ROC for each codec c2. Results are averaged on
the other parameters.

suffers less from other noise factor that can be introduced at
R = RL.

Finally, we tested the performance of the identification
algorithm using a threshold, instead of comparing results
between different c3. To this respect, we show the ROC curves
obtained at different values of QP2 for the second coding
step. Let τ denote a threshold value. The proposed method
labels a sequence as encoded with c1 whenever Jc1 > τ .
The TP rate is the fraction of sequences originally encoded
with c1 for which Jc1

> τ . Conversely, the FP rate is the
fraction of sequences not encoded with c1 for which Jc1

> τ .
ROC curves are traced by varying the value of τ . Figure 10
shows the ROC curves for each masking codec c2, averaging
results across all the other parameters. This allows us to study
the impact of the masking codec in terms of identification
accuracy. These results highlight that it is possible to detect
the codec based on a threshold value on Jc1

, thus enabling
the algorithm to work also in an open-group scenario.

In order to study the dependency on the video content,
Figure 11 shows individual ROC curves for each sequence,
always averaging results over all the other parameters. These
charts confirm that codec identification is content-dependent,
as already observed analyzing the results in Table VI and for
the GOP.

A test in a partially uncontrolled scenario

Up to now, we only presented results obtained on synthetic
datasets. This is of paramount importance as this is the only
feasible solution to study the behavior of our algorithm under
many different testing conditions. However, in order to verify
that it is possible to apply the proposed method also in a less-
controlled scenario, we performed an additional experiment
using a media sharing platform as masking codec. More
specifically, this proof of concept has been carried out using 9
sequences uploaded to YouTube. The sequences were created
by encoding Foreman at low, medium, and high quality, with
either MPEG-2, MPEG-4, and AVC. YouTube re-encoded
all the sequences when uploaded, acting as c2. We then
downloaded the sequences, and tested our method on them,
using as c3 either MPEG-2, MPEG-4, AVC, and DIRAC.
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Fig. 11: Detection ROC for each sequence. As shown in Table VI,
codec identification is sequence-dependent, although good results can
be achieved for low QP values of c2 since the masking effect is less
influential.

Notice that in this case we only exploited the knowledge of
G2 and not the overall bitstream downloaded from YouTube.
This means that we did not remove peaks due to QP2, skipping
step 2c of the algorithm, still achieving good results. More
specifically, we were able to always estimate the correct GOP
for sequences at low and medium quality. Conversely, GOP
traces were completely lost on sequences at high quality, thus
making GOP detection not possible. Concerning the codec
identification, assuming G1 as known, we always achieved
the correct result.

Computational Complexity

As explained in Section V, the proposed algorithm works
by re-encoding each sequence under analysis |C|×|QP| times,
which may be time consuming. As a matter of fact, the time
spent to analyze a 10 second CIF sequence with our simple
implementation using a commercially available laptop (i.e.,
equipped with 8GB of RAM and a 2.2 GHz Intel Core i7
processor) is approximately 100 seconds.

Even though in many forensic applications accuracy is more
valuable than time (e.g., where the number of videos to be
analyzed is limited), reducing the computational complexity
just slightly decreasing the algorithm accuracy may be inter-
esting in some specific use cases. For this reason, we studied
the possibility of reducing the computational complexity of
our algorithm by decreasing: i) the size of the search space
QP , and; ii) the length of the sequence under analysis. More
specifically, we tested the effect of sub-sampling the set QP
to a smaller set with cardinality |QP|/ωQP. Concerning time,
we selected a portion of the sequence whose length is 1/ωT of
the total length. The total computational time is then decreased
by a factor ωQP × ωT.

Concerning GOP estimation, we restricted the analysis to
the cases in which GOP estimation is sufficiently reliable (i.e.,
values of QP2 and G1/G2 such that a1(QP2, G1/G2) > 0.5
in Table II). Figure 12 shows the average accuracy obtained in
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Fig. 12: Effect of reducing computational complexity on GOP esti-
mation.
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Fig. 13: Effect of reducing computational complexity on codec
estimation.

estimating the GOP in this scenario for different values of ωQP
and ωT. Notice that reducing the number of tested QP does not
affect accuracy. Conversely, reducing the video length highly
reduce the algorithm accuracy. This is due to the fact that, the
shortest the sequence, the smaller the number of GOPs in it.
Nonetheless, it is possible to reduce the computational time
by a factor 10 (i.e., ωQP = 10 and ωT = 1).

Considering the codec estimation, Figure 13 shows the
average accuracy on the whole dataset by changing ωQP and
ωT. Notice that in this case it is still possible to have a reliable
codec estimation also reducing the temporal resolution (i.e.,
increasing ωT). As an example it is possible to reduce the
computational complexity by a factor 15 by using ωQP = 3
and ωT = 5, decreasing the average accuracy by only 4%.

This preliminary analysis shows the actual possibility of
scaling the computational complexity of the algorithm still
achieving a high detection accuracy. As a matter of fact, it is
possible to reduce the analysis time for a sequence of more
than an order of magnitude, thus making the analysis time
comparable with the sequence length (at CIF resolution).

VII. DISCUSSION

In this paper we presented an algorithm to estimate the
codec and GOP size used in the first coding step applied to a
double encoded sequence. The algorithm exploits the idempo-
tency property that video codecs inherit from quantizers and it
is based on a recompress-and-observe scheme, building upon
our previous work presented in [1].

A set of tests on an extended video dataset proves the
validity of the proposed method highlighting its working
conditions in terms of coding parameters used during the first
and second coding steps. More specifically, we showed that
it is possible to correctly identify the GOP size and codec
(also considering different implementations) no matters which
masking codec is used, as long as its quality is sufficiently high
to preserve traces left by the first compression. Results using
a threshold (i.e., ROC curves) also show that it is possible to

discriminate, with a certain probability, which estimates should
be considered as valid and which ones should be discarded.
An additional proof of concept of our algorithm in a real world
scenario (i.e., sequences uploaded on YouTube) highlights
the possibility of using it in real applications. Moreover, a
preliminary analysis also shows the possibility of reducing
the algorithms’ computational complexity by only slightly
decreasing its accuracy. This possibility will be the topic for
our future research.
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